International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

Code Generation by Large Language Models: A
Comparative Analysis of ChatGPT, Claude, and
DeepSeek

Yousef Alraba’nah"">*, Azzam Sleit?, Iyas Qaddara’, and Mohammad Hiari*
! Department of Software Engineering, Al-Ahliyya Amman University, Amman, Jordan
2 Department of Computer Science, University of Jordan, Amman, Jordan
3 Department of Computer Science, Al-Ahliyya Amman University, Amman, Jordan
4 Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan
Email: y.alrabanah@ammanu.edu.jo (Y.A.), azzam.sleit@ju.edu.jo (A.S.), i.qaddara@ammanu.edu.jo (1.Q.),
m.hyari@ammanu.edu.jo (M.H.)

Manuscript received September 4, 2025; revised October 18, 2025; accepted October 22, 2025
*Corresponding author

Abstract—As generative Artificial Intelligence (AI) models
become increasingly integrated into software development
workflows, understanding their efficiency and code quality is
critical. This study offers a comprehensive comparison of
three leading AI models—ChatGPT GPT-4-turbo, Claude
Sonnet, and DeepSeek-V3—for automated code generation,
focusing specifically on sorting algorithms. The models are
evaluated across multiple metrics including execution time,
memory usage, peak memory consumption, logical and
physical file sizes, and code readability. Python
implementations of Insertion Sort, Merge Sort, Quick Sort,
and Heap Sort are generated by each model and
benchmarked in a consistent Linux Docker environment.
Results reveal that ChatGPT leads in overall efficiency, with
the fastest average execution time, the lowest peak memory
usage, and the highest readability scores. DeepSeek
demonstrated competitive performance, especially in
producing readable code, while Claude showed higher
memory consumption and lower readability. This analysis
provides practical insight into the trade-offs between code
quality and system performance in Al-generated
programming, offering valuable guidance for researchers
and developers alike.

Index Terms—ChatGPT, Claude sonnet, code generation,
DeepSeek, large language model

I. INTRODUCTION

The recent evolution of Artificial Intelligence (Al),
especially in the domain of Large Language
Models (LLMs), has sparked widespread interest in their
applications across scientific and engineering
disciplines [1]. LLMs such as OpenAl’s ChatGPT,
Anthropic’s Claude, and DeepSeek which is a newer open-
source model from China, have gained significant traction
not only for their conversational fluency but also for their
problem-solving and code generation abilities [2]. These
models, powered by transformer-based neural
architectures, are capable of parsing natural language
instructions and converting them into syntactically correct
and often logically sound programming code [3]. Their
integration into software development workflows,

doi: 10.18178/ijeetc.15.1.19-28

19

education, and scientific computing heralds a new era of
human-AI collaboration [4]. However, despite their
growing influence, a systematic and comparative
evaluation of these models in domain-specific coding tasks
remains underexplored.

LLMs are trained on the large corpora of books,
websites, programming documentation and open source
code repositories. For this reason, they have achieved both
the ability to understand and the ability to create source
code in a number of different programming languages [5].
In early iterations of LLMs such as GPT-2 and GPT-3, this
functionality was present in a very restricted manner, but
the newest models ChatGPT-4, Claude 3.5/3.7 Sonnet and
DeepSeek-R1 are significantly better at handling context,
logical reasoning and execution reliability [6]. OpenAl’s
ChatGPT is now very popular and is well known for doing
natural language tasks and software development.
ChatGPT 03-mini and ChatGPT-40 are both science and
coding optimized models. These models are able to
generate efficient and human-readable code with practical
values such as faster response time, low latency and
advanced contextual reasoning, which are useful for
Integrated Development Environments (IDEs),
educational tools and professional workflows [7].
Anthropic’s Claude is developed with a focus on safety,
reliability and long context reasoning. For example, the
Claude 3.7 Sonnet variant includes ‘extended thinking
mode’ that will offer higher performance for tasks that are
mathematical and logical such as code writing. Claude’s
architecture is designed to tradeoff between coherence and
correctness, but his outputs have often been highly
readable and it performs extremely well on instruction
following tasks which is important when programming [8].
The other development is that DeepSeek is an open source
Al On competitive math and logic benchmarks, it has
shown strong performance, including 79.8% on the AIME
2024, slightly beating ChatGPT ol. One of its appeals is
that DeepSeek is cost efficient, transparent and open which
has attracted developers and researchers in search of

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

customizable, low-cost Al tools [9].

Although these advantages are promising, there are still
significant challenges requiring the empirical evaluation.
A language model can generate syntactically correct but
semantically inaccurate code, has an inconsistent memory
management and performance may vary based on prompt
wording or the complexity of the problem being
solved [10]. In addition, while widely used in industry and
even demonstrated to be effective based on anecdotal
evidence and case studies, there are few quantitative
comparisons of performance differences, especially for
fundamental algorithmic problems such as sorting.

In this work, we seek to fill that gap by assessing the
performance of ChatGPT GPT-4-turbo, Claude Sonnet 4
and DeepSeek-V3 with specific focus on code generation
performance when solving sorting problems, a central
class of algorithmic tasks that define excellent benchmarks
to gauge the quality of code generated, its efficiency and
the logic applied. In particular, we analyze the code
generated along four important dimensions: how readable
the code is, how much it consumes in terms of memory and
computation time and its logical size. As such, these
dimensions collectively express how usable, efficient and
scalable, in general, Al-generated code is for practical, real
world programming contexts. We intend our findings to
help serve both as a technical and practical understanding
of the LLM’s capabilities in low-level algorithmic
challenges and add to the growing domain of Al assisted
programming.

II. RELATED WORKS

Recent research has extensively explored the
capabilities and comparative performance of LLMs such
as DeepSeek, ChatGPT and Claude Sonnet in the domain
of Al-driven code generation and programming assistance.
A notable comparative study focusing on Python code
generation using online judge challenges demonstrated
that DeepSeek (version R1) achieved higher correctness
and more frequent first-attempt acceptance, especially in
algorithmic tasks. In contrast, ChatGPT (version ol)
produced code with fewer errors related to memory and
execution time and tended to write more concise programs,
underscoring a trade-off between bug-free output and
efficiency [11]. Expanding beyond code correctness,
evaluations on scientific computing and scientific machine
learning tasks reveal that reasoning-optimized models
including DeepSeek R1, ChatGPT o03-mini-high, and
Claude (3.7 Sonnet) excel at recognizing problem contexts
and applying advanced mathematical reasoning. This
suggests that domain-specific knowledge and reasoning
capabilities are critical factors in effective Al-assisted
scientific programming [12].

