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become increasingly integrated into software development 

workflows, understanding their efficiency and code quality is 

critical. This study offers a comprehensive comparison of 

three leading AI models—ChatGPT GPT-4-turbo, Claude 

Sonnet, and DeepSeek-V3—for automated code generation, 

focusing specifically on sorting algorithms. The models are 

evaluated across multiple metrics including execution time, 

memory usage, peak memory consumption, logical and 

physical file sizes, and code readability. Python 

implementations of Insertion Sort, Merge Sort, Quick Sort, 

and Heap Sort are generated by each model and 

benchmarked in a consistent Linux Docker environment. 

Results reveal that ChatGPT leads in overall efficiency, with 

the fastest average execution time, the lowest peak memory 

usage, and the highest readability scores. DeepSeek 

demonstrated competitive performance, especially in 

producing readable code, while Claude showed higher 

memory consumption and lower readability. This analysis 

provides practical insight into the trade-offs between code 

quality and system performance in AI-generated 

programming, offering valuable guidance for researchers 

and developers alike.  

Index Terms—ChatGPT, Claude sonnet, code generation, 

DeepSeek, large language model 

I. INTRODUCTION 

The recent evolution of Artificial Intelligence (AI), 

especially in the domain of Large Language  

Models (LLMs), has sparked widespread interest in their 

applications across scientific and engineering  

disciplines [1]. LLMs such as OpenAI’s ChatGPT, 

Anthropic’s Claude, and DeepSeek which is a newer open-

source model from China, have gained significant traction 

not only for their conversational fluency but also for their 

problem-solving and code generation abilities [2]. These 

models, powered by transformer-based neural 

architectures, are capable of parsing natural language 

instructions and converting them into syntactically correct 

and often logically sound programming code [3]. Their 

integration into software development workflows, 

education, and scientific computing heralds a new era of 

human-AI collaboration [4]. However, despite their 

growing influence, a systematic and comparative 

evaluation of these models in domain-specific coding tasks 

remains underexplored.  

LLMs are trained on the large corpora of books, 

websites, programming documentation and open source 

code repositories. For this reason, they have achieved both 

the ability to understand and the ability to create source 

code in a number of different programming languages [5]. 

In early iterations of LLMs such as GPT-2 and GPT-3, this 

functionality was present in a very restricted manner, but 

the newest models ChatGPT-4, Claude 3.5/3.7 Sonnet and 

DeepSeek-R1 are significantly better at handling context, 

logical reasoning and execution reliability [6]. OpenAI’s 

ChatGPT is now very popular and is well known for doing 

natural language tasks and software development. 

ChatGPT o3-mini and ChatGPT-4o are both science and 

coding optimized models. These models are able to 

generate efficient and human-readable code with practical 

values such as faster response time, low latency and 

advanced contextual reasoning, which are useful for 

Integrated Development Environments (IDEs), 

educational tools and professional workflows [7]. 

Anthropic’s Claude is developed with a focus on safety, 

reliability and long context reasoning. For example, the 

Claude 3.7 Sonnet variant includes ‘extended thinking 

mode’ that will offer higher performance for tasks that are 

mathematical and logical such as code writing. Claude’s 

architecture is designed to tradeoff between coherence and 

correctness, but his outputs have often been highly 

readable and it performs extremely well on instruction 

following tasks which is important when programming [8]. 

The other development is that DeepSeek is an open source 

AI. On competitive math and logic benchmarks, it has 

shown strong performance, including 79.8% on the AIME 

2024, slightly beating ChatGPT o1. One of its appeals is 

that DeepSeek is cost efficient, transparent and open which 

has attracted developers and researchers in search of 

Abstract—As generative Artificial Intelligence (AI) models 
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customizable, low-cost AI tools [9]. 

Although these advantages are promising, there are still 

significant challenges requiring the empirical evaluation. 

A language model can generate syntactically correct but 

semantically inaccurate code, has an inconsistent memory 

management and performance may vary based on prompt 

wording or the complexity of the problem being  

solved [10]. In addition, while widely used in industry and 

even demonstrated to be effective based on anecdotal 

evidence and case studies, there are few quantitative 

comparisons of performance differences, especially for 

fundamental algorithmic problems such as sorting. 

In this work, we seek to fill that gap by assessing the 

performance of ChatGPT GPT-4-turbo, Claude Sonnet 4 

and DeepSeek-V3 with specific focus on code generation 

performance when solving sorting problems, a central 

class of algorithmic tasks that define excellent benchmarks 

to gauge the quality of code generated, its efficiency and 

the logic applied. In particular, we analyze the code 

generated along four important dimensions: how readable 

the code is, how much it consumes in terms of memory and 

computation time and its logical size. As such, these 

dimensions collectively express how usable, efficient and 

scalable, in general, AI-generated code is for practical, real 

world programming contexts. We intend our findings to 

help serve both as a technical and practical understanding 

of the LLM’s capabilities in low-level algorithmic 

challenges and add to the growing domain of AI assisted 

programming. 

II. RELATED WORKS  

Recent research has extensively explored the 

capabilities and comparative performance of LLMs such 

as DeepSeek, ChatGPT and Claude Sonnet in the domain 

of AI-driven code generation and programming assistance. 

