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Abstract—Environmental sustainability policy relies on 

public attitudes to gauge acceptance and effectiveness, but 

traditional survey methods fall short in capturing emerging 

sentiment trends. This study applies machine learning and 

deep learning techniques, such as Bidirectional Encoder 

Representations from Transformers (BERT) and Long 

Short-Term Memory (LSTM), to analyze social media 

discussions about environmental policies. It turns 

unstructured data into structured sentiment values and 

evaluates them using an Extended Policy Analytical 

Framework. This framework includes region-specific 

analysis, event-related sentiment trends, emotion profiling, 

and explainable AI (SHAP-Shapley Additive Explanations) 

for clarity. BERT outperformed other models, achieving 0.97 

accuracy, followed by random forest at 0.94. The results 

reveal notable sentiment changes around key global policy 

events, such as COP26 in India (+0.14) and U.S. carbon tax 

proposals (−0.15), along with emotional trends related to 

specific issues. A comparative regional analysis showed a 

performance drop of 5% to 7%, indicating regional 

differences. Overall, the research demonstrates that 

explainable AI-driven sentiment analysis can provide useful 

information to improve policy design and communication. 

Index Terms—sentiment analysis, impact on public 

sentiments, environmental policies, artificial intelligence, 

explainable AI, deep learning 

I. INTRODUCTION 

With increasing environmental awareness, 

sustainability has become a major concern for societies 

around the globe. The impact of human activity on nature 

poses a serious problem, often accompanied by potential 

solutions ranging from technological advancements to 

legislative changes, business strategies, and educational 

efforts [1]. Human behavior, while often overlooked, plays 

a significant role as both a threat and an opportunity for 

positive change. Understanding human behavior is 

essential for making sustainability initiatives more 

effective, helping to tackle some of the toughest challenges 

facing the environment. Issues like deforestation, 

industrial pollution, and plastic waste have greatly 

contributed to climate change, biodiversity loss, and 

ecosystem damage, creating a need for more effective 

environmental policies [2]. 

Public opinion has become an essential input in 

policymaking on sustainability, with social media sites like 

X (formerly Twitter), Facebook, and Instagram being rich 

sources of real-time public discussion. These social media 

sites offer valuable insights into environmental issue 

perceptions, allowing quick societal response assessment. 

As examined by Guber [3], Digital forums in the current 

hyper-connected era serve as a participatory democracy, 

enabling citizens to express issues and shape the take-up 

and effectiveness of sustainability policies worldwide. 

Efforts at sustainability, undertaken by organizations in 

various sectors, are vital responses to environmental 
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concerns. Wang [4] established that 71.2% of sampled 

cities utilize grant proposals to fund sustainability projects, 

and 44% plan for these activities. Also, 62.5% of the cities 

employ information delivery systems aimed at enhancing 

sustainability. Throughout the world, countries have 

adopted policies such as carbon taxes, renewable energy, a 

ban on plastics, and emissions reduction schemes to 

control environmental destruction [5]. However, each 

policy calls for the support and cooperation of the public, 

which can be optimized using the public’s perspective to 

solve problems in advance. 
Sentiment analysis can be widely used across a variety 

of sectors, providing credible information that can inform 
policies and merit more thoughtful decision-making [6]. 
For instance, policymakers can utilize these findings to 
gauge public sentiment regarding proposed environmental 
policies or regulations, allowing them to engage with 
stakeholders more effectively. Companies can apply 
sentiment analysis to understand consumer views on their 
sustainability efforts [7]. This insight enables them to 
make informed decisions that enhance corporate social 
responsibility initiatives and resonate with consumer 
values. Also, the environmental activist non-profits can get 
advantage through the more impactful campaigns for 
cognizance to connect with people’s emotions, leading to 
greater support and participation in their causes. These 
examples illustrate how sentiment analysis can be 
practically applied to make better decisions across 
different sectors and influence environmental policy 
worldwide. 

The proposed study bridges the gap between 
environmental policymaking and public sentiment through 
AI-driven opinion analysis [8]. Policymakers often 
struggle to accurately measure public attitudes toward 
sustainability projects because traditional polling methods 
are slow and often inadequate. This research contributes 
by using advanced machine learning and deep learning 
techniques to analyze large amounts of social media data, 
creating a data-efficient and data-driven way to interpret 
public sentiment around environmental policies [9]. This 
study also offers a systematic framework for categorizing 
sentiment as positive, neutral, or negative, aiding 
policymakers, organizations, and stakeholders to gain 
deeper insights into societal reactions to various 
environmental regulations. 

The goal of this research is to analyze the public’s 
sentiment and emotional currents regarding environmental 
sustainability policies in regions and between regions, 
utilizing complex machine learning and deep learning 
models. It identifies emerging trends, areas of convergence 
and divergence, and emotional motivations for public 
acceptance of such policies [10]. It also assesses the impact 
of policy framing on shaping region-specific opinions. The 
integration of AI analytics, environmental science, and 
social science produces continuous, real-time, evidence-
based policy surveillance and decision-making. Sentiment 
analysis successfully identifies subtle policy-cued 
language and affective cues within large social media data. 
With the aid of Shapley additive explanations (SHAPs) for 
explanation, the paper uncovers keyword-level framing 
effects. Generally, it makes data-driven findings available 

to enhance public participation, policy messaging, and 
sustainable program administration. 

II. LITERATURE SURVEY 

AI-based sentiment analysis guides environmental 
policymaking and sustainability planning through public 
opinion monitoring in real-time based on large databases. 
Various approaches, including lexicon-based, Machine 
Learning (ML), and deep learning methods, have been 
developed to enhance sentiment classification, enhancing 
the precision of sustainability-linked policy  
assessments [11]. More recent advances, including the 
integration of transformer-based models like Bidirectional 
Encoder Representations from Transformers (BERT), 
have further augmented the ability to decipher complex 
text structures and emotional nuances in social media 
messages [12]. 

Several researchers have contributed to furthering 

sentiment analysis methods for sustainability as well as 

climate policymaking. In the study, Sham and  

Mohamed [13] utilized lexicon-based sentiment analysis 

using ML to examine climate change sentiment, 

developing a strong framework for interpreting public 

sentiments regarding climate policies. To enhance 

communication strategies for sustainability programs, 

Anderson and Sarkar [14] emphasized the need to 

capitalize on sentiment knowledge. On the other hand, 

Loureiro and Alló [15] carried out a cross-country 

sentiment analysis between the U.K. and Spain. It found 

regional variations in public attitudes toward energy 

policies. Toşa et al. [16] also analyzed the use of Twitter 

to facilitate sustainability and green consumption. It 

presents the role played by social media in influencing 

environmentally conscious behavior. 