Furthermore, the benchmarking efforts on standardized
dataset like HumanEval and MBPP show ChatGPT
outperformed others in the code fluency and multi-
language support and DeepSeek produces compact and
more efficient code. This differs from Claude in that
Claude is distinguished for writing maintainable and well
documented code that reflects a variety of strengths suited

20

to different use case [13].

The study of Huang ef al. [14] has offered an empirical
evaluation of LLMs (both open-source and closed-source)
over 1,000 efficiency-critical programming problems
drawn from LeetCode. The study showed that even top
models such as GPT-4 generate code that is significantly
less efficient in execution time and memory usage
compared to canonical human solutions, sometimes by a
large margin up to ~13.9x slower, ~43.9x higher memory
consumption for certain problems. This work underscored
that correctness benchmarks alone are insufficient to
capture real performance differences. Qing et al. [15]
extended the efficiency focus of prior work by supporting
multiple programming languages (Python, C++, Java,
JavaScript, Ruby, Go) and wusing competitive
programming tasks with human-expert efficiency
baselines. The findings revealed that while some LLMs
generate functionally correct code, they often lag human
experts in efficiency, and that performance varies
significantly by language.

Palla and Slaby [16] presented a rigorous empirical
evaluation of Al-generated code focusing on optimization
and performance metrics under constrained hardware
settings. This work investigated how model-generated
solutions compare to human baselines in terms of runtime
efficiency, memory consumption, and code compactness
across multiple algorithmic tasks. Its findings underscored
that even when correctness is achieved, performance
degradations emerge due to non-optimal code structure or
redundant computations.

Another study of Zheng et al. [17] examined LLMs code
generation capability across a wide variety of application
domains and programming languages. It covered domains
such as web, mobile, IoT, robotics, cloud services, and
enterprise applications, evaluating how well LLMs
perform in domain-specific settings. The study highlighted
domain variability but typically didn’t drill down into
algorithmic complexity, or metrics like memory usage or
file size. In terms of readability, Sergeyuk [18]
investigated how well code readability models align with
human developers’ judgments on Al-generated Java code.
The work found that some models and metrics often miss
developer notions of readability, and that concise,
executable code is often seen as more readable. However,
correlation is imperfect, pointing to limitations in existing
readability metrics. More recently, Sabra et al. [19]
evaluated the code produced by several modern LLMs via
static analysis tools such as SonarQube on thousands of
Java code assignments. The findings revealed that even
when code passes functional correctness benchmarks,
many security defects, code smells, and bugs persist,
showing that correctness alone is insufficient for assessing
production readiness. = Complementing generation
capabilities, ChatGPT’s code refactoring skills have been
empirically demonstrated to preserve functionality while
enhancing structure and generating accurate
documentation, highlighting its utility in code
maintenance workflows [20]. Phogat et al. [21] conducted
a comparative analysis of four prominent large language
models—ChatGPT, DeepSeek, Claude, and Qwen—

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

focusing on their performance in code generation tasks.
The study evaluated these models across various
parameters, including accuracy, efficiency, and code
quality. The findings revealed that DeepSeek
outperformed the others in terms of computational
efficiency, generating code that executed faster and
consumed fewer resources. ChatGPT demonstrated
superior accuracy and produced more human-readable

code, making it suitable for applications requiring high
precision and clarity. Claude exhibited strengths in
generating well-structured and maintainable code, while
Qwen, though competitive, showed variability in
performance across different tasks.

Table I summarizes the related works including their
approach, finding, advantages and limitations.

TABLE I: SUMMARY OF RELATED WORKS

Ref. Approach / Findings Advantages Limitations
Compared ChatGPT and DeepSeek on code generation tasks using ~ Highlights performance trade- Focused mainly on Python; lacks
[11] multiple programming benchmarks. DeepSeek achieved higher ofts between correctness and multi-domain and large-scale
correctness, while ChatGPT provided cleaner and more efficient code. efficiency. evaluation.
Investigated DeepSeek and ChatGPT performance on scientific Demonstrates importance of ~ Limited to scientific domains; no
[12] computing and machine learning tasks. DeepSeek excelled in reasoning optimization in human-centered readability
mathematical reasoning and numerical accuracy. domain-specific computing. evaluation.
Proposed a causality-based framework for benchmarking LLM- Provides insights into why Evaluathn limited to static code
[13] . L . i LLMs generate certain code analysis; lacks runtime and
generated code, focusing on explainability and quality attribution.
patterns. memory tests.
[14] Introduced EffiBench, a benchmark measuring execution efficiency, Offers standardized metrics for Limited language diversity; lacks
memory, and runtime of Al-generated code computational efficiency. human evaluation of readability.
Prop osed EffiBench-X, a multi-language benchmark evaluating Expands efficiency testing to Focuses only on efficiency; omits
[15] efficiency and performance of LLM-generated code across several . Lo
Janguages. cross-language scenarios. code maintainability and style.
Conducted empirical evaluation of generative Al models (ChatGPT, Comprehensive benchmarking .)
) Restricted to Python; excludes
[16] Claude, DeepSeck) in Python code generation using quantitative with reproducible o o
- . . qualitative readability assessment.
metrics. experimental design.
Developed DomainCodeBench to assess LLMs across domain- Reveals mismatch between . .
. . Lacks efficiency and readability
[17] specific tasks, showing that general performance does not guarantee general benchmarks and
. . . measures.
domain excellence. domain-specific needs.
[18] Reassessed Java code readability using a human-centered evaluation Integrates human perception Limited to Java and does not
approach combining metrics and developer feedback. into readability modeling. involve LLM-generated code.
Assessed Al-generated code for quality and security vulnerabilities Combines performance and Focuses on security; omits human
[19] across LLMs. ChatGPT produced safer code, while DeepSeek °S P . readability and efficiency
Lo security perspectives. .
prioritized performance. comparisons.
Empirically evaluated ChatGPT’s ability to refactor and improve Demonstra_teq ChatGPT s Focused only on ChatGPT; lacks
[20] strength in improving

existing code structures while maintaining functionality.

readability and maintainability. multi-model comparison.

Compared ChatGPT, DeepSeek, Claude, and Qwen on reasoning,
code generation, and contextual understanding using real-world

[21]
benchmarks.