A notable comparative study focusing on Python code 

generation using online judge challenges demonstrated 

that DeepSeek (version R1) achieved higher correctness 

and more frequent first-attempt acceptance, especially in 

algorithmic tasks. In contrast, ChatGPT (version o1) 

produced code with fewer errors related to memory and 

execution time and tended to write more concise programs, 

underscoring a trade-off between bug-free output and 

efficiency [11]. Expanding beyond code correctness, 

evaluations on scientific computing and scientific machine 

learning tasks reveal that reasoning-optimized models 

including DeepSeek R1, ChatGPT o3-mini-high, and 

Claude (3.7 Sonnet) excel at recognizing problem contexts 

and applying advanced mathematical reasoning. This 

suggests that domain-specific knowledge and reasoning 

capabilities are critical factors in effective AI-assisted 

scientific programming [12]. 

Furthermore, the benchmarking efforts on standardized 

dataset like HumanEval and MBPP show ChatGPT 

outperformed others in the code fluency and multi-

language support and DeepSeek produces compact and 

more efficient code. This differs from Claude in that 

Claude is distinguished for writing maintainable and well 

documented code that reflects a variety of strengths suited 

to different use case [13].  

The study of Huang et al. [14] has offered an empirical 

evaluation of LLMs (both open-source and closed-source) 

over 1,000 efficiency-critical programming problems 

drawn from LeetCode. The study showed that even top 

models such as GPT-4 generate code that is significantly 

less efficient in execution time and memory usage 

compared to canonical human solutions, sometimes by a 

large margin up to ~13.9× slower, ~43.9× higher memory 

consumption for certain problems. This work underscored 

that correctness benchmarks alone are insufficient to 

capture real performance differences. Qing et al. [15] 

extended the efficiency focus of prior work by supporting 

multiple programming languages (Python, C++, Java, 

JavaScript, Ruby, Go) and using competitive 

programming tasks with human-expert efficiency 

baselines. The findings revealed that while some LLMs 

generate functionally correct code, they often lag human 

experts in efficiency, and that performance varies 

significantly by language.  

Palla and Slaby [16] presented a rigorous empirical 

evaluation of AI-generated code focusing on optimization 

and performance metrics under constrained hardware 

settings. This work investigated how model-generated 

solutions compare to human baselines in terms of runtime 

efficiency, memory consumption, and code compactness 

across multiple algorithmic tasks. Its findings underscored 

that even when correctness is achieved, performance 

degradations emerge due to non-optimal code structure or 

redundant computations. 

Another study of Zheng et al. [17] examined LLMs code 

generation capability across a wide variety of application 

domains and programming languages. It covered domains 

such as web, mobile, IoT, robotics, cloud services, and 

enterprise applications, evaluating how well LLMs 

perform in domain-specific settings. The study highlighted 

domain variability but typically didn’t drill down into 

algorithmic complexity, or metrics like memory usage or 

file size. In terms of readability, Sergeyuk [18] 

investigated how well code readability models align with 

human developers’ judgments on AI-generated Java code. 

The work found that some models and metrics often miss 

developer notions of readability, and that concise, 

executable code is often seen as more readable. However, 

correlation is imperfect, pointing to limitations in existing 

readability metrics. More recently, Sabra et al. [19] 

evaluated the code produced by several modern LLMs via 

static analysis tools such as SonarQube on thousands of 

Java code assignments. The findings revealed that even 

when code passes functional correctness benchmarks, 

many security defects, code smells, and bugs persist, 

showing that correctness alone is insufficient for assessing 

production readiness. Complementing generation 

capabilities, ChatGPT’s code refactoring skills have been 

empirically demonstrated to preserve functionality while 

enhancing structure and generating accurate 

documentation, highlighting its utility in code 

maintenance workflows [20]. Phogat et al. [21] conducted 

a comparative analysis of four prominent large language 

models—ChatGPT, DeepSeek, Claude, and Qwen—
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focusing on their performance in code generation tasks. 

The study evaluated these models across various 

parameters, including accuracy, efficiency, and code 

quality. The findings revealed that DeepSeek 

outperformed the others in terms of computational 

efficiency, generating code that executed faster and 

consumed fewer resources. ChatGPT demonstrated 

superior accuracy and produced more human-readable 

code, making it suitable for applications requiring high 

precision and clarity. Claude exhibited strengths in 

generating well-structured and maintainable code, while 

Qwen, though competitive, showed variability in 

performance across different tasks.  

Table I summarizes the related works including their 

approach, finding, advantages and limitations. 

TABLE I: SUMMARY OF RELATED WORKS 

Ref. Approach / Findings Advantages Limitations 

[11] 
Compared ChatGPT and DeepSeek on code generation tasks using 

multiple programming benchmarks. DeepSeek achieved higher 

correctness, while ChatGPT provided cleaner and more efficient code. 

Highlights performance trade-
offs between correctness and 

efficiency. 

Focused mainly on Python; lacks 
multi-domain and large-scale 

evaluation. 

[12] 

Investigated DeepSeek and ChatGPT performance on scientific 

computing and machine learning tasks. DeepSeek excelled in 
mathematical reasoning and numerical accuracy. 

Demonstrates importance of 

reasoning optimization in 
domain-specific computing. 

Limited to scientific domains; no 

human-centered readability 
evaluation. 

[13] 
Proposed a causality-based framework for benchmarking LLM-

generated code, focusing on explainability and quality attribution. 

Provides insights into why 

LLMs generate certain code 
patterns. 

Evaluation limited to static code 

analysis; lacks runtime and 
memory tests. 

[14] 
Introduced EffiBench, a benchmark measuring execution efficiency, 

memory, and runtime of AI-generated code 

Offers standardized metrics for 

computational efficiency. 