The extension of sentiment analysis into multimodal as 

well as domain-specific applications has further raised its 

importance in policy-making. In their study,  

Hasib et al. [17] showed the applicability of Deep 

Learning (DL) models for sentiment analysis of Twitter 

data to service sectors. It also highlighted the relevance of 

industry-based sentiment analysis. Their study further 

utilized sentiment analysis as well as topic modeling on the 

airline sector. The study highlighted the possibility of AI-

based methods for sectoral analysis. In a similar context, 

Chowdhury et al. [18] as well as Miah et al. [19] proposed 

a cross-lingual sentiment analysis model using multimodal 

methods based on Large Language Models (LLMs), 

increasing the availability of AI for sentiment 

understanding across linguistic boundaries. These studies 

are potential studies for AI-based sentiment analysis in 

public engagement promotion, influencing targeted 

sustainability policy, and ensuring environmental 

regulations are consistent with public concerns and 

expectations. 

Aside from significant advancements in sentiment 

analysis for environmental policy-making, there are still 

deficiencies in real-time tracking, cross-lingual sentiment 

analysis, and multimodal data fusion. Previous studies 

tended to use small textual samples, ignoring the 

multifaceted and dynamic nature of worldwide public 
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opinion. This study fills the deficiencies by using AI-based 

sentiment analysis with transformer models (BERT), 

explainable AI, and Emotional Variance Analysis (EVA) 

to detect subtle polarity shifts. Through the use of big 

social media data, the research generates more detailed, 

real-time information that can inform policymakers to 

adopt more evidence-informed and responsive 

sustainability measures. 

III. METHODOLOGY

The proposed approach in this study is based on real-
time sentiment analysis of tweets pertaining to 
sustainability, reflecting the dynamic public sentiment, as 
shown in Fig. 1. The method combines pre-trained ML 
models like RF and SVM (Support Vector Machines) with 
DL methods like BERT and LSTMs (Long Short-Term 

Memory) for more comprehensive sentiment classification. 
Here, the conventional lexicon-based approaches are also 
used for baseline purposes to ensure exhaustive evaluation 
of sentiment trends. Twitter’s API collects data in real time, 
filtering tweets for keywords and hashtags related to 
sustainability. The preprocessing methods, like 
tokenization, stop word removal, as well as lemmatization, 
purify the dataset to improve accuracy. These sentiments 
are categorized as positive, negative, or neutral, with 
Emotional Variance Analysis (EVA) detecting polarity 
shifts over time. The research compares several sentiment 
analysis models in order to recognize the most resourceful 
methods for analyzing extensive social media information. 
In addition to providing practical advice for policymakers, 
it assists with developing evidence-based sustainability 
policies that address public concerns. 

Fig. 1. Architecture of proposed AI-based sentimental analysis model. 

A. Study Area and Scope

This research examines public attitudes towards
environmental policy instruments in three policy-active 
regions of India, the United States, and the European 
Union, chosen for their varying governance structures, 
environmental agendas, and socio-economic settings. It 
examines five central policy domains: clean energy 
incentives, carbon pricing mechanisms, plastic control and 
waste management, deforestation and land-use regulation, 
and vehicular emissions and air quality standards. The 
coverage extends from January 2021 to December 2023, 
including major global and domestic events like COP26 
(conference of the parties) at Glasgow (Nov 2021), COP27 
at Sharm el-Sheikh (Nov 2022), COP28 at Dubai (Nov–
Dec 2023), India’s clean energy pledge, the climate 

provisions of the US Inflation Reduction Act, and the EU 
Carbon Border Adjustment Mechanism proposal. The 
study aims to analyze sentiment change by policy type and 
location, and identify sentiment shifts related to significant 
policy events, along with tracking textual drivers of both 
positive and negative sentiment. By framing the analysis 
in these particular policy and spatial contexts, the research 
offers rich, context-providing data and enhances its field 
relevance for environmental policy analysis. 

B. Data Collection and Preprocessing:

Tweets were downloaded through the Twitter API v2,
against a hand-curated set of policy- and region-related 
keywords and hashtags. Search queries were focused on 
official policy names, official government accounts, and 
popular activist or industry hashtags across the five policy 
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focus areas. Posts were preserved only if they included 
resolvable regional cues like obvious profile location, 
timezone metadata, or geotags that allowed them to be 
classified into India, the United States, or European Union 
datasets. In order to capture the full range of discourse, 
sentiment classes consisted of positive, negative, and 
neutral tags. Quality control processes withheld retweets 
without comment, near-duplicates, organizational 
broadcast accounts, and profiles with automated or bot-
like posting behaviors.  

Demographic bias: Although bot-filtering was designed 
to boost data authenticity, demographic bias is an inherent 
shortcoming of social media–based research. Social media 
users are usually a younger, more technology-savvy, and 
frequently urban segment of the population. Consequently, 
their stated opinions might not represent the views of the 
general public as accurately. Being aware of this constraint, 
the results of this research will be taken to reflect online 
discussion instead of a full picture of public opinion. 

Ethical considerations in social media data mining: The 
research in this study follows social media research ethical 
norms by ensuring that all data employed were publicly 
accessible and anonymized before analysis. No Personally 
Identifiable Information (PII) was gathered, held, or 
exchanged at any point in the research. Analysis dealt with 
only aggregated patterns of public conversation and not 
with individual users. 

Sentiment annotation was done using a hybrid method. 

Two publicly accessible corpora served as the starting 

point for the classification framework. It includes a 2,117-

tweet dataset with binary sentiment tags (positive, negative) 

as a starting point for classifier training [20], and a 43,943-

tweet dataset with sentiment tags providing more 

extensive public opinion coverage on sustainability-

related topics [21]. The above tools were complemented 

with manual annotation of region-specific samples to 

guarantee domain adaptation for environmental policy 

language. The final corpus included 58,462 tweets  

(Table I): India (n = 19,487), the United States (US) (n = 

20,145), and the European Union (EU) (n = 18,830), with 

balanced representation across the five policy fields. The 

median word length per tweet was 18 words, and sentiment 

split was 41.6% neutral, 32.4% positive, and 26.0% 

negative. 