Broad evaluation across four
models, highlighting relative
strengths.

Limited to high-level comparisons;
lacks deep runtime and memory
profiling.

Despite extensive evaluations of LLMs like DeepSeek,
ChatGPT, and Claude across various programming tasks,
several gaps remain. Most existing studies focus on broad
code generation benchmarks or domain-specific scientific
computing, with limited attention to detailed analysis on
fundamental algorithmic problems such as sorting.
Moreover, while many works compare correctness and
efficiency, fewer systematically assess readability, in
tandem with execution metrics. These gaps highlight the
need for a more comprehensive and fine-grained
comparative study that integrates multiple evaluation
dimensions to better inform practical Al code assistant
selection. This study brings the following contributions,
with the aim of addressing these gaps.

1) Provide a fine-grained comparison of three major
LLMs ChatGPT (GPT-4-turbo), Claude Sonnet, and
DeepSeek-V3 on classic sorting algorithms (Insertion
Sort, Merge Sort, Quick Sort, and Heap Sort) to capture
computational and structural performance differences.
Introduce a multi-dimensional evaluation across
execution time, memory usage, peak memory
consumption, logical and physical file size, and code
readability, combining quantitative system metrics

2)

21

with qualitative readability analysis.

Benchmark all models under a controlled Linux
Docker environment, ensuring fair and reproducible
comparison across models and runs.

Establish correlations between readability, code length,
and computational performance—providing deeper
insights into the trade-off between human readability
and machine efficiency.

Offer practical guidance for researchers and developers
on selecting appropriate LLMs based on project
needs—whether prioritizing runtime efficiency,
memory economy, or code clarity.

3)

4)

5)

III. METHODOLOGY

This section outlines the methodology designed to
evaluate the performance of three LLMs —ChatGPT GPT-
4-turbo, Claude Sonnet 4 and DeepSeek-V3 —on a
controlled set of algorithmic code generation tasks. The
study focuses on sorting algorithms due to their
foundational importance in programming and their
sensitivity to both logical structure and execution
efficiency. The methodology is divided into several key

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

components: model selection, dataset and prompt design,
evaluation metrics, and experimental setup. Fig. 1 shows

the methodology.
Model
Selection

Sorting
Algorithms

— Insertion Sort

Dataset

Experimental Setup - Quick Sort
and Evaluation — Merge Sort
— Heap Sort

(Linux Docker
Container) <

4

Evaluation

Y

Results

Metrics

Exexution Time "Write a Python code to

sort a list of integers using
[algorithm name]. The
program should take a list

Memory Usage
Peak Memory Usage

Logllcal Sllze of integers as input and
Physical Size produce a sorted list"
Readability

Fig. 1. Research methodology.

A. Model Selection

To provide a comprehensive and fair evaluation of
LLMs in code generation tasks, we selected three state-of-
the-art models: ChatGPT, DeepSeek, Claude. These
models were chosen due to their wide adoption, reported
performance in recent evaluations, and complementary
design objectives. Together, they represent a diverse set of
approaches to Al-driven programming assistance-
spanning from general-purpose reasoning models to
lightweight, speed-optimized tools, making them suitable
for contrasting different trade-offs in code generation.
Each model was accessed through its respective official
interface to ensure consistency in prompt delivery and
result evaluation.

B. Dataset Description

To evaluate the performance and scalability of the
selected LLMs in generating sorting algorithms, we
constructed a synthetic dataset comprising six distinct
input sets. The dataset consists of arrays of randomly
generated integer values, with sizes incrementally
increasing by a factor of ten to test algorithmic behavior
under different computational loads. Specifically, the six
subsets contain 10, 100, 1,000, 10,000, 100,000, and
1,000,000 integers, respectively. Each subset represents a
separate test case to analyze how the generated code
performs across small, moderate, and large-scale data.
This structured design enables us to measure model
efficiency, correctness, and resource utilization (execution
time and memory) as input size grows, providing insight
into the models’ scalability and optimization quality.

C. Task Design and Prompting

Due to the necessity of consistency and control over the
evaluation process, the study focused on sorting algorithm
generation, which is a fundamental task in computer
science that tests a model’s capability of comprehending
problem specifications, making logical reasoning and
generating optimized code. The models were asked to
generate an implementation of a complete sorting

22

algorithm among insertion, merge, quick and heap sort
algorithms. The generated code was then evaluated against
the dataset to assess both correctness and performance.
This task was chosen because sorting problems have well-
defined expected outputs, making them ideal for
benchmarking across correctness, speed, memory usage,
and logical structure.

For fairness and reproducibility reason, the same
problem statement and requirements were used across all
models. The output was saved and the resulting runtime
behavior was logged after execution in a controlled
environment. Prompting plays a crucial role in
determining the quality of output generated by LLMs. We
used zero-shot prompting in most cases—providing only a
concise problem description without any additional
examples or templates. This setup simulates a real-world
scenario where developers request helps from an assistant
by describing a task in natural language. The general
prompt format used was: “Write a Python code to sort a
list of integers using [algorithm name]. The program
should take a list of integers as input and produce a sorted
list™.

Prompts were carefully tested to ensure clarity and no
bias toward a specific model. In addition, we ensured the
prompts did not include performance hints or optimization
suggestions, allowing the model to infer the most efficient
implementation based on its training.

D. Evaluation Metrics

In this study, a suite of quantitative metrics is leveraged
to comprehensively evaluate the performance and quality
of the code generated by LLMs. These are metrics that aim
to consider not only whether the output of a model is
correct, but also how computationally efficient it is and the
code level properties, in order to get the complete picture
of what is the practical utility of each model.

Execution Time (ET): Execution time refers to the total
duration the generated sorting algorithm takes to complete
processing a given input dataset. It is measured in Seconds
and represents the elapsed time from the start to the end of
the function execution. Let 4 be a sorting algorithm
generated by a LLM, and let D, represent an input dataset
of size n. The average time taken by algorithm A4 to sort
dataset D, over k=5 runs:

_1lyk (+® ®
ET(Dn'A) Tk izl(tend - tstart) (M
where ts(i;rt and tgl)d are the start and end timestamps of
the ith run.