Limited language diversity; lacks 

human evaluation of readability. 

[15] 
Proposed EffiBench-X, a multi-language benchmark evaluating 

efficiency and performance of LLM-generated code across several 

languages. 

Expands efficiency testing to 

cross-language scenarios. 

Focuses only on efficiency; omits 

code maintainability and style. 

[16] 

Conducted empirical evaluation of generative AI models (ChatGPT, 

Claude, DeepSeek) in Python code generation using quantitative 
metrics. 

Comprehensive benchmarking 

with reproducible 
experimental design. 

Restricted to Python; excludes 

qualitative readability assessment. 

[17] 

Developed DomainCodeBench to assess LLMs across domain-

specific tasks, showing that general performance does not guarantee 

domain excellence. 

Reveals mismatch between 

general benchmarks and 

domain-specific needs. 

Lacks efficiency and readability 

measures. 

[18] 
Reassessed Java code readability using a human-centered evaluation 

approach combining metrics and developer feedback. 

Integrates human perception 

into readability modeling. 

Limited to Java and does not 

involve LLM-generated code. 

[19] 
Assessed AI-generated code for quality and security vulnerabilities 

across LLMs. ChatGPT produced safer code, while DeepSeek 

prioritized performance. 

Combines performance and 

security perspectives. 

Focuses on security; omits human 
readability and efficiency 

comparisons. 

[20] 
Empirically evaluated ChatGPT’s ability to refactor and improve 

existing code structures while maintaining functionality. 

Demonstrated ChatGPT’s 
strength in improving 

readability and maintainability. 

Focused only on ChatGPT; lacks 

multi-model comparison. 

[21] 

Compared ChatGPT, DeepSeek, Claude, and Qwen on reasoning, 

code generation, and contextual understanding using real-world 
benchmarks. 

Broad evaluation across four 

models, highlighting relative 
strengths. 

Limited to high-level comparisons; 

lacks deep runtime and memory 
profiling. 

 

Despite extensive evaluations of LLMs like DeepSeek, 

ChatGPT, and Claude across various programming tasks, 

several gaps remain. Most existing studies focus on broad 

code generation benchmarks or domain-specific scientific 

computing, with limited attention to detailed analysis on 

fundamental algorithmic problems such as sorting. 

Moreover, while many works compare correctness and 

efficiency, fewer systematically assess readability, in 

tandem with execution metrics. These gaps highlight the 

need for a more comprehensive and fine-grained 

comparative study that integrates multiple evaluation 

dimensions to better inform practical AI code assistant 

selection. This study brings the following contributions, 

with the aim of addressing these gaps. 

1) Provide a fine-grained comparison of three major 

LLMs ChatGPT (GPT-4-turbo), Claude Sonnet, and 

DeepSeek-V3 on classic sorting algorithms (Insertion 

Sort, Merge Sort, Quick Sort, and Heap Sort) to capture 

computational and structural performance differences.  

2) Introduce a multi-dimensional evaluation across 

execution time, memory usage, peak memory 

consumption, logical and physical file size, and code 

readability, combining quantitative system metrics 

with qualitative readability analysis. 

3) Benchmark all models under a controlled Linux 

Docker environment, ensuring fair and reproducible 

comparison across models and runs. 

4) Establish correlations between readability, code length, 

and computational performance—providing deeper 

insights into the trade-off between human readability 

and machine efficiency. 

5) Offer practical guidance for researchers and developers 

on selecting appropriate LLMs based on project 

needs—whether prioritizing runtime efficiency, 

memory economy, or code clarity. 

III. METHODOLOGY 

This section outlines the methodology designed to 

evaluate the performance of three LLMs —ChatGPT GPT-

4-turbo, Claude Sonnet 4 and DeepSeek-V3 —on a 

controlled set of algorithmic code generation tasks. The 

study focuses on sorting algorithms due to their 

foundational importance in programming and their 

sensitivity to both logical structure and execution 

efficiency. The methodology is divided into several key 
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components: model selection, dataset and prompt design, 

evaluation metrics, and experimental setup. Fig. 1 shows 

the methodology. 

Fig. 1. Research methodology. 

A. Model Selection

To provide a comprehensive and fair evaluation of

LLMs in code generation tasks, we selected three state-of-

the-art models: ChatGPT, DeepSeek, Claude. These 

models were chosen due to their wide adoption, reported 

performance in recent evaluations, and complementary 

design objectives. Together, they represent a diverse set of 

approaches to AI-driven programming assistance-

spanning from general-purpose reasoning models to 

lightweight, speed-optimized tools, making them suitable 

for contrasting different trade-offs in code generation. 

Each model was accessed through its respective official 

interface to ensure consistency in prompt delivery and 

result evaluation. 

B. Dataset Description

To evaluate the performance and scalability of the

selected LLMs in generating sorting algorithms, we 

constructed a synthetic dataset comprising six distinct 

input sets. The dataset consists of arrays of randomly 

generated integer values, with sizes incrementally 

increasing by a factor of ten to test algorithmic behavior 

under different computational loads. Specifically, the six 

subsets contain 10, 100, 1,000, 10,000, 100,000, and 

1,000,000 integers, respectively. Each subset represents a 

separate test case to analyze how the generated code 

performs across small, moderate, and large-scale data. 

This structured design enables us to measure model 

efficiency, correctness, and resource utilization (execution 

time and memory) as input size grows, providing insight 

into the models’ scalability and optimization quality. 