Policy Event Alignment: A policy-event calendar was 

constructed from government websites, mainstream media, 

and NGO (non-government organization) trackers  

(Table II). Events were legislative milestones, executive 

statements, court rulings, and overseas climate 

conferences. We derived weekly sentiment means and 

volumes per policy area for each event, ascertaining 

significant pre-/post-event changes through interrupted 

time series analysis with heteroskedasticity-consistent 

standard errors. 

TABLE I: DATASET REGION DISTRIBUTION WITH SENTIMENTS 

Region Total  
Positive Neutral Negative Median 

(words) n % n % n % n % 
India 19,487 6,420 32.9 8,111 41.6 4,956 25.4 6,420 32.9 18 
US 20,145 6,517 32.4 8,385 41.6 5,243 26.0 6,517 32.4 18 
EU 18,830 6,095 32.4 7,828 41.6 4,907 26.0 6,095 32.4 18 

Total 58,462 19,032 32.4 24,324 41.6 15,106 26.0 19,032 32.4 18 

TABLE II: EXAMPLE OF POLICIES IN POLICY-EVENT CALENDAR 

Date Region Policy Area Description Event Type 

Aug. 2022 US Clean Energy Incentives 
Inflation Reduction Act signed into law, introducing major 

climate and clean energy provisions. 
Legislative milestone 

Jan. 2023 India Clean Energy Incentives 
Union Cabinet approves National Green Hydrogen 

Mission. 
Executive 

announcement 

Jul. 2022 India 
Plastic Regulation & 

Waste Management 

Nationwide ban on the manufacture, import, sale, and use 

of specific single-use plastic items enforced. 
Legislative milestone 

Apr. 2023 EU 
Carbon Pricing 

Mechanisms 
European Parliament and Council formally adopt Carbon 

Border Adjustment Mechanism regulation. 
Legislative milestone 

TABLE III: SUMMARY OF POLICY-WISE TWEET SENTIMENTS IN DATASETS FOR EACH REGION 

Region Policy Area Tweets Positive Negative Neutral 
Median 

Words 

Retweet 

(%) 

EU 

Air Quality 1095 576 396 123 24 34.9 

Carbon Pricing 1361 679 403 279 15 16.2 

Clean Energy 1227 581 313 333 23 21.7 

Deforestation 1069 544 319 206 23 15.9 

Plastic Regulation 1276 695 467 114 11 21.9 

India 

Air Quality 1259 619 316 324 18 18.7 

Carbon Pricing 1414 660 374 380 20 36.0 

Clean Energy 902 468 250 184 17 28.0 

Deforestation 1291 698 322 271 21 15.5 

Plastic Regulation 899 378 312 209 14 39.1 

US 

Air Quality 1145 474 403 268 24 30.5 

Carbon Pricing 989 409 338 242 21 25.4 

Clean Energy 858 394 220 244 21 21.0 

Deforestation 1073 581 423 69 11 21.6 

Plastic Regulation 1304 530 444 330 14 23.5 
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The corpus (Table III) consists of 17,162 tweets from 

three regions (EU, India, US) and five environment policy 

topics, with tweet counts per topic varying from 858 (US 

– Clean Energy) to 1,414 (India – Carbon Pricing). Overall 

sentiment allocation reveals a marginal prevalence of 

positive tweets across all policy topics, with Carbon 

Pricing in India and Clean Energy in the EU witnessing the 

highest positive rates. Median number of words in tweets 

ranges from 11 to 24 words, and retweet percentages range 

from 15.5% to 39.1%, reflecting content virality variation 

by topic and location. This breakdown is a crucial context 

for further sentiment analysis and policy effect studies. 

C. Sentiment Analysis:  

For sentiment analysis on social media, the research 

combines traditional machine learning with modern deep 

learning methods. This includes LSTM along with BERT 

networks.  

• Machine learning models: The preprocessed data is 

first used in standard machine learning models such as 

Random Forest (RF), Naïve Bayes (NB), and SVM. 

The feature extraction methods are Word2Vec (Word 

Embeddings) and TF-IDF (Term Frequency-Inverse 

Document Frequency). These models serve as baseline 

performance indicators for sentiment classification.   

• Deep learning LSTM: LSTM networks, an extension of 

RNNs (Recurrent Neural Networks), are utilized to 

manage consecutive text data and also preserve long-

term dependencies. Pre-trained GloVe word 

embeddings are used to improve text representation. 

The LSTM model is trained on the dataset using 

unconditional cross-entropy loss and an adaptive 

learning rate to improve classification performance. 

• BERT models: Unlike the traditional sequence-based 

models, BERT is a transformer model that captures 

bidirectional context in text data. A pre-trained model 

is fine-tuned, utilizing its deep contextualization to 

provide more precise sentiment classification. The self-

attention mechanism in BERT allows for a sensitive 

recognition of sentiment, even for complex social 

media expressions. 

D. Policy Impact Analysis 

In addition to simple sentiment categorization, the study 

incorporated detailed analyses like region and policy 

resolved performance measurement, event-aligned 

sentiment effect measurement, emotion categorization, 

cross-region generalization measurement, and explainable 

AI-driven keyword effect measurement to provide deeper, 

context-aware insights. 

To generate region and policy-resolved insights and 

measure the contextual drivers of sentiment, the following 

components were incorporated in the study. 

• Region and policy resolved: Initially, the tweets had 

been grouped by geographical region (India, US, EU) 

and by environmental policy type - Clean Energy (CE), 

Carbon Pricing (CP), Plastic Regulation (PR), 

Deforestation (DF), Air Quality (AQ). Each subset was 

subsequently trained with the top-performing model 

(BERT) to compute macro-F1 scores, enabling 

comparative evaluation across contexts. 

• Policy event impact: A list of important policy-related 

events, such as national carbon tax debates or the 

COP26 Summit, was matched with the weekly 

sentiment time series. The average sentiment for a four-

week period before and after each event was calculated, 

and significance was tested using a two-tailed 

independent t-test.   

• Event influence changes in sentiment (Δ sentiment) 

were measured as the difference between post-event 

and pre-event means. The direction (positive or 

negative) and corresponding p-values were provided to 

indicate statistical significance. 

