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Abstract—The integration of Terrestrial Networks (TNs) 

and Non-Terrestrial Networks (NTNs) is a foundational 

requirement for Sixth Generation (6G), enabling ubiquitous, 

resilient, and globally inclusive connectivity. However, 

existing surveys typically analyze this integration by 

concentrating on individual dimensions—such as 

architectural design, control and virtualization mechanisms, 

or Artificial Intelligence (AI)—while giving limited attention 

to sustainability considerations. This paper addresses this 

gap by introducing a unified architecture–AI–sustainability 

triadic framework, which forms the core contribution of the 

review. First, the paper provides a structured architectural 

synthesis that clarifies how different integration models 

influence the design and operational behavior of TN–NTN 

systems. Second, it consolidates the role of AI in enabling 

intelligent, adaptive, and context-aware network operation 

across integrated space–air–ground environments. Third, it 

advances sustainability as a primary design principle by 

synthesizing emerging strategies aimed at improving energy 

and carbon efficiency in future 6G infrastructures. By 

examining these three dimensions collectively, the review 

offers a coherent and comprehensive perspective on TN–

NTN convergence, identifies persistent challenges including 

interoperability limitations and standardization gaps, and 

outlines future research directions needed to develop 

resilient, intelligent, and environmentally responsible 6G 

ecosystems aligned with United Nation Sustainable 

Development Goals (UN SDGs). 

Index Terms—6G networks, energy-aware design, green 

communications, intelligent orchestration, sustainable 

connectivity, TN–NTN convergence 

I. INTRODUCTION

The advent of Sixth Generation (6G) communication 

systems is poised to transform global connectivity by 

extending networks beyond traditional terrestrial 

infrastructure into the domain of Non-Terrestrial 

Networks (NTNs), including satellites, High-Altitude 

Platform Stations (HAPS), and Unmanned Aerial 

Vehicles (UAVs) [1]. The convergence of Terrestrial 

Networks (TNs) and NTNs offers unprecedented 

opportunities for achieving global coverage, enhancing 

capacity, and supporting a wide spectrum of mission-

critical and emerging applications. This paradigm shift is 

not only a technological evolution but also a societal 

imperative, as it directly impacts digital inclusion, 

disaster management, autonomous mobility, remote 

healthcare, and sustainable development [2]. 

Over the last few years, a growing body of surveys 

and reviews has reflected the rapid progress in TN–NTN 

integration [3]. Some contributions have centered on 

architectural frameworks and control-plane convergence, 

while others have explored Artificial Intelligence (AI)-

and Machine Learning (ML)-enabled orchestration, 

Internet of Things (IoT) integration, virtualization, or 

Third Generation Partnership Project (3GPP) - driven 

standardization efforts [4]. These studies collectively 

highlight the feasibility and promise of TN–NTN 

convergence. However, they often remain domain-

specific or unbalanced, emphasizing one aspect 

disproportionately while overlooking others. More 

importantly, the dimension of sustainability—

encompassing energy awareness, carbon reduction, and 

long-term resilience—remains either underrepresented or 

treated as a peripheral issue, despite its growing relevance 

in the 6G era [5]. 

This review seeks to address these gaps by advancing 

a triadic framework that positions architecture, artificial 

intelligence, and sustainability strategies as equally vital 

and mutually reinforcing dimensions of TN–NTN 

integration. Unlike previous works that present linear or 

siloed narratives, this study emphasizes the 

interdependence of the three pillars: architectural 

coupling defines the degree of flexibility available to AI-

driven optimization, while both must operate in 

alignment with sustainable energy and carbon-aware 

practices. Through this lens, the review not only maps the 

state of the art but also highlights the pressing need for 

integrated solutions that combine technical scalability, 

adaptive intelligence, and environmental responsibility. 

