

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

19doi: 10.18178/ijeetc.15.1.19-28

Code Generation by Large Language Models: A

Comparative Analysis of ChatGPT, Claude, and

DeepSeek

Yousef Alraba’nah1,2,*, Azzam Sleit2, Iyas Qaddara3, and Mohammad Hiari4
1 Department of Software Engineering, Al-Ahliyya Amman University, Amman, Jordan

2 Department of Computer Science, University of Jordan, Amman, Jordan
3 Department of Computer Science, Al-Ahliyya Amman University, Amman, Jordan

4 Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan

Email: y.alrabanah@ammanu.edu.jo (Y.A.), azzam.sleit@ju.edu.jo (A.S.), i.qaddara@ammanu.edu.jo (I.Q.),

m.hyari@ammanu.edu.jo (M.H.)

Manuscript received September 4, 2025; revised October 18, 2025; accepted October 22, 2025
*Corresponding author

become increasingly integrated into software development

workflows, understanding their efficiency and code quality is

critical. This study offers a comprehensive comparison of

three leading AI models—ChatGPT GPT-4-turbo, Claude

Sonnet, and DeepSeek-V3—for automated code generation,

focusing specifically on sorting algorithms. The models are

evaluated across multiple metrics including execution time,

memory usage, peak memory consumption, logical and

physical file sizes, and code readability. Python

implementations of Insertion Sort, Merge Sort, Quick Sort,

and Heap Sort are generated by each model and

benchmarked in a consistent Linux Docker environment.

Results reveal that ChatGPT leads in overall efficiency, with

the fastest average execution time, the lowest peak memory

usage, and the highest readability scores. DeepSeek

demonstrated competitive performance, especially in

producing readable code, while Claude showed higher

memory consumption and lower readability. This analysis

provides practical insight into the trade-offs between code

quality and system performance in AI-generated

programming, offering valuable guidance for researchers

and developers alike.

Index Terms—ChatGPT, Claude sonnet, code generation,

DeepSeek, large language model

I. INTRODUCTION

The recent evolution of Artificial Intelligence (AI),

especially in the domain of Large Language

Models (LLMs), has sparked widespread interest in their

applications across scientific and engineering

disciplines [1]. LLMs such as OpenAI’s ChatGPT,

Anthropic’s Claude, and DeepSeek which is a newer open-

source model from China, have gained significant traction

not only for their conversational fluency but also for their

problem-solving and code generation abilities [2]. These

models, powered by transformer-based neural

architectures, are capable of parsing natural language

instructions and converting them into syntactically correct

and often logically sound programming code [3]. Their

integration into software development workflows,

education, and scientific computing heralds a new era of

human-AI collaboration [4]. However, despite their

growing influence, a systematic and comparative

evaluation of these models in domain-specific coding tasks

remains underexplored.

LLMs are trained on the large corpora of books,

websites, programming documentation and open source

code repositories. For this reason, they have achieved both

the ability to understand and the ability to create source

code in a number of different programming languages [5].

In early iterations of LLMs such as GPT-2 and GPT-3, this

functionality was present in a very restricted manner, but

the newest models ChatGPT-4, Claude 3.5/3.7 Sonnet and

DeepSeek-R1 are significantly better at handling context,

logical reasoning and execution reliability [6]. OpenAI’s

ChatGPT is now very popular and is well known for doing

natural language tasks and software development.

ChatGPT o3-mini and ChatGPT-4o are both science and

coding optimized models. These models are able to

generate efficient and human-readable code with practical

values such as faster response time, low latency and

advanced contextual reasoning, which are useful for

Integrated Development Environments (IDEs),

educational tools and professional workflows [7].

Anthropic’s Claude is developed with a focus on safety,

reliability and long context reasoning. For example, the

Claude 3.7 Sonnet variant includes ‘extended thinking

mode’ that will offer higher performance for tasks that are

mathematical and logical such as code writing. Claude’s

architecture is designed to tradeoff between coherence and

correctness, but his outputs have often been highly

readable and it performs extremely well on instruction

following tasks which is important when programming [8].

The other development is that DeepSeek is an open source

AI. On competitive math and logic benchmarks, it has

shown strong performance, including 79.8% on the AIME

2024, slightly beating ChatGPT o1. One of its appeals is

that DeepSeek is cost efficient, transparent and open which

has attracted developers and researchers in search of

Abstract—As generative Artificial Intelligence (AI) models

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

20

customizable, low-cost AI tools [9].

Although these advantages are promising, there are still

significant challenges requiring the empirical evaluation.

A language model can generate syntactically correct but

semantically inaccurate code, has an inconsistent memory

management and performance may vary based on prompt

wording or the complexity of the problem being

solved [10]. In addition, while widely used in industry and

even demonstrated to be effective based on anecdotal

evidence and case studies, there are few quantitative

comparisons of performance differences, especially for

fundamental algorithmic problems such as sorting.

In this work, we seek to fill that gap by assessing the

performance of ChatGPT GPT-4-turbo, Claude Sonnet 4

and DeepSeek-V3 with specific focus on code generation

performance when solving sorting problems, a central

class of algorithmic tasks that define excellent benchmarks

to gauge the quality of code generated, its efficiency and

the logic applied. In particular, we analyze the code

generated along four important dimensions: how readable

the code is, how much it consumes in terms of memory and

computation time and its logical size. As such, these

dimensions collectively express how usable, efficient and

scalable, in general, AI-generated code is for practical, real

world programming contexts. We intend our findings to

help serve both as a technical and practical understanding

of the LLM’s capabilities in low-level algorithmic

challenges and add to the growing domain of AI assisted

programming.

II. RELATED WORKS

Recent research has extensively explored the

capabilities and comparative performance of LLMs such

as DeepSeek, ChatGPT and Claude Sonnet in the domain

of AI-driven code generation and programming assistance.

A notable comparative study focusing on Python code

generation using online judge challenges demonstrated

that DeepSeek (version R1) achieved higher correctness

and more frequent first-attempt acceptance, especially in

algorithmic tasks. In contrast, ChatGPT (version o1)

produced code with fewer errors related to memory and

execution time and tended to write more concise programs,

underscoring a trade-off between bug-free output and

efficiency [11]. Expanding beyond code correctness,

evaluations on scientific computing and scientific machine

learning tasks reveal that reasoning-optimized models

including DeepSeek R1, ChatGPT o3-mini-high, and

Claude (3.7 Sonnet) excel at recognizing problem contexts

and applying advanced mathematical reasoning. This

suggests that domain-specific knowledge and reasoning

capabilities are critical factors in effective AI-assisted

scientific programming [12].