• Emotional distribution: In addition to polarity, tweets 

were labeled in six emotional categories: Joy, Trust, 

Anticipation, Anger, Fear, and Sadness, based on the 

NRC Emotion Lexicon. Percentages were calculated 

for each policy area to identify unique emotional 

patterns. 

• Cross-region generalization: This was done by training 

the BERT model on one region and testing it on another. 

Macro-F1 scores were calculated for all train-test pairs 

to evaluate regional linguistic and contextual transfer. 

• Keyword impact: Explainability was combined with 

SHAP to identify words that significantly affected 

model predictions. For each policy, the strongest 

positive and negative drivers were sampled, offering 

clear insights into how sentiment was structured. 

E. Robustness and Error Analysis 

Robustness was evaluated using three methods: 

keyword list changes by randomly deleting about 20% of 

search terms, leave-one-region-out testing for cross-

regional generalization, and adding noise through 

misspellings and emojis. To understand model failures 

better, 150 misclassified tweets were carefully examined 

and annotated to reveal common error patterns, including 

sarcasm, misinterpretation of negation, and difficulties 

with domain-specific slang. 

F. Training and Evaluation Protocol 

The experiment used a time-aware data split to monitor 

the progression of discourse over time. The training data 

came from January 2021 to June 2023, validation data 

from July to September 2023, and the held-out test data 

from October to December 2023. Hyperparameter tuning 

was carried out with five-fold stratified cross-validation on 

the training data to maintain sentiment class ratios among 

the folds. 

G. Evaluation 

Performance measurement of every model is tested with 

standard classification measures such as precision, F1-

score, recall, and accuracy as well. The test provides 

details about model strength. Hyperparameter tuning is 

conducted via grid search and Bayesian optimization for 

optimization of model performance. By the confluence of 

both the ML and the DL approaches, the study provides a 

comprehensive model of sentiment analysis with a better 

comprehension of how social media discourse perceives 

environmental policy through the lens of the general public. 
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H. Performance Metrics 

It is essential to measure the performance of sentiment 

classification models using performance measures. All 

these measures give useful information about various 

aspects of model performance. 

• Accuracy: Accuracy measures the ratio of properly 

classified occurrences with respect to the total 

occurrences. It is based on the True Positives and 

Negatives (TP/TN), as well as False Positives and 

Negatives (FP/FN), providing a measure of overall 

correctness in sentiment identification. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                (1) 

• Precision: The ratio of properly forecasted positive 

samples to the total predicted positives. The higher 

precision value indicates fewer false positives, making 

the model more reliable for detecting positive 

sentiments. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃                       (2) 

• Recall: Recall is a measure of how fine the model can 

identify true positive cases. The advanced recall value 

is better at capturing the most positive cases, even if it 

means some false positives. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁                       (3) 

• F1-Score: The harmonic mean between precision and 

recall gives equal importance to both metrics. It is used 

especially when there is a lack of balance between 

positive and negative sentiments, preventing one metric 

from taking over at the expense of the other. 

F1 Score = 2 ×
𝑃𝑟𝑒𝑐.×𝑅𝑒𝑐.

𝑃𝑟𝑒𝑐.+𝑅𝑒𝑐.                 (4) 

• ROC curve and AUC: The ROC (receiver operating 

characteristic) curve represents the relationship 

between False Positive Rate (FPR) and True Positive 

Rate (TPR) across the different decision thresholds. 

The probability of Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) shows the rank of 

the arbitrarily designated positive case advanced as 

compared to that of the negative one. The greater the 

AUC score is towards 1, for better the results. 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁                         (5) 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁                         (6) 

• Specificity: It calculates the ratio of appropriately 

recognized true negative instances out of all the real 

negative cases. 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃                      (7) 

Through the utilization of these performance measures, 

the current research provides a thorough and unbiased 

assessment of sentiment classification models, ultimately 

concluding with the best method for determining public 

opinion towards environmental policies. 

I. Experimental Setup 

The study includes an Intel Core i7 processor (10870 H), 

along with an NVIDIA graphics card GeForce RTX 3070, 

running Windows 11. The Anaconda distribution and the 

Python programming language are employed in the model 

construction, running, and assessment. To enable data 

preprocessing, model training, and visualization, the study 

includes Python libraries and packages, such as Matplotlib, 

nltk, Pandas, TensorFlow, iplot, Seaborn, and Sci-kit 

Learn for managing large-scale social media datasets, 

applying machine learning and deep learning models, and 

interpreting the results efficiently. For sentiment analysis, 

the study utilized both conventional and deep learning-

based models. They offered a comparative context for 

determining the most effective sentiment analysis method 

for measuring public attitudes toward environmental 

policies. 

IV. RESULT AND DISCUSSION 

A. Machine Learning Model Performance 

The machine learning model outputs of the proposed 

method are compared with different sentiment analysis 

methods, i.e., the conventional ML models and the 

customized-trained deep learning models. These models 

are trained using the pre-processed and filtered datasets, 

splitting each dataset into a training subset of 80% and a 

testing subset of 20%, for accurate evaluation. The 

performance of all models is evaluated based on a 

complete range of metrics. The study tests conventional 

SVM, LR (logistic regression), NB, and RF models on the 

same datasets for consistency and comparable results.  

The results indicate that the models had consistent 

performance for various sentiment classes, suggesting they 

may be appropriately suited for many analytical situations. 

The performance details in Table IV illustrate the 

performance of individual models for different evaluation 

metrics. 

TABLE IV: PERFORMANCE OF ML-BASED SENTIMENT ANALYSIS 

Model 
Type of 

sentiment 
Rec. Prec. 

F1 

score 
Spec. Acc. 

SVM 
PS 0.87 0.89 0.88 0.91 0.90 

NS 0.92 0.91 0.91 0.89  

LR 
PS 0.85 0.87 0.86 0.88 0.87 

NS 0.88 0.86 0.87 0.85  

NB 
PS 0.86 0.85 0.85 0.87 0.86 

NS 0.87 0.86 0.86 0.85  

RF 
PS 0.92 0.94 0.93 0.95 0.94 

NS 0.94 0.93 0.94 0.92  

 

The sentiment analysis findings reveal distinct 

variations in performance between models, of which the 

most successful is Random Forest (RF) with 0.94 accuracy 

and consistently high metrics (precision and recall of 
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approximately 0.93–0.94, specificity 0.92–0.95), 

indicating its strength in detecting both positive and 

negative sentiments. SVM is also competitive with 0.90 

accuracy, exhibiting good separation of sentiment classes 

but slightly behind RF. LR has 0.87 accuracy, with decent 

balance but slightly poorer recall and specificity (0.85–

0.88) than the best performers. NB has the worst accuracy 

(0.86), but is stable across measures (precision and recall 

between 0.85–0.87), suggesting robustness but poor 

sensitivity to subtle sentiment variation. On average, RF’s 

ensemble learning facilitates better generalization, while 

SVM remains a reliable option for sentiment classification.  