C. Task Design and Prompting

Due to the necessity of consistency and control over the

evaluation process, the study focused on sorting algorithm 

generation, which is a fundamental task in computer 

science that tests a model’s capability of comprehending 

problem specifications, making logical reasoning and 

generating optimized code. The models were asked to 

generate an implementation of a complete sorting 

algorithm among insertion, merge, quick and heap sort 

algorithms. The generated code was then evaluated against 

the dataset to assess both correctness and performance. 

This task was chosen because sorting problems have well-

defined expected outputs, making them ideal for 

benchmarking across correctness, speed, memory usage, 

and logical structure. 

For fairness and reproducibility reason, the same 

problem statement and requirements were used across all 

models. The output was saved and the resulting runtime 

behavior was logged after execution in a controlled 

environment. Prompting plays a crucial role in 

determining the quality of output generated by LLMs. We 

used zero-shot prompting in most cases—providing only a 

concise problem description without any additional 

examples or templates. This setup simulates a real-world 

scenario where developers request helps from an assistant 

by describing a task in natural language. The general 

prompt format used was: “Write a Python code to sort a 

list of integers using [algorithm name]. The program 

should take a list of integers as input and produce a sorted 

list”. 

Prompts were carefully tested to ensure clarity and no 

bias toward a specific model. In addition, we ensured the 

prompts did not include performance hints or optimization 

suggestions, allowing the model to infer the most efficient 

implementation based on its training. 

D. Evaluation Metrics

In this study, a suite of quantitative metrics is leveraged

to comprehensively evaluate the performance and quality 

of the code generated by LLMs. These are metrics that aim 

to consider not only whether the output of a model is 

correct, but also how computationally efficient it is and the 

code level properties, in order to get the complete picture 

of what is the practical utility of each model. 

Execution Time (ET): Execution time refers to the total 

duration the generated sorting algorithm takes to complete 

processing a given input dataset. It is measured in Seconds 

and represents the elapsed time from the start to the end of 

the function execution. Let A be a sorting algorithm 

generated by a LLM, and let Dn represent an input dataset 

of size n. The average time taken by algorithm A to sort 

dataset Dn over k=5 runs: 

ET(𝐷𝑛 , 𝐴) =
1

𝑘
∑ (𝑡end

(𝑖)
− 𝑡start

(𝑖)
)𝑘

𝑖=1       (1) 

where 𝑡start
(𝑖)

and 𝑡end
(𝑖)

 are the start and end timestamps of 

the ith run. 

Memory Usage (MU): Memory usage reflects the 

amount of system memory (in kilobytes) consumed by the 

program during its execution. It includes memory 

allocated for variables, data structures, and recursive stack 

frames where applicable. The average memory consumed 

during execution (in kilobytes): 

MU(𝐷𝑛 , 𝐴) =
1

𝑘
∑ (𝑚end

(𝑖)
− 𝑚start

(𝑖)
)𝑘

𝑖=1             (2) 

where 𝑚start
(𝑖)

and 𝑚end
(𝑖)

 are memory usage measurements 

before and after execution for run i. 
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Peak Memory Usage (PMU): Maximum memory usage 

when using the algorithm is described by peak memory 

usage. In particular, this is important for recursive or 

memory intensive algorithms as temporary lists can 

greatly increase peak demand. The average of peak 

memory usage (in kilobytes) as recorded by a memory 

tracer: 

PMU(𝐷𝑛 , 𝐴) =  
1

𝑘
∑ (𝑚peak

(𝑖)
)𝑘

𝑖=1                 (3) 

where 𝑚peak
(𝑖)

 is the peak memory traced during run i. 

Logical Size (LS): The logical size of a file refers to the 

actual size of the file’s contents as reported by the 

operating system, excluding any file system overhead. It is 

measured in kilobytes (KB). The logical size (in kilobytes) 

is computed as follows: 

LS(𝐴) =
os.path.getSize(𝐴)

1024
                      (4) 

where os. path. getSize(𝐴) returns the size (in bytes) of 

the file specified by the path argument. 

Physical Size (PS): refers to the actual disk space 

allocated for the file, which includes file system block 

overhead. The physical size (in kilobytes) is computed as 

follows: 

𝑃𝑆(𝐴) = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 × 𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 (𝐾𝐵)      (5) 

whereas allocated blocks are the number of blocks 

assigned to store the file, and block size is the size of each 

storage block in kilobytes (typically 4 KB on many 

systems). 

Readability Score (SC): Readability assesses how easily 

a human can understand the generated code. This includes 

factors like consistent formatting, use of meaningful 

variable and function names, clarity of logic flow, and 

presence of comments or documentation. Readability 

score (RS) is often normalized to a 10-point scale, such as: 

RS(𝐴) ∈ [0,10]                          (6) 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

All experiments were conducted on a personal computer 

running Windows 10 Pro (64-bit) with the following 

hardware specifications: Processor is Intel Core i7-7700 

CPU @ 3.60GHz, RAM is 8,192 MB (8 GB), and System 

Architecture is x64-based processor. To ensure 

consistency and isolation, a Linux-based Docker container 

was used to execute and evaluate the generated code. The 

Docker container was configured with the following 

constraints: operating system is minimal Linux image, 

allocated CPU is 1 core, allocated memory is 1 GB, and 

programming language is Python 3.10-slim. 