The importance of this perspective lies in its 

comprehensiveness and forward-looking orientation. By 
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systematically categorizing research contributions under 

the three dimensions and avoiding overlaps, the review 

enables a clearer identification of synergies, as well as 

gaps (e.g., limited attention to sustainability-aware 

orchestration) [6]. At the same time, it underscores the 

practical significance of TN–NTN integration: enabling 

equitable global access, ensuring resilient services in 

extreme environments such as oceans and disaster zones, 

and aligning 6G with global sustainability frameworks 

such as the UN SDGs [7]. Through this unique vantage 

point, the paper unifies fragmented research into a 

coherent roadmap for building resilient, intelligent, and 

sustainable 6G connectivity. It extends beyond technical 

integration to embrace the operational and societal 

dimensions that will ultimately define the success of TN–

NTN systems in practice. The main contributions are as 

follows: 

1) Proposes a structured taxonomy of 6G-oriented TN–

NTN architectures, clarifying how coupling depth,

multi-layer composition, and cooperative mechanisms

shape integration outcomes.

2) Synthesizes AI techniques across key 6G TN–NTN

functions—including resource management, mobility,

slicing, routing, and computation placement—

highlighting their roles in intelligent orchestration.

3) Positions sustainability as a central 6G design

requirement and examines energy- and carbon-aware

strategies that connect architectural choices with AI-

driven operation.

4) Introduces a unified triadic perspective that links

architecture, AI-enabled optimization, and

sustainability, offering an integrated foundation for

developing resilient and environmentally responsible

6G TN–NTN system

II. BACKGROUND 

A. Evolution from 5G to 6G: The Role of TN and NTN

Fifth-Generation (5G) networks have marked a major

leap in mobile communications, delivering enhanced 

mobile broadband, ultra-reliable low-latency 

communication (URLLC), and massive machine-type 

communications (mMTC) [8, 9]. Despite these advances, 

their dependence on dense terrestrial infrastructure limits 

coverage in remote, rural, maritime, and aerial 

environments, leaving large segments of the globe 

underserved. The transition toward 6G networks shifts 

the focus from localized performance enhancements to 

the pursuit of ubiquitous, global connectivity [10].  

To achieve this vision, NTNs—encompassing satellites, 

HAPS, and UAVs—have emerged as indispensable 

complements to TNs [11]. While TNs provide high 

spectral efficiency and established infrastructure, NTNs 

offer wide-area, flexible, and resilient coverage, enabling 

service continuity where terrestrial systems alone fall 

short. The convergence of TNs and NTNs is expected to 

create a three-dimensional (3D) networking fabric, 

seamlessly linking users across space, air, ground, and 

sea [12]. In doing so, the evolution from 5G to 6G 
emphasizes not only higher data rates and lower latency 

but also expanded coverage, sustainable operation, and 

intelligent service delivery. Taken together, these 

requirements position TN–NTN integration as a 

foundational pillar of the 6G communication ecosystem, 

as illustrated in Fig. 1. 

Fig. 1. AI-enabled orchestration of integrated terrestrial and non-

terrestrial networks (TN–NTN) for global 6G connectivity. 

B. Standards, Enablers, and Integration Drivers

The vision of integrated TN–NTN systems has been

progressively shaped by standardization efforts, 

technological enablers, and real-world application 

demands [10]. On the standards side, 3GPP has laid 

important foundations [4]. Release 17 formally 

introduced NTN support in 5G, addressing issues such as 

mobility management and service continuity with satellite 

systems. This momentum is carried forward in Release 18 

(5G-advanced), which strengthens interoperability by 

enabling direct-to-device satellite access and refining 

handover procedures between terrestrial and non-

terrestrial segments. Looking ahead, Release 20 and 

beyond are expected to define the deeper convergence 

mechanisms required for 6G, with a focus on AI-native 

networking, ultra-reliable low-latency services, and 

energy-efficient operations. These activities are 

reinforced by international bodies such as the 

international telecommunication union, through its 2030 

framework, and the Next Generation Mobile Networks 

alliance (NGMN), both of which highlight NTN 

integration as essential for achieving global inclusiveness 

and sustainability [13]. 

Complementing standardization are a set of 

technological enablers that make integration feasible. 

Multi-connectivity and dual connectivity provide users 

with simultaneous links across TN and NTN, ensuring 

seamless service continuity even under dynamic 

conditions. Integrated Access and Backhaul (IAB) 

architectures extend terrestrial footprints through 

satellites and high-altitude platforms. Reconfigurable 

Intelligent Surfaces (RIS) reshape propagation to recover 

link budget and improve spectral and energy efficiency. 