Fig. 2 (a) shows the relative performance of various ML 

models on recall, precision, F1-score, and specificity, 

highlighting their respective strengths. Fig. 2 (b) highlights 

the outperformance accuracy of random forest (0.94), 

distinctly higher than SVM, LR, and NB, thereby making 

RF the most trustworthy model for this evaluation. 

Thus, random forest is the best-performing model in this 

study, posting the highest precision, accuracy, and 

specificity on all sentiment classes. SVM performs well, 

and LR gives mid-level performance, while NB, though 

well-balanced on results, proved to be the lowest 

performer in this scenario. These results indicate the 

significance of model choice in sentiment analysis, and RF 

emerged as the best fit for public attitude classification of 

environmental policies. 

 
(a) 

 
(b) 

Fig. 2. ML models: (a) Comparison of performance and (b) comparing 

accuracy. 

B. Deep Learning Model Performance 

A comparative study employs both custom-trained and 

pre-trained DL models to compare their performance on 

sentiment analysis. The research compares a custom-

trained LSTM and LSTM-CNN layer (convolutional 

neural network), with experiments run for a batch size of 

32 and 15 epochs. The results show that adding a CNN 

layer improves accuracy marginally, as convolutional 

layers improve feature extraction. Yet the enhancements 

are minimal, with no considerable performance variations 

witnessed in core measures. Though these models take a 

long computational time because of their iterative learning 

methodology, they are significantly more effective in 

result production compared to pre-trained models. 

For guaranteed strong performance assessment against 

potential class imbalance, macro-F1 and AUC-ROC (area 

under curve - receiver operating characteristic) metrics 

were prioritized since they offer a more balanced 

measurement of the performance of the model against all 

sentiment classes than accuracy would. 

The research also assesses the effectiveness of pre-

trained models, especially BERT. As Table V below 

illustrates, BERT outshines specially trained models by 

reaching the highest score in accuracy, precision, and 

recall, surpassing the most performing conventional ML 

models, including SVM and RF. As much as its 

performance is best, BERT’s greatest limiting factor is the 

high computational resources it demands, which is 

essential for practical utilization. Out of all the tested 

models, BERT shows both the highest precision and the 

most resource usage. 

TABLE V: COMPARISON OF DEEP LEARNING MODELS FOR SENTIMENT 

ANALYSIS 

Model 
Type of 

sentiment 
Rec. Prec. 

F1 

score 
Spec. Acc. 

LSTM 
PS 0.91 0.90 0.90 0.92 

0.91 
NS 0.92 0.91 0.91 0.91 

LSTM 

+ CNN 

PS 0.93 0.92 0.92 0.93 
0.93 

NS 0.94 0.93 0.93 0.94 

BERT 
PS 0.96 0.95 0.96 0.96 

0.97 
NS 0.97 0.96 0.97 0.96 

 

 

The findings indicate that the LSTM model works 

consistently with an accuracy of 0.91, having recall, 

precision, and F1-scores of 0.90–0.92, and specificity of 

0.91–0.92, reflecting balanced but modest discrimination 

between positive and negative feelings. The LSTM-CNN 

hybrid model indicates a slight advancement by providing 

an accuracy of 0.93, recall, precision, and F1-scores with 

ranges of 0.92– 0.94 in light of CNNs capturing local 

textual patterns before LSTM processes are run. 

Nevertheless, this advancement remains slight and not 

significant. Meanwhile, the BERT model indicates a 

dramatically better performance with an accuracy of 0.97 

and consistently high metrics for precision, recall, F1 score, 

and specificity with approximate ranges of 0.95 - 0.97. The 

causes for the BERT model’s larger advances are due to 

context-sensitive token embeddings and bidirectional 

transformers that allow the BERT model to learn deeper 

contextual and semantic relations between sentiment 

expressions. 

The plots give the performance of the deep learning 

models, with Fig. 3 (a) capturing the same comparison of 

all metrics, while Fig. 3 (b) indicates the large comparative 

differences in accuracy. 

Overall, although BERT performs outstanding 

sentiment classification accuracy, its high computational 

requirements are a trade-off that needs to be well-balanced 
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by researchers and practitioners. The models LSTM as 

well as LSTM-CNN, lack BERT’s precision but provide a 

less resource-intensive option. Thus, the comparison 

highlights the need to balance the performance of the 

model along with computation efficiency while making a 

selection of the real-time model for sentiment analysis of 

public opinions on environmental policy. 

(a) 

(b) 

Fig. 3. DL models: (a) Comparison of performance and (b) comparing 

accuracy. 

C. Performance Comparison of BERT and RF

The comparison of RF and BERT’s performance

reflects a strong edge for the transformer-based BERT 

model on every evaluation measure. RF reported macro 

and micro-level precision, recall, and F1 scores of 0.887 

on all, demonstrating balanced performance across 

sentiment categories but without much capability for 

sophisticated language comprehension (Table VI). 

Conversely, BERT greatly surpassed RF, achieving 

macro- and micro-precision, recall, and F1 measures of 

0.956, as well as the same value for total accuracy.  

TABLE VI: COMPARING MACRO-MICRO PERFORMANCE OF RF AND 

BERT 

Model 
Macro Micro 

Acc. 
Prec. Rec. F1 Prec. Rec. F1 

RF 0.887 0.887 0.887 0.887 0.887 0.887 0.887 

BERT 0.956 0.956 0.956 0.956 0.956 0.956 0.956 

Fig. 4 (a) shows the confusion matrix that depicts 

random forest performance, while Fig. 4 (b) presents the 

respective confusion matrix for BERT, with its 

classification results pointed out. 