All code generated by the LLMs was written and 

executed in Python, ensuring a standardized testing 

environment. The use of Docker allowed for 

reproducibility and minimized system-level interference 

when measuring performance metrics such as execution 

time and memory usage. All scripts were executed inside 

the container, and relevant metrics were collected during 

runtime using Python-based profiling tools. Specifically, 

the experiments leverage time python tool for precise 

execution time measurement, psutil to measure the 

resident set size (RSS) memory used by the process before 

and after execution, and tracemalloc to capture peak 

memory usage during the sorting task. Moreover, os tool 

is used for retrieving the physical file size of the script. 

Also, Garbage collection was temporarily disabled to 

ensure consistent memory profiling.  

Each sorting algorithm was tested on six datasets of 

increasing size: 10, 100, 1,000, 10,000, 100,000, and 

1,000,000 integers. For reliability, each algorithm was run 

five times on each dataset, and the average of the metrics, 

execution time, memory usage, peak memory usage and 

logical file size, was calculated and used in the final 

evaluation. This setup ensured a fair and systematic 

comparison of code generated by different LLMs under 

controlled computing conditions. 

B. Results 

1) Execution Time (ET) evaluation 

To evaluate the efficiency of code generated by LLMs, 

we measured the execution time (in seconds) of four 

sorting algorithms—Insertion Sort, Merge Sort, Quick 

Sort, and Heap Sort—across six datasets of increasing size 

(DS1: 10 integers to DS6: 1,000,000 integers). Each 

algorithm was executed five times per dataset, and the 

average time was recorded. Table II shows the result of 

model evaluation in term of average execution time. 

TABLE II: THE AVERAGE EXECUTION TIME OF MODELS (IN SECONDS) 

Algorithm 
Dataset 

(DS) 
ChatGPT 

Claude 

Sonnet 
DeepSeek 

Insertion 

Sort 

DS 1 0.0000156 0.0000198 0.0000188 

DS 2 0.0007444 0.0007822 0.0006032 

DS 3 0.1427272 0.1346232 0.1430604 

DS 4 14.8687454 15.3280544 15.0527078 

DS 5 1521.8972000 1589.217278 1542.253533 

DS 6 > 50400 > 50400 > 50400 

Merge Sort 

DS 1 0.0000596 0.0000516 0.0000514 

DS 2 0.0006136 0.0005694 0.0006294 

DS 3 0.007821 0.0084864 0.007714 

DS 4 0.1054434 0.0994446 0.1025194 

DS 5 1.376218 1.3603642 1.2997082 

DS 6 17.0925022 16.2943608 16.6534512 

Quick Sort 

DS 1 0.0000416 0.0000358 0.0000396 

DS 2 0.000286 0.000246 0.0002678 

DS 3 0.0097646 0.0076344 0.0091446 

DS 4 0.1246186 0.1272454 0.1471322 

DS 5 1.232454 1.1939666 1.2563958 

DS 6 15.4996032 15.708026 15.3957354 

Heap Sort 

DS 1 0.000044 0.0000486 0.0000326 

DS 2 0.0005974 0.0005842 0.0005276 

DS 3 0.01195 0.0112248 0.0123984 

DS 4 0.1717594 0.1919182 0.2006176 

DS 5 2.2620296 2.3792628 2.3275016 

DS 6 29.89498 31.2612638 30.6523804 

For Insertion Sort, which has a time complexity of O(n2), 

performance quickly degraded as dataset size increased. 

On small datasets such as DS1 (10 elements), ChatGPT 

produced the fastest execution with an average time of 

0.0000156 s, followed by DeepSeek (0.0000188s) and 

Claude (0.0000198s). As input size grew, ChatGPT 

generally showed better scalability on large-range inputs 
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like DS4 and DS5, but none could complete DS6 

(1,000,000 elements) within the set threshold of 14 h  

(> 50400s). This clearly illustrates Insertion Sort’s 

inefficiency for large-scale datasets regardless of how 

optimized the code is. In the case of Merge Sort, with its 

(nlogn) efficiency, all models scaled much better. Claude 

consistently performed well, achieving the fastest 

completion time on DS6 at 16.29 s, ahead of DeepSeek 

(16.65s) and ChatGPT (17.09s). On smaller datasets (DS1 

to DS3), the differences between the models were minimal, 

often within microseconds, indicating uniformly efficient 

code generation for this divide-and-conquer algorithm.  

Quick Sort revealed Claude’s advantage on the smallest 

inputs—e.g., DS1, where it executed in 0.0000358s, faster 

than ChatGPT (0.0000416s) and DeepSeek (0.0000396s). 

However, DeepSeek demonstrated the best performance 

on larger inputs, especially DS6, completing in 15.39s—

faster than ChatGPT (15.49s) and Claude (15.70s). This 

suggests that while Claude optimized base cases well, 

DeepSeek produced code better suited for recursive 

efficiency. With Heap Sort, performance was generally 

slower compared to Merge and Quick Sort due to its more 

complex memory and tree-based operations. DeepSeek 

produced the fastest result on DS1 at 0.0000326s, but 

ChatGPT offered better performance on larger datasets. 

For example, on DS6, ChatGPT completed in 29.89, ahead 

of DeepSeek (30.65s) and Claude (31.26s), and on DS5, 

ChatGPT had the lowest time (2.26s). 

Fig. 2 shows the average execution time of all 

algorithms for each model. Overall, ChatGPT recorded the 

lowest average execution time across all datasets and 

algorithms at 69.77 s, closely followed by DeepSeek at 

70.67 s, and Claude at 72.75 s. This suggests that while 

ChatGPT’s generated code is slightly more efficient in 

total, DeepSeek consistently delivered high performance, 

particularly for larger datasets. Claude showed strengths 

on smaller inputs but lagged slightly as input size increased.  