Furthermore, the benchmarking efforts on standardized

dataset like HumanEval and MBPP show ChatGPT

outperformed others in the code fluency and multi-

language support and DeepSeek produces compact and

more efficient code. This differs from Claude in that

Claude is distinguished for writing maintainable and well

documented code that reflects a variety of strengths suited

to different use case [13].

The study of Huang et al. [14] has offered an empirical

evaluation of LLMs (both open-source and closed-source)

over 1,000 efficiency-critical programming problems

drawn from LeetCode. The study showed that even top

models such as GPT-4 generate code that is significantly

less efficient in execution time and memory usage

compared to canonical human solutions, sometimes by a

large margin up to ~13.9× slower, ~43.9× higher memory

consumption for certain problems. This work underscored

that correctness benchmarks alone are insufficient to

capture real performance differences. Qing et al. [15]

extended the efficiency focus of prior work by supporting

multiple programming languages (Python, C++, Java,

JavaScript, Ruby, Go) and using competitive

programming tasks with human-expert efficiency

baselines. The findings revealed that while some LLMs

generate functionally correct code, they often lag human

experts in efficiency, and that performance varies

significantly by language.

Palla and Slaby [16] presented a rigorous empirical

evaluation of AI-generated code focusing on optimization

and performance metrics under constrained hardware

settings. This work investigated how model-generated

solutions compare to human baselines in terms of runtime

efficiency, memory consumption, and code compactness

across multiple algorithmic tasks. Its findings underscored

that even when correctness is achieved, performance

degradations emerge due to non-optimal code structure or

redundant computations.

Another study of Zheng et al. [17] examined LLMs code

generation capability across a wide variety of application

domains and programming languages. It covered domains

such as web, mobile, IoT, robotics, cloud services, and

enterprise applications, evaluating how well LLMs

perform in domain-specific settings. The study highlighted

domain variability but typically didn’t drill down into

algorithmic complexity, or metrics like memory usage or

file size. In terms of readability, Sergeyuk [18]

investigated how well code readability models align with

human developers’ judgments on AI-generated Java code.

The work found that some models and metrics often miss

developer notions of readability, and that concise,

executable code is often seen as more readable. However,

correlation is imperfect, pointing to limitations in existing

readability metrics. More recently, Sabra et al. [19]

evaluated the code produced by several modern LLMs via

static analysis tools such as SonarQube on thousands of

Java code assignments. The findings revealed that even

when code passes functional correctness benchmarks,

many security defects, code smells, and bugs persist,

showing that correctness alone is insufficient for assessing

production readiness. Complementing generation

capabilities, ChatGPT’s code refactoring skills have been

empirically demonstrated to preserve functionality while

enhancing structure and generating accurate

documentation, highlighting its utility in code

maintenance workflows [20]. Phogat et al. [21] conducted

a comparative analysis of four prominent large language

models—ChatGPT, DeepSeek, Claude, and Qwen—

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

21

focusing on their performance in code generation tasks.

The study evaluated these models across various

parameters, including accuracy, efficiency, and code

quality. The findings revealed that DeepSeek

outperformed the others in terms of computational

efficiency, generating code that executed faster and

consumed fewer resources. ChatGPT demonstrated

superior accuracy and produced more human-readable

code, making it suitable for applications requiring high

precision and clarity. Claude exhibited strengths in

generating well-structured and maintainable code, while

Qwen, though competitive, showed variability in

performance across different tasks.

Table I summarizes the related works including their

approach, finding, advantages and limitations.

TABLE I: SUMMARY OF RELATED WORKS

Ref. Approach / Findings Advantages Limitations

[11]
Compared ChatGPT and DeepSeek on code generation tasks using

multiple programming benchmarks. DeepSeek achieved higher

correctness, while ChatGPT provided cleaner and more efficient code.

Highlights performance trade-
offs between correctness and

efficiency.

Focused mainly on Python; lacks
multi-domain and large-scale

evaluation.

[12]

Investigated DeepSeek and ChatGPT performance on scientific

computing and machine learning tasks. DeepSeek excelled in
mathematical reasoning and numerical accuracy.

Demonstrates importance of

reasoning optimization in
domain-specific computing.

Limited to scientific domains; no

human-centered readability
evaluation.

[13]
Proposed a causality-based framework for benchmarking LLM-

generated code, focusing on explainability and quality attribution.

Provides insights into why

LLMs generate certain code
patterns.

Evaluation limited to static code

analysis; lacks runtime and
memory tests.

[14]
Introduced EffiBench, a benchmark measuring execution efficiency,

memory, and runtime of AI-generated code

Offers standardized metrics for

computational efficiency.

Limited language diversity; lacks

human evaluation of readability.

[15]
Proposed EffiBench-X, a multi-language benchmark evaluating

efficiency and performance of LLM-generated code across several

languages.

Expands efficiency testing to

cross-language scenarios.

Focuses only on efficiency; omits

code maintainability and style.

[16]

Conducted empirical evaluation of generative AI models (ChatGPT,

Claude, DeepSeek) in Python code generation using quantitative
metrics.

Comprehensive benchmarking

with reproducible
experimental design.

Restricted to Python; excludes

qualitative readability assessment.

[17]

Developed DomainCodeBench to assess LLMs across domain-

specific tasks, showing that general performance does not guarantee

domain excellence.

Reveals mismatch between

general benchmarks and

domain-specific needs.

Lacks efficiency and readability

measures.

[18]
Reassessed Java code readability using a human-centered evaluation

approach combining metrics and developer feedback.

Integrates human perception

into readability modeling.

Limited to Java and does not

involve LLM-generated code.

[19]
Assessed AI-generated code for quality and security vulnerabilities

across LLMs. ChatGPT produced safer code, while DeepSeek

prioritized performance.

Combines performance and

security perspectives.

Focuses on security; omits human
readability and efficiency

comparisons.

[20]
Empirically evaluated ChatGPT’s ability to refactor and improve

existing code structures while maintaining functionality.

Demonstrated ChatGPT’s
strength in improving

readability and maintainability.

Focused only on ChatGPT; lacks

multi-model comparison.

[21]

Compared ChatGPT, DeepSeek, Claude, and Qwen on reasoning,

code generation, and contextual understanding using real-world
benchmarks.