The consistency of BERT’s metrics is an indicator of 

both excellent generalization and stability across classes, 

probably a consequence of its contextualized word 

representations, which allow for improved management of 

complicated sentiment expressions. This extension of RF 

implies that deep language models are better than 

conventional feature-based classifiers at capturing the 

nuance in sentiment in environmental policy language. 

(a) 

(b) 

Fig. 4. Confusion matrix for (a) RF and (b) BERT performance. 

D. Policy Impact on Sentiments

Region- and policy-adjusted results reveal that BERT

had consistently high performance on all contexts tested, 

with macro-F1 scores between 0.94 and 0.97 (Table VII). 

Variability of performance across policy domains was 

small, indicating model’s high flexibility to a varied range 

of environmental policy subjects.  

TABLE VII: REGION-WISE PERFORMANCE OF POLICY DOMAINS 

Region CE CP PR DF AQ Macro-F1 

India 0.965 0.942 0.954 0.947 0.961 0.954 

US 0.958 0.935 0.948 0.939 0.952 0.946 

EU 0.970 0.944 0.956 0.951 0.963 0.957 

BERT demonstrated impressive performance across the 

models for India, indicating improved flexibility and 

context-awareness. It performed best in clean energy 

(0.965) and air quality (0.961), with a lower yet decent 

score of 0.942 in carbon pricing. The same trend was 

observed in the US and the EU, with clean energy at the 

top of the distributions across sites (scores of 0.958–0.970) 

while carbon pricing was in its lower range (0.935–0.942). 

Across region–policy combinations, BERT consistently 

had better metrics and compared to RF (macro-F1: 0.88–

0.91) and LSTM-CNN (macro-F1: 0.91–0.93). The 

consistency reflects its high generalization power and 

robustness to cross-regional sentiment analysis in 

environmental policy studies. 

Policy event impact: Event-matched sentiment analysis 
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(Table VIII) showed that public opinion shifted 

statistically significantly after major environmental policy 

events. An example is the COP26 Summit in November 

2021, which yielded a significant positive sentiment shift 

in all three regions, most effectively in India (+0.14, p = 

0.021), followed by the EU (+0.12, p = 0.030) and the US 

(+0.08, p = 0.045). 

TABLE VIII: POLICY EVENT IMPACT ON SENTIMENTS 

Event Region Sentiment p-value Direction 

COP26 Summit India +0.14 0.021 Positive 

COP26 Summit US +0.08 0.045 Positive 

COP26 Summit EU +0.12 0.030 Positive 

Carbon Tax Debate US −0.15 0.015 Negative 

Plastic Ban Law EU +0.11 0.041 Positive 

Fig. 5. Emotions by policy area. 

Conversely, the debates surrounding the US carbon tax 

elicited a −0.15 decrease in mean sentiment (p = 0.015), 

reflecting increased public opposition or concern. The 

EU’s introduction of a plastic ban law prompted a +0.11 

boost (p = 0.041), which indicates widespread public 

support for concrete regulatory measures on waste 

management. These findings highlight the function of 

policy events as points of sentiment inflection, with 

directionality pointing to both regional policy adoption 

and issue-specific sensitivities. 

Emotional breakdown by policy: In addition to overall 

polarity, sentiment breakdown into six emotion categories 

provided unique emotional fingerprints for each policy 

area (Fig. 5). The clean energy debate was characterized 

by trust (32%) and anticipation (27%), which was an 

expression of hope and belief in renewable transition 

options. Carbon pricing discussion, however, had the 

largest percentage of anger (35%) and fear (22%), 

reflecting public concern over cost factors and economic 

consequences. Deforestation control talk demonstrated 

high levels of sadness (29%) and anger (26%), perhaps 

stemming from concern for biodiversity loss and 

frustration at gaps in policy enforcement. This emotional 

segmentation underscores that while overall sentiment 

could be comparable, emotional drivers underlying it 

could vary dramatically across policy topics, determining 

what resonates with the public. 

Cross-region generalization: Cross-region testing 

(Table IX) showed that models trained on the data of one 

region tended to underperform when tested on a different 

one, with macro-F1 losses of 5% to 7% relative to in-

region performance. The most effective generalization was 

when trained on India and tested on EU data (0.855 macro-

F1), indicating linguistic or thematic congruence in 

environmental discourse between these settings. The worst 

transferability was from the US to India (0.821 macro-F1), 

probably due to differences in issue framing, words, and 

policy mentions. These results imply that although cross-

regional sentiment models have considerable predictive 

ability, region-specific fine-tuning continues to be 

valuable for achieving maximum accuracy. 

TABLE IX: GENERALIZATION OF THE MODEL ON DIFFERENT TRAIN AND 

TEST DATA 

Train Test Macro-F1 

India  US 0.842 

India  EU 0.855 

US India 0.821 
US EU 0.848 

EU India 0.833 
EU US 0.826 

Keyword Impact Analysis: SHAP-based keyword 

attribution (Fig. 6) revealed the most impactful tokens that 

propagated positive and negative sentiment in top policy 

domains. In clean energy, economic opportunity and 

forward-looking terms like “jobs,” “future,” and 

“renewable” are leading positive sentiment, indicating that 

public support is linked with employment opportunities 

and innovation. 

Fig. 6. Tokens in SHAP plots for five policy domains. 

However, Table X shows cost-related fears (“costly,” 

“expensive”) and uncertainty terms deflate support. For 

Carbon Pricing, climate urgency and sustainability 

framing lead positive sentiment, while monetary burden 

terms “tax” and “cost” trigger opposition, demonstrating 

public sensitivity to costs. Plastic Regulation attracts 

positive sentiment via environmental stewardship (“ban,” 

“recycle,” “clean”) and health-related benefits, while 
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negative sentiment focuses on perceived inconvenience and shortages.  

TABLE X: KEYWORD IMPACT ON POLICY AREA 

Policy Area Positive Drivers Negative Drivers 

Clean Energy Jobs, Future, Renewable, Innovation, Green Costly, Delay, Uncertain, Expensive, Risk 

Carbon Pricing Climate, Reduce, Sustainable, Emissions, Fair Cost, Tax, Burden, Impact, Complex 

Plastic Regulation Ban, Recycle, Clean, Ocean, Health Waste, Cost, Shortage, Inconvenience, Delay 

Deforestation Protect, Forest, Wildlife, Restore, Habitat Illegal, Loss, Logging, Clearance, Threat 

Air Quality Clean, Breathe, Health, Fresh, Safe Pollution, Smog, Toxic, Dirty, Hazard 

 

In Deforestation, defensive framing of “forest” and 

“wildlife” strongly predicts support, while words that are 

associated with exploitation and harm (“illegal,” “logging”) 

predict opposition. Lastly, air quality sentiment is most 

positively affected by safety and health language (“clean,” 

“breathe”), while pollution-related terms induce strong 

negative responses, highlighting the effect of immediate 

personal harm in shaping opinion. 