 
Fig. 2. The average execution time of models. 

2) Memory Usage (MU) evaluation 
Table III shows the result of models’ evaluation in term 

of average memory usage. Memory consumption patterns 
varied across sorting algorithms and dataset sizes. For 
Insertion Sort, all models showed negligible memory 
usage (0 KB) for small datasets (DS1–DS3). As the input 
size grew, memory usage increased noticeably. For DS4 
and DS5, ChatGPT consumed 764 KB and 13,260 KB 
respectively, while DeepSeek used slightly less with 751.2 
KB and 13,056 KB. Claude consumed the most memory 
in DS5 (13,980 KB). Memory usage on DS6 is not 

reported, likely due to execution limits. Merge Sort 
exhibited higher memory demand for larger datasets, 
consistent with its divide-and-conquer nature. For DS4, 
memory use hovered around 1,000 KB across all models. 
On DS5, usage climbed above 17,000 KB, with Claude 
consuming the most (17,340 KB) and DeepSeek the least 
(17,316 KB). On DS6, all models required over 160,000 
KB, with DeepSeek again being the most efficient 
(159,047.2 KB), compared to ChatGPT (163,967.2 KB) 
and Claude (174,936 KB). 

TABLE III: THE AVERAGE MEMORY USAGE OF MODELS (IN KB) 

Algorithm 
Dataset 

(DS) 
ChatGPT 

Claude 
Sonnet 

DeepSeek 

Insertion 
Sort 

DS 1 0 0 0 
DS 2 0 0 0 
DS 3 0 0 0 
DS 4 764 811.2 751.2 
DS 5 13260.00 13980 13056 
DS 6 - - - 

Merge 
Sort 

DS 1 0 0 0 
DS 2 0 0 0 
DS 3 0 0 0 
DS 4 1060 999.2 1048 
DS 5 16723.2 17340 17316 
DS 6 163967.2 174936 159047.2 

Quick 
Sort 

DS 1 0 0 0 
DS 2 0 0 0 
DS 3 0 0 0 
DS 4 776 764 800 
DS 5 13115.2 13896 13115.2 
DS 6 132840 140861.6 132864 

Heap 
Sort 

DS 1 0 0 0 
DS 2 0 0 0 
DS 3 0 0 0 
DS 4 788 776 764 
DS 5 11196.738 13868.8 13082.4 
DS 6 132844.8 140855.2 132920.8 

 

Quick Sort followed similar trends. It required minimal 

memory on smaller datasets, then ramped up significantly. 

For DS5 and DS6, DeepSeek and ChatGPT performed 

similarly at 13,115.2 KB and around 132,840 KB 

respectively, while Claude used the most memory with 

13,896 KB on DS5 and 140,861.6 KB on DS6. Heap Sort 

was relatively memory-efficient on all datasets. All models 

recorded 0 KB usage on DS1–DS3. For DS4, memory 

ranged from 764 KB (DeepSeek) to 788 KB (ChatGPT). 

On DS5, ChatGPT used the least memory (11,196.738 

KB), while Claude consumed the most (13,868.8 KB). For 

DS6, ChatGPT is the most memory-efficient with 

132,844.8 KB. 

 
Fig. 3. The average memory usage of models. 

Fig. 3 shows the average of memory usage of all 

algorithms for each model. Across all sorting algorithms 

and datasets, DeepSeek demonstrated the most memory-

efficient behavior, with an average usage of approximately 

21,076.73 KB. ChatGPT followed closely, consuming 

69.76957473
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around 21,188.48 KB on average, while Claude showed 

the highest average memory usage at 22,569.04 KB. These 

results indicate that DeepSeek is slightly more optimized 

in terms of memory management, especially on larger 

datasets. Claude’s higher memory footprint may be 

attributed to additional processing overhead or more 

complex data structures used in its generated code. Overall, 

the differences, while small, could become significant in 

large-scale applications where memory efficiency is 

critical. 

3) Memory Peak (MP) evaluation 

Table IV shows the result of models’ evaluation in term 

of average memory peak. In smaller datasets (DS 1–DS 3), 

all three models performed similarly, with minimal 

differences in memory peaks, typically under 100 KB. 

However, as dataset sizes increased, disparities became 

more apparent. For instance, in DS 5 and DS 6, ChatGPT 

maintained noticeably lower memory peaks, such as 

3560.47 KB for Insertion Sort on DS 5, while Claude used 

4342.12 KB, and DeepSeek matched ChatGPT. For Merge 

Sort on DS 6, ChatGPT’s peak was 51,996.18 KB, while 

Claude’s climbed to 59,808.99 KB and DeepSeek 

followed closely at 59,808.83 KB, again showcasing 

Claude’s higher memory footprint. Similar trends 

appeared with Quick Sort and Heap Sort, especially in DS 

6, where ChatGPT’s peek and DeepSeek’s peaks remained 

significantly lower—35,659 KB and 35,646 KB, 

respectively—compared to Claude’s over 43,000 KB in 

both cases. Overall, this comparison reveals that ChatGPT 

not only uses less peak memory but does so consistently 

across sorting techniques, suggesting better scalability and 

efficiency. DeepSeek generally mirrors ChatGPT’s 

memory behaviour, while Claude exhibits the highest 

peaks, particularly with large input sizes. 