In parallel, Next-Generation Multiple Access (NGMA) 

techniques, such as Non-Orthogonal Multiple Access 

(NOMA) and Rate-Splitting Multiple Access (RSMA), 

increases user density and throughput [14]. 
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C. Key Characteristics of 6G  

Recent advances in 6G research outline a coherent set 

of characteristics that collectively mark a significant 

evolution in communication system design, capability, 

and operational logic beyond 5G. A dominant theme in 

the literature concerns the pursuit of extreme performance 

targets, with 6G expected to deliver terabit-per-second 

peak rates, ultra-low latency on the order of sub-

milliseconds, and unprecedented levels of reliability to 

support emerging use cases such as holographic 

telepresence, large-scale autonomous mobility, and real-

time distributed intelligence [10, 13]. These performance 

requirements are situated within a broader architectural 

shift toward 3D ubiquitous connectivity, where terrestrial, 

aerial, and satellite infrastructures are orchestrated as a 

unified communication fabric. Studies on TN–NTN 

integration consistently argue that such multi-layered 

spatial connectivity is essential for achieving seamless 

global coverage, robust service continuity, and resilience 

across diverse environments including sparsely populated, 

maritime, and disaster-prone regions [11, 12]. 

In parallel, the literature increasingly characterizes 6G 

as an AI-native network, moving beyond the auxiliary use 

of ML toward embedding intelligence directly into 

control, management, and orchestration layers. This 

perspective highlights the role of learning-enabled 

mechanisms in addressing the complexity of large-scale 

mobility, dense device ecosystems, spectrum coexistence, 

and dynamic multi-layer resource allocation across 

space–air–ground domains [15, 16].  

Complementing this intelligence-driven orientation is 

the growing recognition of sustainability, security, and 

systemic resilience as intrinsic characteristics of 6G. 

Research underscores the need for energy- and carbon-

aware network operation, motivated by the power 

constraints of NTN platforms and increasing global 

emphasis on environmentally aligned technologies [17]. 

At the same time, expanded multi-layer connectivity 

introduces new security and privacy challenges, 

prompting calls for integrated, cross-domain protection 

and fault-tolerant architectures capable of withstanding 

adversarial and environmental disruptions [18]. 

Taken together, these characteristics portray 6G as an 

ultra-performant, spatially pervasive, intelligence-driven, 

and sustainability-oriented communication paradigm. 

Within this framework, TN–NTN integration is not a 

peripheral enhancement but a structural requirement for 

realizing the comprehensive technical and societal 

aspirations articulated across the 6G research landscape. 

III. RELATED WORKS 

Research on the integration of TNs and NTNs has 
matured significantly in recent years, with multiple 
surveys and position papers addressing this topic from 
different perspectives. However, a close comparison 
reveals that existing reviews often emphasize one 
dimension disproportionately such as architectural 
frameworks, control-plane convergence, AI methods, 
virtualization, or standardization while leaving other 
aspects underexplored. The following synthesis compares 

the most relevant contributions and highlights how they 
differ, thereby contextualizing the unique positioning of 
this work. 

The survey by Xu et al. [3] provides a broad 

discussion of integrated satellite–terrestrial network 

architectures for 6G, focusing on high-level reference 

designs, multi-layer compositions, and potential 

integration patterns. While it establishes an architectural 

foundation, it pays limited attention to orchestration 

mechanisms and energy/carbon-aware strategies. 

Similarly, the work in [12] frames integration as a 3D 

(space–air–ground) challenge, detailing issues such as 

doppler, synchronization, and multi-connectivity. 

Although valuable in capturing the physical constraints of 

TN–NTN integration, it stops short of proposing a 

systematic taxonomy that bridges architecture with AI-

driven control or sustainability concerns. 

In contrast, Kafle et al. [16] examine control-plane 

convergence through an integrated network control 

architecture. It emphasizes orchestration, performance 

monitoring, and policy enforcement across heterogeneous 

domains, thus offering insights into interoperability. 

However, its user-plane and sustainability perspectives 

remain limited. Extending this control-oriented view, the 

study of Ammar et al. [17] presents an in-depth survey of 

virtualization technologies. While it provides one of the 

most detailed accounts of orchestration stacks, it abstracts 

away radio-access fabric specifics and does not explicitly 

link orchestration strategies with carbon-aware site or 

gateway selection. 