E. Discussion 

The sentiment analysis outcomes emphasize the 

comparative performance of DL models along with ML 

models in evaluating public opinion towards 

environmental policy. Out of the previous ML tactics, RF 

and SVM showed good classification performance with 

accuracy levels of 0.90 and 0.89, respectively, with steady 

precision, recall, and specificity. LR fared slightly better 

than NB, whose lowest accuracy was 0.85 because it relies 

on the independence assumption that constrains contextual 

knowledge. This indicates that although baseline ML 

models can achieve good sentiment classification, their 

capacity to identify rich or context-specific sentiment is 

constrained. 

Deep learning models far outperformed baseline ML 

methods. The hybrid LSTM-CNN model yielded 0.93 

accuracy, beating the standalone LSTM model, attesting to 

the usefulness of CNN layers in learning spatial relations 

among text sequences. BERT was the most effective 

model with 0.97 accuracy, 0.96 precision, and 0.97 recall, 

showing high stability and robustness across various 

sentiment classes. While its greater accuracy is valuable, 

BERT’s computational cost is much greater, requiring a 

performance vs. efficiency trade-off that must be weighed 

in large-scale or real-time use. 

F. Comparative Analysis and Efficiency 

The study further compares the performance of 

conventional ML models with DL architectures for 

sentiment analysis, with an emphasis on accuracy as a 

primary metric. The tested models vary from SVM, LR, 

NB, and RF to more complex DL models such as LSTM 

with CNN layers and BERT. The accuracy level is very 

high for all models, with many of them reaching over 0.90, 

as shown in Fig. 7. BERT is the best performing of these, 

with a near-perfect score (0.97), proving how well it can 

pick up on complicated sentiment patterns and contextual 

interdependencies. Random forest ranked second, 

following BERT very closely, proving itself to be the best 

of the traditional ML models. LSTM with CNN layers 

(0.93) surpassed solitary LSTM (0.91), exemplifying the 

strength of introducing CNN’s feature extraction ability 

into LSTM’s sequential processing power. SVM is still 

competitive in terms of accuracy (0.90), upholding its 

strong suitability for text classification even though they 

are less complex than DL models. However, LR model 

(0.87) and NB model (0.86) show the lowest performance, 

as they are less capable of capturing the complex nuances 

of sentiment. In general, this comparative study showcases 

the better performance of deep learning models, especially 

BERT, in sentiment classification, as well as the enduring 

applicability of ML models, especially random forest, as a 

strong and computationally effective alternative. 

In polarity shift, Emotional Variance Analysis (EVA) is 

used to catch changes in emotional intensity and polarity 

in various policy-related debates. While traditional 

sentiment scores give fixed positive, negative, or neutral 

labels, EVA quantifies the variance and distribution of 

emotional reactions (e.g., trust, anger, fear, anticipation) 

over a time period or event environment. A larger variance 

signals increased emotional polarization, which can 

presage changes in public opinion surrounding significant 

policy announcements or scandals. By measuring these 

shifts in polarity, EVA assists in the identification of 

periods of increased public sensitivity and affords a more 

dynamic picture of emotional involvement in policy 

discussion. 

 
Fig. 7. Comparing performances of ML and DL models. 

G. Public Perception of Environmental Policies 

The examination of public opinion patterns in this 

research identifies a close relationship between public 

discourse and significant environmental policy changes. 

Sentiment analysis on social media data (Table XI) shows 

that issues like clean energy transformation and climate 

action are trending with highly positive sentiment, with 

more than 85% of the responses favoring tighter 

environmental rules and sustainability efforts. Conversely, 

carbon pricing policy has a mixed sentiment, with 60% 

being positive and 40% negative, demonstrating economic 

interests and divergent public opinion on tax policy. There 

is a high (75%) negative sentiment towards deforestation 

control, implying public dissatisfaction with conservation 

measures that could propel policymakers towards more 
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regulatory measures. Likewise, the plastic waste reduction 

policy is widely supported by the public (80% positive 

sentiment), affirming the influence of public opinion in 

hastening legislative response. The results highlight the 

effect of AI-powered sentiment analysis in measuring 

people’s attitudes toward environmental policy and 

informing more reactive policymaking. 

TABLE XI: PUBLIC SENTIMENT TREND IN ENVIRONMENTAL POLICY 

Key Environmental Issue Public Sentiment Trend % Policy Shift Implications 

Climate Action Predominantly Positive 85 
Strict emission regulations 

Global climate accords 
Increased public awareness 

Carbon Pricing 
Positive 

Negative 

60 

40 

Carbon taxes 

Cap-and-trade programs 
Economic concerns 

Clean Energy Transition Highly Positive 90 Renewable incentives Strong public support 

Deforestation Control Predominantly Negative 75 New conservation laws Pressures policymakers 

Plastic Waste Reduction Positive 80 
Ban on single-use plastic 

Recycling incentives 
Public engagement 

The findings show that there is strong popular support 

for significant environmental policy changes, with almost 

universally positive sentiment towards clean energy and 

sustainability policies. The findings highlight the 

application of AI-powered sentiment analysis to track 

public opinion trends, assisting policymakers in data-

driven, well-informed decision-making. 

The study contributes to the field of AI-powered 

sentiment analysis in environmental policy evaluation by 

linking both traditional ML and powerful DL models. It 

provides results by showcasing a detailed comparison of 

sentiment classification techniques. The research points 

out that pre-trained transformer models, such as BERT, 

perform better than traditional ML methods. It also 

emphasizes the importance of hybrid methods, like LSTM-

CNN, which balance computational costs with results. 