Broad evaluation across four

models, highlighting relative
strengths.

Limited to high-level comparisons;

lacks deep runtime and memory
profiling.

Despite extensive evaluations of LLMs like DeepSeek,

ChatGPT, and Claude across various programming tasks,

several gaps remain. Most existing studies focus on broad

code generation benchmarks or domain-specific scientific

computing, with limited attention to detailed analysis on

fundamental algorithmic problems such as sorting.

Moreover, while many works compare correctness and

efficiency, fewer systematically assess readability, in

tandem with execution metrics. These gaps highlight the

need for a more comprehensive and fine-grained

comparative study that integrates multiple evaluation

dimensions to better inform practical AI code assistant

selection. This study brings the following contributions,

with the aim of addressing these gaps.

1) Provide a fine-grained comparison of three major

LLMs ChatGPT (GPT-4-turbo), Claude Sonnet, and

DeepSeek-V3 on classic sorting algorithms (Insertion

Sort, Merge Sort, Quick Sort, and Heap Sort) to capture

computational and structural performance differences.

2) Introduce a multi-dimensional evaluation across

execution time, memory usage, peak memory

consumption, logical and physical file size, and code

readability, combining quantitative system metrics

with qualitative readability analysis.

3) Benchmark all models under a controlled Linux

Docker environment, ensuring fair and reproducible

comparison across models and runs.

4) Establish correlations between readability, code length,

and computational performance—providing deeper

insights into the trade-off between human readability

and machine efficiency.

5) Offer practical guidance for researchers and developers

on selecting appropriate LLMs based on project

needs—whether prioritizing runtime efficiency,

memory economy, or code clarity.

III. METHODOLOGY

This section outlines the methodology designed to

evaluate the performance of three LLMs —ChatGPT GPT-

4-turbo, Claude Sonnet 4 and DeepSeek-V3 —on a

controlled set of algorithmic code generation tasks. The

study focuses on sorting algorithms due to their

foundational importance in programming and their

sensitivity to both logical structure and execution

efficiency. The methodology is divided into several key

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

22

components: model selection, dataset and prompt design,

evaluation metrics, and experimental setup. Fig. 1 shows

the methodology.

Fig. 1. Research methodology.

A. Model Selection

To provide a comprehensive and fair evaluation of

LLMs in code generation tasks, we selected three state-of-

the-art models: ChatGPT, DeepSeek, Claude. These

models were chosen due to their wide adoption, reported

performance in recent evaluations, and complementary

design objectives. Together, they represent a diverse set of

approaches to AI-driven programming assistance-

spanning from general-purpose reasoning models to

lightweight, speed-optimized tools, making them suitable

for contrasting different trade-offs in code generation.

Each model was accessed through its respective official

interface to ensure consistency in prompt delivery and

result evaluation.

B. Dataset Description

To evaluate the performance and scalability of the

selected LLMs in generating sorting algorithms, we

constructed a synthetic dataset comprising six distinct

input sets. The dataset consists of arrays of randomly

generated integer values, with sizes incrementally

increasing by a factor of ten to test algorithmic behavior

under different computational loads. Specifically, the six

subsets contain 10, 100, 1,000, 10,000, 100,000, and

1,000,000 integers, respectively. Each subset represents a

separate test case to analyze how the generated code

performs across small, moderate, and large-scale data.

This structured design enables us to measure model

efficiency, correctness, and resource utilization (execution

time and memory) as input size grows, providing insight

into the models’ scalability and optimization quality.

C. Task Design and Prompting

Due to the necessity of consistency and control over the

evaluation process, the study focused on sorting algorithm

generation, which is a fundamental task in computer

science that tests a model’s capability of comprehending

problem specifications, making logical reasoning and

generating optimized code. The models were asked to

generate an implementation of a complete sorting

algorithm among insertion, merge, quick and heap sort

algorithms. The generated code was then evaluated against

the dataset to assess both correctness and performance.

This task was chosen because sorting problems have well-

defined expected outputs, making them ideal for

benchmarking across correctness, speed, memory usage,

and logical structure.

For fairness and reproducibility reason, the same

problem statement and requirements were used across all

models. The output was saved and the resulting runtime

behavior was logged after execution in a controlled

environment. Prompting plays a crucial role in

determining the quality of output generated by LLMs. We

used zero-shot prompting in most cases—providing only a

concise problem description without any additional

examples or templates. This setup simulates a real-world

scenario where developers request helps from an assistant

by describing a task in natural language. The general

prompt format used was: “Write a Python code to sort a

list of integers using [algorithm name]. The program

should take a list of integers as input and produce a sorted

list”.

Prompts were carefully tested to ensure clarity and no

bias toward a specific model. In addition, we ensured the

prompts did not include performance hints or optimization

suggestions, allowing the model to infer the most efficient

implementation based on its training.

D. Evaluation Metrics

In this study, a suite of quantitative metrics is leveraged

to comprehensively evaluate the performance and quality

of the code generated by LLMs. These are metrics that aim

to consider not only whether the output of a model is

correct, but also how computationally efficient it is and the

code level properties, in order to get the complete picture

of what is the practical utility of each model.

Execution Time (ET): Execution time refers to the total

duration the generated sorting algorithm takes to complete

processing a given input dataset. It is measured in Seconds

and represents the elapsed time from the start to the end of

the function execution. Let A be a sorting algorithm

generated by a LLM, and let Dn represent an input dataset

of size n. The average time taken by algorithm A to sort

dataset Dn over k=5 runs:

ET(𝐷𝑛 , 𝐴) =
1

𝑘
∑ (𝑡end

(𝑖)
− 𝑡start

(𝑖)
)𝑘

𝑖=1 (1)

where 𝑡start
(𝑖)

and 𝑡end
(𝑖)

 are the start and end timestamps of

the ith run.

Memory Usage (MU): Memory usage reflects the

amount of system memory (in kilobytes) consumed by the

program during its execution. It includes memory

allocated for variables, data structures, and recursive stack

frames where applicable. The average memory consumed

during execution (in kilobytes):

MU(𝐷𝑛 , 𝐴) =
1

𝑘
∑ (𝑚end

(𝑖)
− 𝑚start

(𝑖)
)𝑘

𝑖=1 (2)

where 𝑚start
(𝑖)

and 𝑚end
(𝑖)

 are memory usage measurements

before and after execution for run i.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

23

Peak Memory Usage (PMU): Maximum memory usage

when using the algorithm is described by peak memory

usage. In particular, this is important for recursive or

memory intensive algorithms as temporary lists can

greatly increase peak demand. The average of peak

memory usage (in kilobytes) as recorded by a memory

tracer:

PMU(𝐷𝑛 , 𝐴) =
1

𝑘
∑ (𝑚peak

(𝑖)
)𝑘

𝑖=1 (3)

where 𝑚peak
(𝑖)

 is the peak memory traced during run i.