TABLE IV: THE AVERAGE MEMORY PEAK OF MODELS (IN KB) 

Algorithm 
Dataset 

(DS) 
ChatGPT 

Claude 
Sonnet 

DeepSeek 

Insertion 
Sort 

DS 1 51.054 51.534 51.054 
DS 2 51.752 52.95 51.762 
DS 3 79.838 88.082 79.872 
DS 4 400.476 479.036 400.502 
DS 5 3560.47 4342.12 3560.47 
DS 6 - - - 

Merge Sort 

DS 1 52.904 52.928 52.934 
DS 2 55.63 55.672 55.702 
DS 3 92.97 93.034 93.034 
DS 4 530.658 609.048 608.898 
DS 5 5213.318 5994.868 5994.71 
DS 6 51996.182 59808.998 59808.834 

Quick Sort 

DS 1 53.262 52.568 53.254 
DS 2 57.044 56.354 57.032 
DS 3 89.64 89.006 89.646 
DS 4 415.592 453.846 415.586 
DS 5 3576.858 4318.438 3576.874 
DS 6 35659.566 43432.968 35659.546 

Heap Sort 

DS 1 52.4 51.762 52.384 
DS 2 54.448 54.528 54.44 
DS 3 83.972 91.094 83.978 
DS 4 406.374 483.826 406.376 
DS 5 3567.682 4348.262 3567.69 
DS 6 35646.888 43458.698 35646.9 

Fig. 4 shows the average memory peaks of all 

algorithms for each model. In evaluating peak memory 

usage, ChatGPT showed the lowest average peak memory 

consumption at approximately 6,162.99 KB, indicating 

better memory handling under stress or during recursive 

and large-scale operations. DeepSeek followed with a 

slightly higher average of 6,540.06 KB, showing relatively 

efficient performance but with slightly more fluctuation in 

memory demand. Claude, however, recorded the highest 

average peak memory usage at 7,326.94 KB, suggesting a 

tendency to allocate more memory at the highest points of 

execution. This pattern was especially noticeable on larger 

datasets (DS 5 and DS 6), where Claude’s memory peaks 

significantly surpassed those of ChatGPT and DeepSeek. 

These results highlight ChatGPT’s advantage in managing 

peak memory demands more conservatively, making it 

potentially more suitable for environments with strict 

memory constraints. 

 
Fig. 4. The average memory peak of models. 

4) Logical Size (LS) and Physical Size (PS) evaluation 

Table V shows the result of model evaluation in term of 

logical size and physical size. In terms of logical code size, 

ChatGPT consistently produces the most concise 

implementations across all four sorting algorithms, 

followed closely by DeepSeek, with Claude generating the 

most verbose code. For instance, ChatGPT’s Insertion Sort 

has a logical size of 1.72 KB, while Claude’s is 2.42 KB, 

and DeepSeek’s is 1.93 KB. The same pattern is seen in 

Merge Sort (2.03 KB for ChatGPT vs. 2.97 KB for Claude 

and 2.83 KB for DeepSeek), Quick Sort (2.09 KB vs. 3.14 

KB and 2.63 KB), and Heap Sort (2.35 KB vs. 3.21 KB 

and 2.53 KB).  

TABLE V: THE AVERAGE LOGICAL SIZE AND THE AVERAGE PHYSICAL 

SIZE OF MODELS (IN KB) 

Algorithm 
ChatGPT Claude Sonnet DeepSeek 

LS PS LS PS LS PS 

Insertion Sort 1.72 4.00 2.42 4.00 1.93 4.00 

Merge Sort 2.03 4.00 2.97 4.00 2.83 4.00 

Quick Sort 2.09 4.00 3.14 4.00 2.63 4.00 

Heap Sort 2.35 4.00 3.21 4.00 2.53 4.00 

 

Despite differences in logical size, the physical size 

remains constant at 4.00 KB for all models across all 

algorithms, likely due to file system or formatting 

constraints. This indicates that while the actual stored size 

does not vary, ChatGPT achieves better code compactness 

and efficiency in logical structure, which can impact 

readability, maintainability, and execution in memory-

sensitive environments. Fig. 5 shows the average of logical 

and physical size of all algorithms for each model. Where 

ChatGPT achieves the lowest logical size with 2.04, 

followed by DeepSeek with 2.48, while Claude achieves 

larger size with 2.93. 
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Fig. 5. The average logical size and the average physical size of models. 

5) Readability Score (RS) evaluation 

In this study, Pylint tool is used evaluate the code 

readability. Pylint is a static code analysis tool designed to 

evaluate Python code without executing it. It performs in-

depth inspection by parsing the code into an abstract 

syntax tree (AST) and analyzing its structure for potential 

errors, code style issues, and complexity. Pylint checks for 

a wide range of issues, including syntax errors, comment, 

undefined variables, unused imports, bad indentation, 

naming convention violations, and code smells such as 

overly complex functions or deeply nested structures. One 

of Pylint’s key features is its scoring mechanism, which 

rates the quality of the code on a scale from −10.0 to 10.0, 

where 10.0 indicates a perfect score. This score is based on 

the number and severity of issues found. Pylint is highly 

configurable, users can customize which rules are enabled 

or disabled. It classifies messages into categories such as 

convention, warning, error, and refactor, helping 

developers distinguish between minor style preferences 

and serious bugs.  