Memory Usage (MU): Memory usage reflects the
amount of system memory (in kilobytes) consumed by the
program during its execution. It includes memory
allocated for variables, data structures, and recursive stack
frames where applicable. The average memory consumed
during execution (in kilobytes):
®

start

MU(D,, 4) = 235, (m$)

end — M

@)

@ @
where mg;, . and m,_; are memory usage measurements

before and after execution for run i.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

Peak Memory Usage (PMU): Maximum memory usage
when using the algorithm is described by peak memory
usage. In particular, this is important for recursive or
memory intensive algorithms as temporary lists can
greatly increase peak demand. The average of peak
memory usage (in kilobytes) as recorded by a memory

tracer:
PMU(D,, A) = 31X (m(i)) 3)
n g &i=1 peak
where mggak is the peak memory traced during run .

Logical Size (LS): The logical size of a file refers to the
actual size of the file’s contents as reported by the
operating system, excluding any file system overhead. It is
measured in kilobytes (KB). The logical size (in kilobytes)
is computed as follows:
os.path.getSize(4)

1024

LS(4) = 4)
where os. path. getSize (A4) returns the size (in bytes) of
the file specified by the path argument.

Physical Size (PS): refers to the actual disk space
allocated for the file, which includes file system block
overhead. The physical size (in kilobytes) is computed as
follows:

PS(A) = blocks allocated X Block size (KB) (5)

whereas allocated blocks are the number of blocks
assigned to store the file, and block size is the size of each
storage block in kilobytes (typically 4 KB on many
systems).

Readability Score (SC): Readability assesses how easily
a human can understand the generated code. This includes
factors like consistent formatting, use of meaningful
variable and function names, clarity of logic flow, and
presence of comments or documentation. Readability
score (RS) is often normalized to a 10-point scale, such as:

RS(A) € [0,10] (6)

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

All experiments were conducted on a personal computer
running Windows 10 Pro (64-bit) with the following
hardware specifications: Processor is Intel Core i7-7700
CPU @ 3.60GHz, RAM is 8,192 MB (8 GB), and System
Architecture is x64-based processor. To ensure
consistency and isolation, a Linux-based Docker container
was used to execute and evaluate the generated code. The
Docker container was configured with the following
constraints: operating system is minimal Linux image,
allocated CPU is 1 core, allocated memory is 1 GB, and
programming language is Python 3.10-slim.

All code generated by the LLMs was written and
executed in Python, ensuring a standardized testing
environment. The wuse of Docker allowed for
reproducibility and minimized system-level interference
when measuring performance metrics such as execution
time and memory usage. All scripts were executed inside
the container, and relevant metrics were collected during

23

runtime using Python-based profiling tools. Specifically,
the experiments leverage time python tool for precise
execution time measurement, psutil to measure the
resident set size (RSS) memory used by the process before
and after execution, and tracemalloc to capture peak
memory usage during the sorting task. Moreover, os tool
is used for retrieving the physical file size of the script.
Also, Garbage collection was temporarily disabled to
ensure consistent memory profiling.

Each sorting algorithm was tested on six datasets of
increasing size: 10, 100, 1,000, 10,000, 100,000, and
1,000,000 integers. For reliability, each algorithm was run
five times on each dataset, and the average of the metrics,
execution time, memory usage, peak memory usage and
logical file size, was calculated and used in the final
evaluation. This setup ensured a fair and systematic
comparison of code generated by different LLMs under
controlled computing conditions.

B. Results

1) Execution Time (ET) evaluation

To evaluate the efficiency of code generated by LLMs,
we measured the execution time (in seconds) of four
sorting algorithms—Insertion Sort, Merge Sort, Quick
Sort, and Heap Sort—across six datasets of increasing size
(DS1: 10 integers to DS6: 1,000,000 integers). Each
algorithm was executed five times per dataset, and the
average time was recorded. Table II shows the result of
model evaluation in term of average execution time.

TABLE II: THE AVERAGE EXECUTION TIME OF MODELS (IN SECONDS)

Algorithm D?];aSs)et ChatGPT g(l:::if DeepSeek
DS 1 0.0000156 0.0000198 0.0000188
DS 2 0.0007444 0.0007822 0.0006032
Insertion DS 3 0.1427272 0.1346232 0.1430604
Sort DS 4 14.8687454 15.3280544 15.0527078
DS5 1521.8972000 1589.217278 1542.253533
DS 6 > 50400 > 50400 > 50400
DS 1 0.0000596 0.0000516 0.0000514
DS 2 0.0006136 0.0005694 0.0006294
Merge Sort DS3 0.007821 0.0084864 0.007714
DS 4 0.1054434 0.0994446 0.1025194
DS5 1.376218 1.3603642 1.2997082
DS 6 17.0925022 16.2943608 16.6534512
DS 1 0.0000416 0.0000358 0.0000396
DS 2 0.000286 0.000246 0.0002678
Quick Sort DS 3 0.0097646 0.0076344 0.0091446
DS 4 0.1246186 0.1272454 0.1471322
DS 5 1.232454 1.1939666 1.2563958
DS 6 15.4996032 15.708026 15.3957354
DS 1 0.000044 0.0000486 0.0000326
DS 2 0.0005974 0.0005842 0.0005276
Heap Sort DS 3 0.01195 0.0112248 0.0123984
DS 4 0.1717594 0.1919182 0.2006176
DS5 2.2620296 2.3792628 2.3275016
DS 6 29.89498 31.2612638 30.6523804

For Insertion Sort, which has a time complexity of O(n?),
performance quickly degraded as dataset size increased.
On small datasets such as DS1 (10 elements), ChatGPT
produced the fastest execution with an average time of
0.0000156 s, followed by DeepSeek (0.0000188s) and
Claude (0.0000198s). As input size grew, ChatGPT
generally showed better scalability on large-range inputs

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

like DS4 and DS5, but none could complete DS6
(1,000,000 elements) within the set threshold of 14 h
(> 50400s). This clearly illustrates Insertion Sort’s
inefficiency for large-scale datasets regardless of how
optimized the code is. In the case of Merge Sort, with its
(nlogn) efficiency, all models scaled much better. Claude
consistently performed well, achieving the fastest
completion time on DS6 at 16.29 s, ahead of DeepSeek
(16.65s) and ChatGPT (17.09s). On smaller datasets (DS1
to DS3), the differences between the models were minimal,
often within microseconds, indicating uniformly efficient
code generation for this divide-and-conquer algorithm.