Logical Size (LS): The logical size of a file refers to the

actual size of the file’s contents as reported by the

operating system, excluding any file system overhead. It is

measured in kilobytes (KB). The logical size (in kilobytes)

is computed as follows:

LS(𝐴) =
os.path.getSize(𝐴)

1024
 (4)

where os. path. getSize(𝐴) returns the size (in bytes) of

the file specified by the path argument.

Physical Size (PS): refers to the actual disk space

allocated for the file, which includes file system block

overhead. The physical size (in kilobytes) is computed as

follows:

𝑃𝑆(𝐴) = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 × 𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 (𝐾𝐵) (5)

whereas allocated blocks are the number of blocks

assigned to store the file, and block size is the size of each

storage block in kilobytes (typically 4 KB on many

systems).

Readability Score (SC): Readability assesses how easily

a human can understand the generated code. This includes

factors like consistent formatting, use of meaningful

variable and function names, clarity of logic flow, and

presence of comments or documentation. Readability

score (RS) is often normalized to a 10-point scale, such as:

RS(𝐴) ∈ [0,10] (6)

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

All experiments were conducted on a personal computer

running Windows 10 Pro (64-bit) with the following

hardware specifications: Processor is Intel Core i7-7700

CPU @ 3.60GHz, RAM is 8,192 MB (8 GB), and System

Architecture is x64-based processor. To ensure

consistency and isolation, a Linux-based Docker container

was used to execute and evaluate the generated code. The

Docker container was configured with the following

constraints: operating system is minimal Linux image,

allocated CPU is 1 core, allocated memory is 1 GB, and

programming language is Python 3.10-slim.

All code generated by the LLMs was written and

executed in Python, ensuring a standardized testing

environment. The use of Docker allowed for

reproducibility and minimized system-level interference

when measuring performance metrics such as execution

time and memory usage. All scripts were executed inside

the container, and relevant metrics were collected during

runtime using Python-based profiling tools. Specifically,

the experiments leverage time python tool for precise

execution time measurement, psutil to measure the

resident set size (RSS) memory used by the process before

and after execution, and tracemalloc to capture peak

memory usage during the sorting task. Moreover, os tool

is used for retrieving the physical file size of the script.

Also, Garbage collection was temporarily disabled to

ensure consistent memory profiling.

Each sorting algorithm was tested on six datasets of

increasing size: 10, 100, 1,000, 10,000, 100,000, and

1,000,000 integers. For reliability, each algorithm was run

five times on each dataset, and the average of the metrics,

execution time, memory usage, peak memory usage and

logical file size, was calculated and used in the final

evaluation. This setup ensured a fair and systematic

comparison of code generated by different LLMs under

controlled computing conditions.

B. Results

1) Execution Time (ET) evaluation

To evaluate the efficiency of code generated by LLMs,

we measured the execution time (in seconds) of four

sorting algorithms—Insertion Sort, Merge Sort, Quick

Sort, and Heap Sort—across six datasets of increasing size

(DS1: 10 integers to DS6: 1,000,000 integers). Each

algorithm was executed five times per dataset, and the

average time was recorded. Table II shows the result of

model evaluation in term of average execution time.

TABLE II: THE AVERAGE EXECUTION TIME OF MODELS (IN SECONDS)

Algorithm
Dataset

(DS)
ChatGPT

Claude

Sonnet
DeepSeek

Insertion

Sort

DS 1 0.0000156 0.0000198 0.0000188

DS 2 0.0007444 0.0007822 0.0006032

DS 3 0.1427272 0.1346232 0.1430604

DS 4 14.8687454 15.3280544 15.0527078

DS 5 1521.8972000 1589.217278 1542.253533

DS 6 > 50400 > 50400 > 50400

Merge Sort

DS 1 0.0000596 0.0000516 0.0000514

DS 2 0.0006136 0.0005694 0.0006294

DS 3 0.007821 0.0084864 0.007714

DS 4 0.1054434 0.0994446 0.1025194

DS 5 1.376218 1.3603642 1.2997082

DS 6 17.0925022 16.2943608 16.6534512

Quick Sort

DS 1 0.0000416 0.0000358 0.0000396

DS 2 0.000286 0.000246 0.0002678

DS 3 0.0097646 0.0076344 0.0091446

DS 4 0.1246186 0.1272454 0.1471322

DS 5 1.232454 1.1939666 1.2563958

DS 6 15.4996032 15.708026 15.3957354

Heap Sort

DS 1 0.000044 0.0000486 0.0000326

DS 2 0.0005974 0.0005842 0.0005276

DS 3 0.01195 0.0112248 0.0123984

DS 4 0.1717594 0.1919182 0.2006176

DS 5 2.2620296 2.3792628 2.3275016

DS 6 29.89498 31.2612638 30.6523804

For Insertion Sort, which has a time complexity of O(n2),

performance quickly degraded as dataset size increased.

On small datasets such as DS1 (10 elements), ChatGPT

produced the fastest execution with an average time of

0.0000156 s, followed by DeepSeek (0.0000188s) and

Claude (0.0000198s). As input size grew, ChatGPT

generally showed better scalability on large-range inputs

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

24

like DS4 and DS5, but none could complete DS6

(1,000,000 elements) within the set threshold of 14 h

(> 50400s). This clearly illustrates Insertion Sort’s

inefficiency for large-scale datasets regardless of how

optimized the code is. In the case of Merge Sort, with its

(nlogn) efficiency, all models scaled much better. Claude

consistently performed well, achieving the fastest

completion time on DS6 at 16.29 s, ahead of DeepSeek

(16.65s) and ChatGPT (17.09s). On smaller datasets (DS1

to DS3), the differences between the models were minimal,

often within microseconds, indicating uniformly efficient

code generation for this divide-and-conquer algorithm.

Quick Sort revealed Claude’s advantage on the smallest

inputs—e.g., DS1, where it executed in 0.0000358s, faster

than ChatGPT (0.0000416s) and DeepSeek (0.0000396s).