Table VI shows the result of models evaluation in code 

readability. The readability of generated sorting 

algorithms was assessed using a 10-point scale, focusing 

on clarity, structure, naming conventions, and overall 

human comprehension. ChatGPT consistently produced 

highly readable code across all algorithms, scoring 

between 7.78 and 7.89. Its Merge Sort and Quick Sort 

implementations were particularly well-structured and 

easy to follow. Claude, while generally clear, showed more 

variability, with scores ranging from 5.91 (Heap Sort) to 

7.00 (Quick Sort), indicating less consistency in 

formatting and code legibility. DeepSeek exhibited the 

widest range in readability, scoring lowest on Insertion 

Sort (6.25) but highest on Quick Sort (9.29), where its code 

was notably clean and logically arranged. Overall, 

ChatGPT maintained superior readability across the board, 

while DeepSeek showed excellence in specific cases like 

Quick Sort but inconsistency elsewhere. 

TABLE VI: THE READABILITY SCORE OF MODELS 

Algorithm ChatGPT Claude Sonnet DeepSeek 

Insertion Sort 7.78 6.67 6.25 
Merge Sort 7.89 6.4 6.36 

Quick Sort 7.86 7 9.29 

Heap Sort 7.78 5.91 8.33 

 
Fig. 6. The average readability score of models. 

Fig. 6 shows the average of code readability of all 

algorithms for each model. Where ChatGPT achieves the 

highest readability with 7.82, followed by DeepSeek with 

7.55, while Claude achieves lowest score with 6.49. 

C. Summary 

To provide a comprehensive comparison of the 

generated sorting algorithms across the three LLMs, we 

summarize the average values of all key evaluation metrics 

in Table VII (rounded to two decimal places). These 

metrics include execution time, memory usage, peak 

memory usage, logical and physical code size, and code 

readability. This consolidated view enables an at-a-glance 

assessment of the overall efficiency, resource consumption, 

and code quality produced by each model. 

TABLE VII: RESULTS SUMMARY 

Metric ChatGPT GPT-4-turbo Claude Sonnet 4 DeepSeek-V3 

ET (S) 69.77 72.75 70.67 

MU (KB) 21,188.48 22,569.04 21,076.73 
MPU (KB) 6,163.00 7,326.94 6,540.06 

LS (KB) 2.05 2.94 2.48 

PS (KB) 4.00 4.00 4.00 
RS (0–10) 7.83 6.50 7.56 

 

In terms of execution time, ChatGPT was the fastest on 

average (69.77 s), followed closely by DeepSeek (70.67 s), 

while Claude lagged slightly behind (72.75 s). Regarding 

average memory usage, DeepSeek demonstrated the most 

efficient memory handling with 21,076.73 KB, marginally 

outperforming ChatGPT (21,188.48 KB), and significantly 

better than Claude (22,569.04 KB). A similar trend was 

observed in peak memory consumption, where ChatGPT 

recorded the lowest peak at 6,163.00 KB, followed by 

DeepSeek at 6,540.06 KB, and Claude at 7,326.94 KB. In 

terms of code size, all models produced scripts with a 

consistent physical size of 4.00 KB, reflecting uniform 

disk allocation. However, logical size—which better 

reflects the actual amount of written content—varied, with 

ChatGPT producing the most concise code (2.05 KB), 

followed by DeepSeek (2.48 KB), and Claude generating 
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the most verbose scripts (2.94 KB). Finally, the readability 

scores, assessed on a 10-point scale, show that ChatGPT’s 

code was the easiest to understand (7.83), with DeepSeek 

also performing well (7.56), while Claude’s outputs were 

rated least readable (6.50). Overall, ChatGPT led in most 

categories, with DeepSeek close behind and Claude 

trailing in efficiency and readability. 

V. CONCLUSION 

This comparative study illuminated the varying 

strengths and limitations of three leading generative AI 

models—ChatGPT-4-turbo, Claude Sonnet4, and 

DeepSeek-V3—in generating Python implementations of 

classical sorting algorithms. ChatGPT consistently 

demonstrated balanced performance, combining speed, 

efficient memory usage, and high code readability. 

DeepSeek, while slightly trailing in execution speed and 

memory efficiency, produced the most readable and 

concise code in complex cases like Quick Sort and Heap 

Sort. Claude, on the other hand, showed a noticeable lag in 

both memory performance and code quality. These 

findings highlight that while all three models are capable 

of generating functional code, ChatGPT currently offers 

the most well-rounded output for practical programming 

tasks, especially where performance and readability are 

equally critical. As generative models continue to evolve, 

such empirical evaluations will be crucial for developers 

and researchers seeking optimal AI coding companions. 

While this study provides valuable insights into the 

capabilities of ChatGPT GPT-4-turbo, Claude Sonnet 4, 

and DeepSeek-V3 for code generation, several limitations 

should be acknowledged. First, the evaluation focused 

solely on sorting algorithms implemented in Python, 

which may not generalize to other algorithmic domains, 

languages, or code complexities. Additionally, the 

readability assessment, although quantified on a 10-point 

scale, remains partially subjective despite efforts to 

standardize criteria such as formatting, naming 

conventions, and clarity of logic. Moreover, certain 

qualitative aspects like error handling of the generated 

code were not explored in this study. 

Future work can address these gaps by expanding the 

scope of algorithm types (e.g., graph algorithms, dynamic 

programming), incorporating multiple programming 

languages, and using automated readability tools or larger 

expert panels for more objective evaluations. Integrating 

correctness checking across edge cases, and examining 

security, maintainability, and cross-platform performance 

can also provide deeper understanding. Furthermore, 

applying this comparative framework to newer or fine-

tuned models could offer timely benchmarks in this rapidly 

evolving space. 
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