Several surveys have explored TN–NTN integration 

from an application or vertical perspective. Sultan and 

Chaudhary [19] investigate the integration of IoT into 

TN–NTN systems, offering insights into lightweight 

protocols, device constraints, and IoT traffic classes. This 

IoT-centric focus, however, treats AI orchestration and 

sustainability only tangentially, often equating 

sustainability with device-level energy saving rather than 

system-level carbon efficiency. 

Standardization-focused reviews, such as [4], map 

ongoing research activities to 3GPP, and NGMN 

initiatives. These contributions are strong in identifying 

requirements and gaps from a standards perspective but 

remain limited in addressing the operationalization of AI-

enabled closed-loop control or in linking standard 

features to sustainability levers. 

AI and ML perspectives dominate the works in [6, 15]. 

The former highlights AI/ML as enablers for integration, 

discussing adaptive resource allocation, intelligent 

routing, and autonomous operation. However, it does not 

situate these techniques explicitly within different levels 

of TN–NTN coupling. The latter classifies ML 

approaches (supervised, unsupervised, reinforcement 

learning) and deployment styles (centralized, distributed, 

federated), mapping them to 3GPP integration scenarios 

with illustrative case studies. While this offers a methods-

oriented taxonomy, it does not synthesize AI roles across 

architectural or sustainability dimensions. 

An examination of the reviewed studies within the 

broader system context introduced earlier in Fig. 1, 
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reveals that existing literature addresses only isolated 

components of TN-NTN integration. Some focus on the 

physical or architectural structure of TN–NTN systems, 

while others emphasize AI-driven mechanisms or specific 

application domains. However, very few consider how 

these technological elements relate to the operational 

intelligence and sustainability requirements that are 

intrinsic to 6G. Using Fig. 1 as a reference point makes 

this fragmentation evident and highlights the need for a 

more integrated synthesis that connects architectural 

design with AI-enabled operation and sustainability 

considerations. 

Taken together, these surveys underscore the breadth 

of scholarship in TN–NTN integration. Yet, most adopt a 

unidimensional focus: architectural frameworks ([3], 

[12]), control/virtualization [17] IoT applications [19], 

standardization ([4]), or AI/ML methods ([6, 15]). None 

provide a cross-cutting perspective that systematically 

connects architectural design, AI-driven optimization, 

and sustainability strategies. This gap establishes the need 

for a comprehensive review that unifies these three 

dimensions, offering a balanced and integrative roadmap 

to guide future research and practice in building resilient, 

intelligent, and sustainable 6G networks. A comparative 

synthesis is presented in Table I, which highlights the 

contributions and gaps of existing reviews. 

TABLE I: COMPARISON OF EXISTING TN–NTN REVIEW STUDIES AND IDENTIFIED GAPS  

Ref. Focus Area Distinct Contribution Key Gap Identified 

[3] 
Integrated satellite–terrestrial 

architectures for 6G 
High-level architectural frameworks, multi-

layer compositions 
Limited focus on orchestration and sustainability 

[4] 
Research and standardization (3GPP, 

ITU-R, NGMN) 
Strong mapping of requirements to standards 

Lacks operationalization of AI-enabled control 

and sustainability considerations 

[6] 
AI/ML as enablers of TN–NTN 

integration 
AI/ML functions: adaptive allocation, 

intelligent routing, autonomous operation 
Does not situate AI within architectural coupling 

or sustainability frameworks 

[12] 
3D integration challenges (space–air–

ground) 

Physical-layer issues such as Doppler, 

synchronization, and multi-connectivity 

No taxonomy linking architecture, AI, and 

sustainability 

[16] Network control-plane convergence 
Control and orchestration functions across TN–

NTN 
Neglects user-plane integration and sustainability 

[17] 
Virtualization technologies (SDN, 

NFV, slicing) 
Comprehensive review of orchestration stacks 

Ignores radio-access fabric and carbon-aware 

resource orchestration 

[19] IoT integration into TN–NTN 
Protocols, device constraints, IoT traffic 

optimization 

Narrow IoT focus; lacks AI orchestration and 

system-level sustainability 

[15] 
ML-driven integration for 6G 

connectivity 

Classification of ML approaches and 

architectures with case studies 

Methods-oriented; limited synthesis across 

architecture and sustainability 

Fig. 2. Taxonomy architectural approaches for TN–NTN integration. 