However, DeepSeek demonstrated the best performance

on larger inputs, especially DS6, completing in 15.39s—

faster than ChatGPT (15.49s) and Claude (15.70s). This

suggests that while Claude optimized base cases well,

DeepSeek produced code better suited for recursive

efficiency. With Heap Sort, performance was generally

slower compared to Merge and Quick Sort due to its more

complex memory and tree-based operations. DeepSeek

produced the fastest result on DS1 at 0.0000326s, but

ChatGPT offered better performance on larger datasets.

For example, on DS6, ChatGPT completed in 29.89, ahead

of DeepSeek (30.65s) and Claude (31.26s), and on DS5,

ChatGPT had the lowest time (2.26s).

Fig. 2 shows the average execution time of all

algorithms for each model. Overall, ChatGPT recorded the

lowest average execution time across all datasets and

algorithms at 69.77 s, closely followed by DeepSeek at

70.67 s, and Claude at 72.75 s. This suggests that while

ChatGPT’s generated code is slightly more efficient in

total, DeepSeek consistently delivered high performance,

particularly for larger datasets. Claude showed strengths

on smaller inputs but lagged slightly as input size increased.

Fig. 2. The average execution time of models.

2) Memory Usage (MU) evaluation
Table III shows the result of models’ evaluation in term

of average memory usage. Memory consumption patterns
varied across sorting algorithms and dataset sizes. For
Insertion Sort, all models showed negligible memory
usage (0 KB) for small datasets (DS1–DS3). As the input
size grew, memory usage increased noticeably. For DS4
and DS5, ChatGPT consumed 764 KB and 13,260 KB
respectively, while DeepSeek used slightly less with 751.2
KB and 13,056 KB. Claude consumed the most memory
in DS5 (13,980 KB). Memory usage on DS6 is not

reported, likely due to execution limits. Merge Sort
exhibited higher memory demand for larger datasets,
consistent with its divide-and-conquer nature. For DS4,
memory use hovered around 1,000 KB across all models.
On DS5, usage climbed above 17,000 KB, with Claude
consuming the most (17,340 KB) and DeepSeek the least
(17,316 KB). On DS6, all models required over 160,000
KB, with DeepSeek again being the most efficient
(159,047.2 KB), compared to ChatGPT (163,967.2 KB)
and Claude (174,936 KB).

TABLE III: THE AVERAGE MEMORY USAGE OF MODELS (IN KB)

Algorithm
Dataset

(DS)
ChatGPT

Claude
Sonnet

DeepSeek

Insertion
Sort

DS 1 0 0 0
DS 2 0 0 0
DS 3 0 0 0
DS 4 764 811.2 751.2
DS 5 13260.00 13980 13056
DS 6 - - -

Merge
Sort

DS 1 0 0 0
DS 2 0 0 0
DS 3 0 0 0
DS 4 1060 999.2 1048
DS 5 16723.2 17340 17316
DS 6 163967.2 174936 159047.2

Quick
Sort

DS 1 0 0 0
DS 2 0 0 0
DS 3 0 0 0
DS 4 776 764 800
DS 5 13115.2 13896 13115.2
DS 6 132840 140861.6 132864

Heap
Sort

DS 1 0 0 0
DS 2 0 0 0
DS 3 0 0 0
DS 4 788 776 764
DS 5 11196.738 13868.8 13082.4
DS 6 132844.8 140855.2 132920.8

Quick Sort followed similar trends. It required minimal

memory on smaller datasets, then ramped up significantly.

For DS5 and DS6, DeepSeek and ChatGPT performed

similarly at 13,115.2 KB and around 132,840 KB

respectively, while Claude used the most memory with

13,896 KB on DS5 and 140,861.6 KB on DS6. Heap Sort

was relatively memory-efficient on all datasets. All models

recorded 0 KB usage on DS1–DS3. For DS4, memory

ranged from 764 KB (DeepSeek) to 788 KB (ChatGPT).

On DS5, ChatGPT used the least memory (11,196.738

KB), while Claude consumed the most (13,868.8 KB). For

DS6, ChatGPT is the most memory-efficient with

132,844.8 KB.

Fig. 3. The average memory usage of models.

Fig. 3 shows the average of memory usage of all

algorithms for each model. Across all sorting algorithms

and datasets, DeepSeek demonstrated the most memory-

efficient behavior, with an average usage of approximately

21,076.73 KB. ChatGPT followed closely, consuming

69.76957473

72.75328223

70.6746161

60 62 64 66 68 70 72 74 76 78 80

ChatGPT

Calude

DeepSeek

Average execution time (seconds)

21,188.48

22,569.04

21,076.73

18000 19000 20000 21000 22000 23000 24000

ChatGPT

Calude

DeepSeek

Average memory usage (KB)

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

25

around 21,188.48 KB on average, while Claude showed

the highest average memory usage at 22,569.04 KB. These

results indicate that DeepSeek is slightly more optimized

in terms of memory management, especially on larger

datasets. Claude’s higher memory footprint may be

attributed to additional processing overhead or more

complex data structures used in its generated code. Overall,

the differences, while small, could become significant in

large-scale applications where memory efficiency is

critical.

3) Memory Peak (MP) evaluation

Table IV shows the result of models’ evaluation in term

of average memory peak. In smaller datasets (DS 1–DS 3),

all three models performed similarly, with minimal

differences in memory peaks, typically under 100 KB.

However, as dataset sizes increased, disparities became

more apparent. For instance, in DS 5 and DS 6, ChatGPT

maintained noticeably lower memory peaks, such as

3560.47 KB for Insertion Sort on DS 5, while Claude used

4342.12 KB, and DeepSeek matched ChatGPT. For Merge

Sort on DS 6, ChatGPT’s peak was 51,996.18 KB, while

Claude’s climbed to 59,808.99 KB and DeepSeek

followed closely at 59,808.83 KB, again showcasing

Claude’s higher memory footprint. Similar trends

appeared with Quick Sort and Heap Sort, especially in DS

6, where ChatGPT’s peek and DeepSeek’s peaks remained

significantly lower—35,659 KB and 35,646 KB,

respectively—compared to Claude’s over 43,000 KB in

both cases. Overall, this comparison reveals that ChatGPT

not only uses less peak memory but does so consistently

across sorting techniques, suggesting better scalability and

efficiency. DeepSeek generally mirrors ChatGPT’s

memory behaviour, while Claude exhibits the highest

peaks, particularly with large input sizes.