Quick Sort revealed Claude’s advantage on the smallest
inputs—e.g., DS1, where it executed in 0.0000358s, faster
than ChatGPT (0.0000416s) and DeepSeck (0.0000396s).
However, DeepSeek demonstrated the best performance
on larger inputs, especially DS6, completing in 15.39s—
faster than ChatGPT (15.49s) and Claude (15.70s). This
suggests that while Claude optimized base cases well,
DeepSeek produced code better suited for recursive
efficiency. With Heap Sort, performance was generally
slower compared to Merge and Quick Sort due to its more
complex memory and tree-based operations. DeepSeek
produced the fastest result on DS1 at 0.0000326s, but
ChatGPT offered better performance on larger datasets.
For example, on DS6, ChatGPT completed in 29.89, ahead
of DeepSeek (30.65s) and Claude (31.26s), and on DSS5,
ChatGPT had the lowest time (2.26s).

Fig. 2 shows the average execution time of all
algorithms for each model. Overall, ChatGPT recorded the
lowest average execution time across all datasets and
algorithms at 69.77 s, closely followed by DeepSeek at
70.67 s, and Claude at 72.75 s. This suggests that while
ChatGPT’s generated code is slightly more efficient in
total, DeepSeek consistently delivered high performance,
particularly for larger datasets. Claude showed strengths
on smaller inputs but lagged slightly as input size increased.

DeepSeek I 70.6746161
Calude I W 72.75328223
ChatGPT I 69.76957473

60 62 64 66 68 70 74 76

Average execution time (seconds)

72 78 80

Fig. 2. The average execution time of models.

2) Memory Usage (MU) evaluation

Table III shows the result of models’ evaluation in term
of average memory usage. Memory consumption patterns
varied across sorting algorithms and dataset sizes. For
Insertion Sort, all models showed negligible memory
usage (0 KB) for small datasets (DS1-DS3). As the input
size grew, memory usage increased noticeably. For DS4
and DS5, ChatGPT consumed 764 KB and 13,260 KB
respectively, while DeepSeek used slightly less with 751.2
KB and 13,056 KB. Claude consumed the most memory
in DS5 (13,980 KB). Memory usage on DS6 is not

24

reported, likely due to execution limits. Merge Sort
exhibited higher memory demand for larger datasets,
consistent with its divide-and-conquer nature. For DS4,
memory use hovered around 1,000 KB across all models.
On DSS5, usage climbed above 17,000 KB, with Claude
consuming the most (17,340 KB) and DeepSeek the least
(17,316 KB). On DS6, all models required over 160,000
KB, with DeepSeek again being the most efficient
(159,047.2 KB), compared to ChatGPT (163,967.2 KB)
and Claude (174,936 KB).

TABLE III: THE AVERAGE MEMORY USAGE OF MODELS (IN KB)

Algorithm D(a];zgs)et ChatGPT (S:(l)?llrl::i DeepSeek
DS1 0 0 0
DS2 0 0 0
Insertion DS 3 0 0 0
Sort DS 4 764 811.2 751.2
DS 5 13260.00 13980 13056
DS 6 - - -
DS1 0 0 0
DS2 0 0 0
Merge DS3 0 0 0
Sort DS 4 1060 999.2 1048
DS 5 16723.2 17340 17316
DS 6 163967.2 174936 159047.2
DS1 0 0 0
DS2 0 0 0
Quick DS 3 0 0 0
Sort DS 4 776 764 800
DS 5 13115.2 13896 13115.2
DS 6 132840 140861.6 132864
DS1 0 0 0
DS2 0 0 0
Heap DS3 0 0 0
Sort DS 4 788 776 764
DS 5 11196.738 13868.8 13082.4
DS 6 132844.8 140855.2 132920.8

Quick Sort followed similar trends. It required minimal
memory on smaller datasets, then ramped up significantly.
For DS5 and DS6, DeepSeck and ChatGPT performed
similarly at 13,115.2 KB and around 132,840 KB
respectively, while Claude used the most memory with
13,896 KB on DS5 and 140,861.6 KB on DS6. Heap Sort
was relatively memory-efficient on all datasets. All models
recorded 0 KB usage on DS1-DS3. For DS4, memory
ranged from 764 KB (DeepSeck) to 788 KB (ChatGPT).
On DSS5, ChatGPT used the least memory (11,196.738
KB), while Claude consumed the most (13,868.8 KB). For
DS6, ChatGPT is the most memory-efficient with
132,844.8 KB.

DeepSeek 1 21,076.73
Calude 1 22,569.04
ChatGPT | 21,188.48

18000 19000 20000 21000 22000 23000 24000
Average memory usage (KB)

Fig. 3. The average memory usage of models.

Fig. 3 shows the average of memory usage of all
algorithms for each model. Across all sorting algorithms
and datasets, DeepSeek demonstrated the most memory-
efficient behavior, with an average usage of approximately
21,076.73 KB. ChatGPT followed closely, consuming

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

around 21,188.48 KB on average, while Claude showed
the highest average memory usage at 22,569.04 KB. These
results indicate that DeepSeek is slightly more optimized
in terms of memory management, especially on larger
datasets. Claude’s higher memory footprint may be
attributed to additional processing overhead or more
complex data structures used in its generated code. Overall,
the differences, while small, could become significant in
large-scale applications where memory efficiency is
critical.
3) Memory Peak (MP) evaluation

Table IV shows the result of models’ evaluation in term
of average memory peak. In smaller datasets (DS 1-DS 3),
all three models performed similarly, with minimal
differences in memory peaks, typically under 100 KB.
However, as dataset sizes increased, disparities became
more apparent. For instance, in DS 5 and DS 6, ChatGPT
maintained noticeably lower memory peaks, such as
3560.47 KB for Insertion Sort on DS 5, while Claude used
4342.12 KB, and DeepSeek matched ChatGPT. For Merge
Sort on DS 6, ChatGPT’s peak was 51,996.18 KB, while
Claude’s climbed to 59,808.99 KB and DeepSeek
followed closely at 59,808.83 KB, again showcasing
Claude’s higher memory footprint. Similar trends
appeared with Quick Sort and Heap Sort, especially in DS
6, where ChatGPT’s peek and DeepSeck’s peaks remained
significantly lower—35,659 KB and 35,646 KB,
respectively—compared to Claude’s over 43,000 KB in
both cases. Overall, this comparison reveals that ChatGPT
not only uses less peak memory but does so consistently
across sorting techniques, suggesting better scalability and
efficiency. DeepSeek generally mirrors ChatGPT’s
memory behaviour, while Claude exhibits the highest
peaks, particularly with large input sizes.