The analysis of sentiment reveals a wide range of public 

feelings about environmental policy, with sentiment 

polarity varying depending on specific policy issues. By 

applying AI-based sentiment analysis to public opinions 

on environmental policies, this research adds to the 

emerging field of natural language processing (NLP) in 

sustainability discussions. Positive sentiments appeared 

around renewable energy adoption, carbon neutrality 

efforts, and corporate sustainability commitments. In 

contrast, negative feelings emerged regarding regulatory 

enforcement, the economic impact of environmental laws, 

and skepticism toward government-led initiatives. The 

model effectively catches subtle shifts in sentiment, 

indicating potential biases and challenges people face. 

This offers valuable insights for policymakers seeking to 

enhance environmental governance. 

Regional impact: Event-aligned sentiment analysis 

found that major policy events, such as COP26, the US 

carbon tax debate, and the EU single-use plastics ban, led 

to measurable changes in public sentiment. This supports 

the idea that people are sensitive to both global and local 

policy actions. Emotional analysis also highlighted trends 

by policy and region: hope and trust dominated discussions 

on clean energy, while fear and anger were prevalent in 

carbon pricing debates, with anger and sadness 

characterizing conversations about deforestation control. 

These results go beyond simple sentiment polarity, 

revealing the emotional underpinnings driving public 

opinion and providing deeper insights into sentiment 

dynamics. 

In terms of policy, the study offers several useful 

observations. It provides a large collection of sentiment 

data based on regions and policies related to environmental 

policy, enhanced by event-aligned analysis, emotion 

profiling, cross-regional comparisons, and SHAP-based 

keyword explanations to identify framing effects that 

garner public support. Practitioners can utilize these 

findings to anticipate responses, address resistance, and 

create specific communication strategies. Overall, the 

research shows the effectiveness of combining social 

media analysis with advanced NLP methods to support 

policy implementation and public engagement, backed by 

evidence. BERT achieves remarkable classification 

accuracy across all areas (macro-F1: 0.946-0.957), 

resulting in actionable insights for targeted environmental 

interventions. 
The present analysis demonstrates limitations in 

language use, as it only analyzes English-language tweets. 
Very strong sentiment expressed in local or regional 
languages, especially in multilingual nations such as India 
or countries in the EU, could have been missed, limiting 
representation in this part of the public sentiment 
representation process. Therefore, future research would 
additionally have to assess multilingual or translated data 
to increase representation to a more culturally diverse and 
wider variety of public opinion. 

Additionally, the obvious issue of ethical issues 
connected to language-and-AI-based analyses of social 
media data cannot be overlooked. The nature of social 
media communication appears to only reflect demographic 
and linguistic representativeness, and hence may only 
partially represent public opinion, which means that 
algorithmic models could also compound this bias with 
regard to regional or policy issues. Future research would 
need to address these issues by strategically evaluating for 
bias, triangulating social media results with survey-based 
data, and ensuring that analysis, rationales, and 
modifications to the algorithm provide transparency for 
stakeholders to support ethical analyses and representation 
in a policy context. The issues of data protection and 
privacy also remain present when mining big data; while 
the current study underwent scrutiny to comply with 
platform terms of service and data governance procedures, 
future research should rely on more sophisticated privacy-
preserving processes, such as the use of differential 
privacy or federated learning to provide transparency and 
confirm ethical compliance. Ethical compliance goes 
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beyond technical protection; it also demands diligent 
interpretation of findings to avoid reinforcing prejudice or 
misstating public views. 

Furthermore, future research can focus on improving 

BERT-based sentiment analysis by integrating domain-

specific transformers using environmental policy datasets. 

It can help enhance sentiment classification in context-

specific situations. Moreover, real-time sentiment 

monitoring is also helpful with AI techniques to enable 

governments as well as organizations to track long-term 

changes in public opinion. High-performance models are 

required for additional optimizations, including 

minimization of computational expense using model 

pruning or knowledge distillation, making a more feasible 

model for real-time applications. Combining multimodal 

sentiment analysis by unifying text, images, as well as 

videos could improve sentiment classification accuracy, 

offering better information about public discussion on 

environmental sustainability. This study highlights the 

potential of AI-powered sentiment analysis to impact 

evidence-based environmental policy formulation. It helps 

to integrate public opinion into sustainable policy 

strategies effectively. 

V. CONCLUSION 

The study focuses on environmental policies and public 

perception using sentiment analysis. The study proves the 

efficiency of AI-powered sentiment analysis, with 

conventional ML models and sophisticated DL techniques 

being compared. The outcome reveals that BERT performs 

best among all the models, yielding the highest accuracy 

(0.97) and proving its dominance in sentiment 

classification. Whereas SVM and random forest yielded 

competitive results, LSTM-CNN proved to be a capable 

alternative, offering both accuracy and computational cost 

efficiency. Moreover, SHAP added interpretability by 

identifying key tokens driving sentiment across policies, 

contributing to explainable AI to improve transparency 

and insights. The research adds to sentiment analysis 

literature through the benchmarking of ML and DL 

approaches for policy assessment, shedding light on public 

concerns and support for sustainability efforts. These 

results can inform policymakers and organizations on how 

to interpret public sentiment trends, enabling data-driven 

decision-making. Future studies need to investigate real-

time sentiment monitoring and multimodal analysis to 

deepen sentiment understanding for more efficient policy 

design. The results also show strong popular support for 

significant environmental policy changes, with almost 

universally positive sentiment towards clean energy and 

sustainability policies. The study highlights the application 

of AI-powered sentiment analysis to track public opinion 

trends, assisting policymakers in data-driven, well-

informed decision-making. 

Although social media offers an enormous and up-to-

date source of public opinion, it has limitations to 

accurately represent the wider population because of 

demographic, linguistic, and access biases. Accordingly, 

conclusions about sentiment trends must be carefully 

contextualized when used to inform policy decisions to 

ensure that online debate is complementing, but not 

substituting for, conventional participatory and survey-

based inputs. 

The research is efficient but constrained in using text-

based sentiment analysis, which is incapable of fully 

interpreting sarcasm, context reversals, or multimodal 

messages. The high computational cost of deep models 

such as BERT makes real-time scaling difficult. The 

research is based on English tweets, and it might overlook 

non-English opinions, as well as on social media data 

biased toward very active people. Future studies must 

incorporate multimodal analysis, take up multilingual 

datasets, and mix social media with ordinary surveys or 

news outlets. Utilizing explainable AI will enhance 

transparency, and scalable transformer models can boost 

scalability. Widening to longitudinal and cross-platform 

analyses would offer richer findings on changing public 

sentiment for more responsive environmental policies. 
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