TABLE IV: THE AVERAGE MEMORY PEAK OF MODELS (IN KB)

Algorithm
Dataset

(DS)
ChatGPT

Claude
Sonnet

DeepSeek

Insertion
Sort

DS 1 51.054 51.534 51.054
DS 2 51.752 52.95 51.762
DS 3 79.838 88.082 79.872
DS 4 400.476 479.036 400.502
DS 5 3560.47 4342.12 3560.47
DS 6 - - -

Merge Sort

DS 1 52.904 52.928 52.934
DS 2 55.63 55.672 55.702
DS 3 92.97 93.034 93.034
DS 4 530.658 609.048 608.898
DS 5 5213.318 5994.868 5994.71
DS 6 51996.182 59808.998 59808.834

Quick Sort

DS 1 53.262 52.568 53.254
DS 2 57.044 56.354 57.032
DS 3 89.64 89.006 89.646
DS 4 415.592 453.846 415.586
DS 5 3576.858 4318.438 3576.874
DS 6 35659.566 43432.968 35659.546

Heap Sort

DS 1 52.4 51.762 52.384
DS 2 54.448 54.528 54.44
DS 3 83.972 91.094 83.978
DS 4 406.374 483.826 406.376
DS 5 3567.682 4348.262 3567.69
DS 6 35646.888 43458.698 35646.9

Fig. 4 shows the average memory peaks of all

algorithms for each model. In evaluating peak memory

usage, ChatGPT showed the lowest average peak memory

consumption at approximately 6,162.99 KB, indicating

better memory handling under stress or during recursive

and large-scale operations. DeepSeek followed with a

slightly higher average of 6,540.06 KB, showing relatively

efficient performance but with slightly more fluctuation in

memory demand. Claude, however, recorded the highest

average peak memory usage at 7,326.94 KB, suggesting a

tendency to allocate more memory at the highest points of

execution. This pattern was especially noticeable on larger

datasets (DS 5 and DS 6), where Claude’s memory peaks

significantly surpassed those of ChatGPT and DeepSeek.

These results highlight ChatGPT’s advantage in managing

peak memory demands more conservatively, making it

potentially more suitable for environments with strict

memory constraints.

Fig. 4. The average memory peak of models.

4) Logical Size (LS) and Physical Size (PS) evaluation

Table V shows the result of model evaluation in term of

logical size and physical size. In terms of logical code size,

ChatGPT consistently produces the most concise

implementations across all four sorting algorithms,

followed closely by DeepSeek, with Claude generating the

most verbose code. For instance, ChatGPT’s Insertion Sort

has a logical size of 1.72 KB, while Claude’s is 2.42 KB,

and DeepSeek’s is 1.93 KB. The same pattern is seen in

Merge Sort (2.03 KB for ChatGPT vs. 2.97 KB for Claude

and 2.83 KB for DeepSeek), Quick Sort (2.09 KB vs. 3.14

KB and 2.63 KB), and Heap Sort (2.35 KB vs. 3.21 KB

and 2.53 KB).

TABLE V: THE AVERAGE LOGICAL SIZE AND THE AVERAGE PHYSICAL

SIZE OF MODELS (IN KB)

Algorithm
ChatGPT Claude Sonnet DeepSeek

LS PS LS PS LS PS

Insertion Sort 1.72 4.00 2.42 4.00 1.93 4.00

Merge Sort 2.03 4.00 2.97 4.00 2.83 4.00

Quick Sort 2.09 4.00 3.14 4.00 2.63 4.00

Heap Sort 2.35 4.00 3.21 4.00 2.53 4.00

Despite differences in logical size, the physical size

remains constant at 4.00 KB for all models across all

algorithms, likely due to file system or formatting

constraints. This indicates that while the actual stored size

does not vary, ChatGPT achieves better code compactness

and efficiency in logical structure, which can impact

readability, maintainability, and execution in memory-

sensitive environments. Fig. 5 shows the average of logical

and physical size of all algorithms for each model. Where

ChatGPT achieves the lowest logical size with 2.04,

followed by DeepSeek with 2.48, while Claude achieves

larger size with 2.93.

6162.99

7326.94

6540.064

4000 5000 6000 7000 8000 9000

ChatGPT

Calude

DeepSeek

Average memory peak (KB)

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

26

Fig. 5. The average logical size and the average physical size of models.

5) Readability Score (RS) evaluation

In this study, Pylint tool is used evaluate the code

readability. Pylint is a static code analysis tool designed to

evaluate Python code without executing it. It performs in-

depth inspection by parsing the code into an abstract

syntax tree (AST) and analyzing its structure for potential

errors, code style issues, and complexity. Pylint checks for

a wide range of issues, including syntax errors, comment,

undefined variables, unused imports, bad indentation,

naming convention violations, and code smells such as

overly complex functions or deeply nested structures. One

of Pylint’s key features is its scoring mechanism, which

rates the quality of the code on a scale from −10.0 to 10.0,

where 10.0 indicates a perfect score. This score is based on

the number and severity of issues found. Pylint is highly

configurable, users can customize which rules are enabled

or disabled. It classifies messages into categories such as

convention, warning, error, and refactor, helping

developers distinguish between minor style preferences

and serious bugs.

Table VI shows the result of models evaluation in code

readability. The readability of generated sorting

algorithms was assessed using a 10-point scale, focusing

on clarity, structure, naming conventions, and overall

human comprehension. ChatGPT consistently produced

highly readable code across all algorithms, scoring

between 7.78 and 7.89. Its Merge Sort and Quick Sort

implementations were particularly well-structured and

easy to follow. Claude, while generally clear, showed more

variability, with scores ranging from 5.91 (Heap Sort) to

7.00 (Quick Sort), indicating less consistency in

formatting and code legibility. DeepSeek exhibited the

widest range in readability, scoring lowest on Insertion

Sort (6.25) but highest on Quick Sort (9.29), where its code

was notably clean and logically arranged. Overall,

ChatGPT maintained superior readability across the board,

while DeepSeek showed excellence in specific cases like

Quick Sort but inconsistency elsewhere.

TABLE VI: THE READABILITY SCORE OF MODELS

Algorithm ChatGPT Claude Sonnet DeepSeek

Insertion Sort 7.78 6.67 6.25
Merge Sort 7.89 6.4 6.36

Quick Sort 7.86 7 9.29

Heap Sort 7.78 5.91 8.33

Fig. 6. The average readability score of models.