TABLE IV: THE AVERAGE MEMORY PEAK OF MODELS (IN KB)
Dataset Claude

Algorithm DS) ChatGPT Sonnet DeepSeek
DS1 51.054 51.534 51.054
DS2 51.752 52.95 51.762
Insertion DS 3 79.838 88.082 79.872
Sort DS 4 400.476 479.036 400.502
DS 5 3560.47 4342.12 3560.47
DS 6 - - -
DS1 52.904 52.928 52.934
DS2 55.63 55.672 55.702
Merge Sort DS 3 92.97 93.034 93.034
g DS 4 530.658 609.048 608.898
DS 5 5213.318 5994.868 5994.71
DS 6 51996.182 59808.998 59808.834
DS1 53.262 52.568 53.254
DS2 57.044 56.354 57.032
Quick Sort DS 3 89.64 89.006 89.646
DS 4 415.592 453.846 415.586
DS 5 3576.858 4318.438 3576.874
DS 6 35659.566 43432.968 35659.546
DS 524 51.762 52.384
DS2 54.448 54.528 54.44
Hean Sort DS 3 83.972 91.094 83.978
P DS 4 406.374 483.826 406.376
DS 5 3567.682 4348.262 3567.69
DS 6 35646.888 43458.698 35646.9

Fig. 4 shows the average memory peaks of all
algorithms for each model. In evaluating peak memory
usage, ChatGPT showed the lowest average peak memory
consumption at approximately 6,162.99 KB, indicating
better memory handling under stress or during recursive
and large-scale operations. DeepSeeck followed with a

25

slightly higher average of 6,540.06 KB, showing relatively
efficient performance but with slightly more fluctuation in
memory demand. Claude, however, recorded the highest
average peak memory usage at 7,326.94 KB, suggesting a
tendency to allocate more memory at the highest points of
execution. This pattern was especially noticeable on larger
datasets (DS 5 and DS 6), where Claude’s memory peaks
significantly surpassed those of ChatGPT and DeepSeek.
These results highlight ChatGPT’s advantage in managing
peak memory demands more conservatively, making it
potentially more suitable for environments with strict
memory constraints.

DeepSeek I 6540.064
Calude I I 7326.94
ChatGPT I 6162.99
4000 5000 6000 7000 8000 9000

Average memory peak (KB)

Fig. 4. The average memory peak of models.

4) Logical Size (LS) and Physical Size (PS) evaluation

Table V shows the result of model evaluation in term of
logical size and physical size. In terms of logical code size,
ChatGPT consistently produces the most concise
implementations across all four sorting algorithms,
followed closely by DeepSeek, with Claude generating the
most verbose code. For instance, ChatGPT’s Insertion Sort
has a logical size of 1.72 KB, while Claude’s is 2.42 KB,
and DeepSeek’s is 1.93 KB. The same pattern is seen in
Merge Sort (2.03 KB for ChatGPT vs. 2.97 KB for Claude
and 2.83 KB for DeepSeck), Quick Sort (2.09 KB vs. 3.14
KB and 2.63 KB), and Heap Sort (2.35 KB vs. 3.21 KB
and 2.53 KB).

TABLE V: THE AVERAGE LOGICAL SIZE AND THE AVERAGE PHYSICAL
SIZE OF MODELS (IN KB)

3 ChatGPT Claude Sonnet DeepSeek
Algorithm
LS PS LS PS LS PS
Insertion Sort 1.72 400 242 400 193 4.00
Merge Sort 203 400 297 400 283 4.00
Quick Sort 209 400 314 400 263 4.00
Heap Sort 235 400 321 400 253 4.00

Despite differences in logical size, the physical size
remains constant at 4.00 KB for all models across all
algorithms, likely due to file system or formatting
constraints. This indicates that while the actual stored size
does not vary, ChatGPT achieves better code compactness
and efficiency in logical structure, which can impact
readability, maintainability, and execution in memory-
sensitive environments. Fig. 5 shows the average of logical
and physical size of all algorithms for each model. Where
ChatGPT achieves the lowest logical size with 2.04,
followed by DeepSeek with 2.48, while Claude achieves
larger size with 2.93.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

easy to follow. Claude, while generally clear, showed more
variability, with scores ranging from 5.91 (Heap Sort) to
| T 7.00 (Quick Sort), indicating less consistency in
W 248 formatting and code legibility. DeepSeek exhibited the
widest range in readability, scoring lowest on Insertion
e Sort (6.25) but highest on Quick Sort (9.29), where its code
Claude - 2035 was notably clean and logically arranged. Overall,
ChatGPT maintained superior readability across the board,
| . while DeepSeek showed excellence in specific cases like

ChatGPT 1 Quick Sort but inconsistency elsewhere.

1 Physical Size # Logical Size

DeepSeck

2.0475
TABLE VI: THE READABILITY SCORE OF MODELS
Algorithm ChatGPT Claude Sonnet DeepSeek

0 1 2 3 4
Average logical and physical size (KB)

Insertion Sort 7.78 6.67 6.25

Fig. 5. The average logical size and the average physical size of models. Merge Sort 7.89 6.4 6.36
Quick Sort 7.86 7 9.29

5) Readability Score (RS) evaluation Heap Sort 7.78 591 8.33

In this study, Pylint tool is used evaluate the code
readability. Pylint is a static code analysis tool designed to
evaluate Python code without executing it. It performs in- DeepSeek D 5575
depth inspection by parsing the code into an abstract
syntax tree (AST) and analyzing its structure for potential
errors, code style issues, and complexity. Pylint checks for
a wide range of issues, including syntax errors, comment,
undefined variables, unused imports, bad indentation, ChatGPT I | 78275
naming convention violations, and code smells such as
overly complex functions or deeply nested structures. One
of Pylint’s key features is its scoring mechanism, which
rates the quality of the code on a scale from —10.0 to 10.0, Fig. 6. The average readability score of models.
where 10.0 indicates a perfect score. This score is based on
the number and severity of issues found. Pylint is highly
configurable, users can customize which rules are enabled
or disabled. It classifies messages into categories such as
convention, warning, error, and refactor, helping
developers distinguish between minor style preferences C. Summary

and serious bugs. o To provide a comprehensive comparison of the
Tabl.e. VI shows the resul.t .of models evaluation in che generated sorting algorithms across the three LLMs, we
readability. The readability of generated sorting gymmarize the average values of all key evaluation metrics
algorithms was assessed using a 10-point scale, focusing iy Table VII (rounded to two decimal places). These
on clarity, structure, naming conventions, and overall metrics include execution time, memory usage, peak
human comprehension. ChatGPT consistently produced memory usage, logical and physical code size, and code
highly readable code across all algorithms, scoring readability. This consolidated view enables an at-a-glance
between 7.78 and 7.89. Its Merge Sort and Quick Sort assessment of the overall efficiency, resource consumption,
implementations were particularly well-structured and and code quality produced by each model.