Fig. 6 shows the average of code readability of all

algorithms for each model. Where ChatGPT achieves the

highest readability with 7.82, followed by DeepSeek with

7.55, while Claude achieves lowest score with 6.49.

C. Summary

To provide a comprehensive comparison of the

generated sorting algorithms across the three LLMs, we

summarize the average values of all key evaluation metrics

in Table VII (rounded to two decimal places). These

metrics include execution time, memory usage, peak

memory usage, logical and physical code size, and code

readability. This consolidated view enables an at-a-glance

assessment of the overall efficiency, resource consumption,

and code quality produced by each model.

TABLE VII: RESULTS SUMMARY

Metric ChatGPT GPT-4-turbo Claude Sonnet 4 DeepSeek-V3

ET (S) 69.77 72.75 70.67

MU (KB) 21,188.48 22,569.04 21,076.73
MPU (KB) 6,163.00 7,326.94 6,540.06

LS (KB) 2.05 2.94 2.48

PS (KB) 4.00 4.00 4.00
RS (0–10) 7.83 6.50 7.56

In terms of execution time, ChatGPT was the fastest on

average (69.77 s), followed closely by DeepSeek (70.67 s),

while Claude lagged slightly behind (72.75 s). Regarding

average memory usage, DeepSeek demonstrated the most

efficient memory handling with 21,076.73 KB, marginally

outperforming ChatGPT (21,188.48 KB), and significantly

better than Claude (22,569.04 KB). A similar trend was

observed in peak memory consumption, where ChatGPT

recorded the lowest peak at 6,163.00 KB, followed by

DeepSeek at 6,540.06 KB, and Claude at 7,326.94 KB. In

terms of code size, all models produced scripts with a

consistent physical size of 4.00 KB, reflecting uniform

disk allocation. However, logical size—which better

reflects the actual amount of written content—varied, with

ChatGPT producing the most concise code (2.05 KB),

followed by DeepSeek (2.48 KB), and Claude generating

2.0475

2.935

2.48

4

4

4

0 1 2 3 4

ChatGPT

Claude

DeepSeek

Average logical and physical size (KB)

Physical Size Logical Size

7.8275

6.495

7.5575

0 1 2 3 4 5 6 7 8 9 10

ChatGPT

Calude

DeepSeek

Average readability score (out of 10)

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

27

the most verbose scripts (2.94 KB). Finally, the readability

scores, assessed on a 10-point scale, show that ChatGPT’s

code was the easiest to understand (7.83), with DeepSeek

also performing well (7.56), while Claude’s outputs were

rated least readable (6.50). Overall, ChatGPT led in most

categories, with DeepSeek close behind and Claude

trailing in efficiency and readability.

V. CONCLUSION

This comparative study illuminated the varying

strengths and limitations of three leading generative AI

models—ChatGPT-4-turbo, Claude Sonnet4, and

DeepSeek-V3—in generating Python implementations of

classical sorting algorithms. ChatGPT consistently

demonstrated balanced performance, combining speed,

efficient memory usage, and high code readability.

DeepSeek, while slightly trailing in execution speed and

memory efficiency, produced the most readable and

concise code in complex cases like Quick Sort and Heap

Sort. Claude, on the other hand, showed a noticeable lag in

both memory performance and code quality. These

findings highlight that while all three models are capable

of generating functional code, ChatGPT currently offers

the most well-rounded output for practical programming

tasks, especially where performance and readability are

equally critical. As generative models continue to evolve,

such empirical evaluations will be crucial for developers

and researchers seeking optimal AI coding companions.

While this study provides valuable insights into the

capabilities of ChatGPT GPT-4-turbo, Claude Sonnet 4,

and DeepSeek-V3 for code generation, several limitations

should be acknowledged. First, the evaluation focused

solely on sorting algorithms implemented in Python,

which may not generalize to other algorithmic domains,

languages, or code complexities. Additionally, the

readability assessment, although quantified on a 10-point

scale, remains partially subjective despite efforts to

standardize criteria such as formatting, naming

conventions, and clarity of logic. Moreover, certain

qualitative aspects like error handling of the generated

code were not explored in this study.

Future work can address these gaps by expanding the

scope of algorithm types (e.g., graph algorithms, dynamic

programming), incorporating multiple programming

languages, and using automated readability tools or larger

expert panels for more objective evaluations. Integrating

correctness checking across edge cases, and examining

security, maintainability, and cross-platform performance

can also provide deeper understanding. Furthermore,

applying this comparative framework to newer or fine-

tuned models could offer timely benchmarks in this rapidly

evolving space.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Alraba’nah and Sleit conducted the research and

analyzed the data. Alraba’nah proposed the methodology.

Sleit provided guidance and supervision throughout the

research process and analysis methodology. Alraba’nah

did the experiment and wrote the paper. Qaddara and Hiari

reviewed and edited the work. All authors had approved

the final version

FUNDING

This work was supported by Al-Ahliyya Amman

University.

REFERENCES

[1] A. M. Arabiat, “Intelligent model for detecting GAN-generated
images based on multi-classifier and advanced data mining

techniques,” International Journal of Electrical and Electronic -

Engineering & Telecommunications, vol. 14, no. 3, pp. 147–157,
2025. doi: 10.18178/ijeetc.14.3.147-157

[2] K. Chaitanya and K. J. Rolla, “The evolution and impact of large

language models in artificial intelligence,” Algorithms in Advanced
Artificial Intelligence, CRC Press, pp. 410–417, 2024. doi:

10.1201/9781003529231-61

[3] S. Jaradat, N. Acharya, S. Shivshankar, T. I. Alhadidi, amd M.
Elhenawy, “AI for data quality auditing: detecting mislabeled work

zone crashes using large language models,” Algorithms, vol. 18, no.

6, 317, 2025. doi: 10.3390/a18060317
[4] Y. Annepaka and P. Pakray, “Large language models: A survey of

their development, capabilities, and applications,” Knowledge and

Information Systems, vol. 67, no. 3, pp. 2967–3022, 2025. doi:

10.1007/s10115-024-02310-4

[5] S. Kukreja, T. Kumar, A. Purohit, A. Dasgupta, and D. Guha, “A

literature survey on open source large language models,” in Proc.
2024 7th Int. Conf. on Computers in Management and Business,

2024, pp. 133–143. doi: 10.1145/3647782.3647803

[6] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, et al., “A
survey on evaluation of large language models,” ACM Transactions

on Intelligent Systems and Technology, vol. 15, no. 3, pp. 1–45,

2024. doi: 10.1145/3641289
[7] A. Soliman, S. Shaheen, and M. Hadhoud, “Leveraging pre-trained

language models for code generation,” Complex & Intelligent
Systems, vol. 10, no. 3, pp. 3955–3980, 2024. doi: 10.1007/s40747-

024-01373-8

[8] L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy,
and G. Tortora, “Claude 2.0 large language model: Tackling a real-

world classification problem with a new iterative prompt

engineering approach,” Intelligent Systems with Applications, vol.

21, art no. 200336, 2024. doi: 10.1016/j.iswa.2024.200336

[9] K. Bhattacharya, S. Bhattacharya, N. Bhattacharya, and N.

Bhattacharya, “DeepSeek versus ChatGPT in surgical practice,”
Indian Journal of Surgery, pp. 1–4, 2025. doi: 10.1007/s12262-025-

04368-y

[10] M. Izadi, J. Katzy, T. Van Dam, M. Otten, R. M. Popescu, and A.
Van Deursen, “Language models for code completion: A practical

evaluation,” in Proc. IEEE/ACM 46th Int. Conf. on Software

Engineering, 2024, pp. 1–13. doi: 10.1145/3597503.3639138
[11] M. M. H. Manik, “ChatGPT vs. DeepSeek: A comparative study on

AI-based code generation,” arXiv preprint, arXiv:2502.18467,

2025.
[12] Q. Jiang, Z. Gao, and G. E. Karniadakis, “DeepSeek vs. ChatGPT:

A comparative study for scientific computing and scientific

machine learning tasks,” arXiv preprint, arXiv:2502.17764, 2025.
[13] Z. Ji, P. Ma, Z. Li, and S. Wang, “Benchmarking and explaining

large language model-based code generation: A causality-centric

approach,” arXiv preprint, arXiv:2310.06680, 2023.
[14] D. Huang, Y. Qing, W. Shang, H. Cui, and J. M. Zhang, “EffiBench:

Benchmarking the efficiency of automatically generated code,”

Advances in Neural Information Processing Systems, vol. 37, pp.
11506–11544, 2024.

[15] Y. Qing, B. Zhu, M. Du, Z. Guo, T. Y. Zhuo, Q. Zhang, and L. A.

Tuan, “EffiBench-X: A multi-language benchmark for measuring
efficiency of LLM-generated code,” arXiv preprint

arXiv:2505.13004, 2025.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

28

[16] D. Palla and A. Slaby, “Evaluation of generative AI models in

Python code generation: A comparative study,” IEEE Access, vol

13, pp. 65334–65347, 2025.
[17] D. Zheng, Y. Wang, E. Shi, X. Liu, Y. Ma, H. Zhang, and Z. Zheng,

“Top general performance = top domain performance?

DomainCodeBench: A multi-domain code generation benchmark,”
arXiv preprint, arXiv:2412.18573, 2024.

[18] A. Sergeyuk, O. Lvova, S. Titov, A. Serova, F. Bagirov, E. Kirillova,

and T. Bryksin, “Reassessing Java code readability models with a
human-centered approach,” in Proc. the 32nd IEEE/ACM

International Conference on Program Comprehension, Apr. 2024,

pp. 225–235. doi: 10.1145/3643916.3644435
[19] A. Sabra, O. Schmitt, and J. Tyler, “Assessing the quality and

security of AI-generated code: A quantitative analysis,” arXiv

preprint, arXiv:2508.14727, 2025.
[20] K. DePalma, I. Miminoshvili, C. Henselder, K. Moss, and E. A.

AlOmar, “Exploring ChatGPT’s code refactoring capabilities: An

empirical study,” Expert Systems with Applications, vol. 249,
123602, 2024. doi: 10.1016/j.eswa.2024.123602

[21] R. Phogat, D. Arora, P. S. Mehra, J. Sharma, and D. Chawla, “A

comparative study of large language models: ChatGPT, DeepSeek,
Claude and Qwen,” in Proc. 2025 3rd Int. Conf. on Device

Intelligence, Computing and Communication Technologies, Mar.

2025, pp. 609–613. doi: 10.1109/DICCT64131.2025.10986449

Copyright © 2026 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY
4.0), which permits use, distribution and reproduction in any medium,

provided that the article is properly cited, the use is non-commercial and

no modifications or adaptations are made.

Yousef Alraba’nah received his B.Sc. degree

in software engineering from Zarqa university

(Jordan) in June 2012. In February 2013,

Yousef obtained fully-funded scholarship from

Zarqa University to complete the M.Sc. degree
in computer science. He graduted in June 2015

with excellent degree. He currently works as a
lecturer in the Faculty of Information

Technology at Al-Ahliyya Amman University,

Jordan. His main research interests include
distributed systems, networks security, and machine learning.

Azzam Sleit is the former minister of

information and communications technology

(2013–2015). He is currently working as a
professor of computer science, King Abdulla

II School for Information Technology,

University of Jordan, where he functioned as
the dean (2015–2016) and the assistant

president/director of the computer center

(2007–2009). Dr. Sleit holds the B.Sc, M.Sc.
and Ph.D. degrees in computer science. He

received his Ph.D. in 1995 from Wayne State University, Michigan. Dr.

Sleit was the chief information officer at Hamad Medical/Ministry of
Public Health, Qatar. Before joining Hamad Medical, Dr. Sleit was the

vice president of Strategic Group & Director of Professional Services of

Triada, USA, where he introduced the NGram Technology and
Associative Memory Structures. Dr. Sleit authored more than one

hundred refereed research papers related to cloud computing, imaging

databases, data mining, health and management information systems and
software engineering, published in reputable journals and conferences.

Iyas Qaddara is a lecturer in Al-Ahliyya

Amman university. He received his first
degree in software engineering from Al-

Ahliyya Amman University, Jordan in March

2020 and master degree in computer science
from Al Balqa Applied University, Jordan in

June 2022. His research are of interest include

machine learning, parallel computing,
computer graphics and virtual reality.

Mohammad Hiari is a lecturer in Al-Ahliyya

Amman University. He received his first
degree in software engineering from

Philadelphia University, Jordan, in August

2004 and master degree in computer science
from Al Balqa Applied University, Jordan in

February 2016. His research area of interest

includes VoIP and cybersecurity data mining
and optimization.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	IJEETC-V15N1-19