Calude I 6.495

0 1 2 3 4 5 6 7 8 9 10
Average readability score (out of 10)

Fig. 6 shows the average of code readability of all
algorithms for each model. Where ChatGPT achieves the
highest readability with 7.82, followed by DeepSeek with
7.55, while Claude achieves lowest score with 6.49.

TABLE VII: RESULTS SUMMARY
Metric ChatGPT GPT-4-turbo Claude Sonnet4 DeepSeek-V3

ET (S) 69.77 72.75 70.67
MU (KB) 21,188.48 22,569.04 21,076.73
MPU (KB) 6,163.00 7,326.94 6,540.06
LS (KB) 2.05 2.94 248
PS (KB) 4.00 4.00 4.00
RS (0-10) 7.83 6.50 7.56

In terms of execution time, ChatGPT was the fastest on recorded the lowest peak at 6,163.00 KB, followed by
average (69.77 s), followed closely by DeepSeek (70.67s), DeepSeek at 6,540.06 KB, and Claude at 7,326.94 KB. In
while Claude lagged slightly behind (72.75 s). Regarding terms of code size, all models produced scripts with a
average memory usage, DeepSeek demonstrated the most ~ consistent physical size of 4.00 KB, reflecting uniform
efficient memory handling with 21,076.73 KB, marginally =~ disk allocation. However, logical size—which better
outperforming ChatGPT (21,188.48 KB), and significantly =~ reflects the actual amount of written content—varied, with
better than Claude (22,569.04 KB). A similar trend was ChatGPT producing the most concise code (2.05 KB),
observed in peak memory consumption, where ChatGPT followed by DeepSeck (2.48 KB), and Claude generating

26

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

the most verbose scripts (2.94 KB). Finally, the readability
scores, assessed on a 10-point scale, show that ChatGPT’s
code was the easiest to understand (7.83), with DeepSeek
also performing well (7.56), while Claude’s outputs were
rated least readable (6.50). Overall, ChatGPT led in most
categories, with DeepSeek close behind and Claude
trailing in efficiency and readability.

V. CONCLUSION

This comparative study illuminated the varying
strengths and limitations of three leading generative Al
models—ChatGPT-4-turbo, Claude Sonnet4, and
DeepSeek-V3—in generating Python implementations of
classical sorting algorithms. ChatGPT consistently
demonstrated balanced performance, combining speed,
efficient memory usage, and high code readability.
DeepSeek, while slightly trailing in execution speed and
memory efficiency, produced the most readable and
concise code in complex cases like Quick Sort and Heap
Sort. Claude, on the other hand, showed a noticeable lag in
both memory performance and code quality. These
findings highlight that while all three models are capable
of generating functional code, ChatGPT currently offers
the most well-rounded output for practical programming
tasks, especially where performance and readability are
equally critical. As generative models continue to evolve,
such empirical evaluations will be crucial for developers
and researchers seeking optimal Al coding companions.

While this study provides valuable insights into the
capabilities of ChatGPT GPT-4-turbo, Claude Sonnet 4,
and DeepSeek-V3 for code generation, several limitations
should be acknowledged. First, the evaluation focused
solely on sorting algorithms implemented in Python,
which may not generalize to other algorithmic domains,
languages, or code complexities. Additionally, the
readability assessment, although quantified on a 10-point
scale, remains partially subjective despite efforts to
standardize criteria such as formatting, naming
conventions, and clarity of logic. Moreover, certain
qualitative aspects like error handling of the generated
code were not explored in this study.

Future work can address these gaps by expanding the
scope of algorithm types (e.g., graph algorithms, dynamic
programming), incorporating multiple programming
languages, and using automated readability tools or larger
expert panels for more objective evaluations. Integrating
correctness checking across edge cases, and examining
security, maintainability, and cross-platform performance
can also provide deeper understanding. Furthermore,
applying this comparative framework to newer or fine-
tuned models could offer timely benchmarks in this rapidly
evolving space.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Alraba’nah and Sleit conducted the research and

27

analyzed the data. Alraba’nah proposed the methodology.
Sleit provided guidance and supervision throughout the
research process and analysis methodology. Alraba’nah
did the experiment and wrote the paper. Qaddara and Hiari
reviewed and edited the work. All authors had approved
the final version

FUNDING

This work was supported by Al-Ahliyya Amman
University.

REFERENCES
[1] A. M. Arabiat, “Intelligent model for detecting GAN-generated
images based on multi-classifier and advanced data mining
techniques,” International Journal of Electrical and Electronic -
Engineering & Telecommunications, vol. 14, no. 3, pp. 147-157,
2025. doi: 10.18178/ijeetc.14.3.147-157
K. Chaitanya and K. J. Rolla, “The evolution and impact of large
language models in artificial intelligence,” Algorithms in Advanced
Artificial Intelligence, CRC Press, pp. 410417, 2024. doi:
10.1201/9781003529231-61
S. Jaradat, N. Acharya, S. Shivshankar, T. I. Alhadidi, amd M.
Elhenawy, “Al for data quality auditing: detecting mislabeled work
zone crashes using large language models,” Algorithms, vol. 18, no.
6,317,2025. doi: 10.3390/a18060317
Y. Annepaka and P. Pakray, “Large language models: A survey of
their development, capabilities, and applications,” Knowledge and
Information Systems, vol. 67, no. 3, pp. 2967-3022, 2025. doi:
10.1007/s10115-024-02310-4
S. Kukreja, T. Kumar, A. Purohit, A. Dasgupta, and D. Guha, “A
literature survey on open source large language models,” in Proc.
2024 7th Int. Conf. on Computers in Management and Business,
2024, pp. 133-143. doi: 10.1145/3647782.3647803
Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, et al., “A
survey on evaluation of large language models,” ACM Transactions
on Intelligent Systems and Technology, vol. 15, no. 3, pp. 1-45,
2024. doi: 10.1145/3641289
A. Soliman, S. Shaheen, and M. Hadhoud, “Leveraging pre-trained
language models for code generation,” Complex & Intelligent
Systems, vol. 10, no. 3, pp. 3955-3980, 2024. doi: 10.1007/s40747-
024-01373-8
L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy,
and G. Tortora, “Claude 2.0 large language model: Tackling a real-
world classification problem with a new iterative prompt
engineering approach,” Intelligent Systems with Applications, vol.
21, art no. 200336, 2024. doi: 10.1016/j.iswa.2024.200336
K. Bhattacharya, S. Bhattacharya, N. Bhattacharya, and N.
Bhattacharya, “DeepSeek versus ChatGPT in surgical practice,”
Indian Journal of Surgery, pp. 1-4,2025. doi: 10.1007/s12262-025-
04368-y
M. Izadi, J. Katzy, T. Van Dam, M. Otten, R. M. Popescu, and A.
Van Deursen, “Language models for code completion: A practical
evaluation,” in Proc. IEEE/ACM 46th Int. Conf. on Software
Engineering, 2024, pp. 1-13. doi: 10.1145/3597503.3639138
M. M. H. Manik, “ChatGPT vs. DeepSeek: A comparative study on
Al-based code generation,” arXiv preprint, arXiv:2502.18467,
2025.
Q. Jiang, Z. Gao, and G. E. Karniadakis, “DeepSeek vs. ChatGPT:
A comparative study for scientific computing and scientific
machine learning tasks,” arXiv preprint, arXiv:2502.17764, 2025.
Z.Ji, P. Ma, Z. Li, and S. Wang, “Benchmarking and explaining
large language model-based code generation: A causality-centric
approach,” arXiv preprint, arXiv:2310.06680, 2023.
D. Huang, Y. Qing, W. Shang, H. Cui, and J. M. Zhang, “EffiBench:
Benchmarking the efficiency of automatically generated code,”
Advances in Neural Information Processing Systems, vol. 37, pp.
11506-11544, 2024.
Y. Qing, B. Zhu, M. Du, Z. Guo, T. Y. Zhuo, Q. Zhang, and L. A.
Tuan, “EffiBench-X: A multi-language benchmark for measuring
efficiency of LLM-generated code,” arXiv preprint
arXiv:2505.13004, 2025.

(2]

(31

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

[16] D. Palla and A. Slaby, “Evaluation of generative Al models in
Python code generation: A comparative study,” IEEE Access, vol
13, pp. 65334-65347, 2025.

D. Zheng, Y. Wang, E. Shi, X. Liu, Y. Ma, H. Zhang, and Z. Zheng,
“Top general performance top domain performance?
DomainCodeBench: A multi-domain code generation benchmark,”
arXiv preprint, arXiv:2412.18573, 2024.

A. Sergeyuk, O. Lvova, S. Titov, A. Serova, F. Bagirov, E. Kirillova,
and T. Bryksin, “Reassessing Java code readability models with a
human-centered approach,” in Proc. the 32nd IEEE/ACM
International Conference on Program Comprehension, Apr. 2024,
pp. 225-235. doi: 10.1145/3643916.3644435

A. Sabra, O. Schmitt, and J. Tyler, “Assessing the quality and
security of Al-generated code: A quantitative analysis,” arXiv
preprint, arXiv:2508.14727, 2025.

K. DePalma, 1. Miminoshvili, C. Henselder, K. Moss, and E. A.
AlOmar, “Exploring ChatGPT’s code refactoring capabilities: An
empirical study,” Expert Systems with Applications, vol. 249,
123602, 2024. doi: 10.1016/j.eswa.2024.123602

R. Phogat, D. Arora, P. S. Mehra, J. Sharma, and D. Chawla, “A
comparative study of large language models: ChatGPT, DeepSeek,
Claude and Qwen,” in Proc. 2025 3rd Int. Conf. on Device
Intelligence, Computing and Communication Technologies, Mar.
2025, pp. 609-613. doi: 10.1109/DICCT64131.2025.10986449

[17]

(18]

[19]

[20]

[21]

Copyright © 2026 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY
4.0), which permits use, distribution and reproduction in any medium,
provided that the article is properly cited, the use is non-commercial and
no modifications or adaptations are made.

Yousef Alraba’nah received his B.Sc. degree
in software engineering from Zarqa university
(Jordan) in June 2012. In February 2013,
Yousef obtained fully-funded scholarship from
Zarqa University to complete the M.Sc. degree
in computer science. He graduted in June 2015
with excellent degree. He currently works as a
lecturer in the Faculty of Information
Technology at Al-Ahliyya Amman University,
Jordan. His main research interests include
distributed systems, networks security, and machine learning.

28

Azzam Sleit is the former minister of
information and communications technology
(2013-2015). He is currently working as a
professor of computer science, King Abdulla
II School for Information Technology,
University of Jordan, where he functioned as
the dean (2015-2016) and the assistant
president/director of the computer center
(2007-2009). Dr. Sleit holds the B.Sc, M.Sc.
and Ph.D. degrees in computer science. He
received h1s Ph.D. in 1995 from Wayne State University, Michigan. Dr.
Sleit was the chief information officer at Hamad Medical/Ministry of
Public Health, Qatar. Before joining Hamad Medical, Dr. Sleit was the
vice president of Strategic Group & Director of Professional Services of
Triada, USA, where he introduced the NGram Technology and
Associative Memory Structures. Dr. Sleit authored more than one
hundred refereed research papers related to cloud computing, imaging
databases, data mining, health and management information systems and
software engineering, published in reputable journals and conferences.

Iyas Qaddara is a lecturer in Al-Ahliyya
Amman university. He received his first
degree in software engineering from Al-
Ahliyya Amman University, Jordan in March
2020 and master degree in computer science
from Al Balqa Applied University, Jordan in
June 2022. His research are of interest include
machine learning, parallel computing,
computer graphics and virtual reality.

Mohammad Hiari is a lecturer in Al-Ahliyya
Amman University. He received his first
degree in software engineering from
Philadelphia University, Jordan, in August
2004 and master degree in computer science
from Al Balga Applied University, Jordan in
February 2016. His research area of interest
includes VoIP and cybersecurity data mining
and optimization.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	IJEETC-V15N1-19