IV. ARCHITECTURAL TAXONOMY FOR TN-NTN

INTEGRATION 

The integration of terrestrial and non-terrestrial 

systems can be examined through multiple architectural 

perspectives. To ensure clarity and a structured analysis, 

this review classifies existing approaches into distinct 

taxonomic dimensions. Each taxonomy captures a 

specific aspect of integration, ranging from coupling 

depth to multi-layer composition and functional 

orchestration. The following subsections discuss these 

perspectives in detail, highlighting their design principles, 

inherent trade-offs, and implications for advancing 6G 

networks. The conceptual taxonomy is shown in Fig. 2, 

while detailed architectural illustrations of 6G systems 

can be found in existing surveys such as [20]. 

A. Architectural Coupling

In this review, coupling denotes the structural degree

of TN–NTN integration—how access and core functions 

are placed, which standardized interfaces are used, and 

how identity, addressing, and policy are realized across 

the end-to-end protocol stack [16, 21].  

1) Loose coupling

Loose coupling keeps terrestrial and non-terrestrial

domains architecturally autonomous. Each runs its own 

access and core networks, and interconnection occurs at 
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the IP layer through gateway peering or application 

proxies. Without a shared mobility anchor in the cellular 

stack, any continuity across domains is provided by 

transport or application mechanisms rather than network-

native handover. Identities, addressing, and policy remain 

disjoint. This arrangement is easy to deploy and vendor-

agnostic, yet duplicated control logic, inconsistent 

policies, and break-before-make mobility limit end-to-

end quality and predictability. 

2) Tight coupling  

Tight coupling introduces architectural continuity by 

terminating non-terrestrial access on the same 5G core 

that serves the terrestrial domain through standardized 

interfaces. A shared mobility context enables coordinated 

handover and simultaneous connectivity across domains, 

so interruptions are bounded and measurable. Identities 

and policies are partly aligned typically a common 

subscriber space with segment-specific rules while 

operations and management can remain separate. The 

outcome is near-seamless service continuity and more 

efficient use of spectrum and transport, at the cost of 

policy reconciliation and integration complexity at the 

interworking boundary. 

3) Ultra-tight coupling  

Ultra-tight coupling treats terrestrial and non-

terrestrial segments as co-equal parts of a single 

architecture. Access functions operate as peers, and the 

core is cloud-native and distributed, with user-plane 

processing placed at terrestrial edges and, where feasible, 

on high-altitude platforms or regenerative satellites. End-

to-end slices span both domains under a unified policy 

and identity space, allowing resource pooling across 

spectrum, compute, and transport and enabling 

deterministic quality-of-service guarantees. Lateral 

meshes between non-terrestrial platforms reduce reliance 

on ground gateways and can lower end-to-end latency. 

Realizing this level of integration requires mature 

interoperability, fine-grained observability, and aligned 

security and exposure models among stakeholders. 

A pragmatic evolution moves from IP-level 

interconnection (loose) to core-anchored interworking 

(tight) and ultimately to a unified access and core with 

cross-domain slice continuity (deep). Hallmark 

milestones include bringing non-terrestrial access under 

the same core control as the terrestrial network, enabling 

simultaneous connectivity with make-before-break inter-

tier handover, distributing user-plane processing toward 

edges and aerial or space nodes to reduce latency and 

backhaul load, and extending slices so that policy, 

identity, and assurance apply uniformly across both 

segments. 

B. Multilayer-Based Architectural Integration 

A multi-layer approach specifies which physical strata 

are present, the role each plays along the service path, 

and how strata interconnect to form end-to-end routes. 

Two standard compositions are recognized in the 

literature: the Space–Air–Ground Integrated Network 

(SAGIN), in which the space tier (LEO/MEO/GEO) 

provides global reach and wide-area dissemination, the 

air tier (HAPS/UAV) supplies rapidly deployable, 

reconfigurable coverage and targeted capacity, and the 

ground tier (terrestrial access and core) delivers high-

throughput, low-latency service while anchoring compute 

and storage; and its maritime extension, Space–Air–

Ground–Sea (SAGS), which adds a sea tier (vessels, 

offshore platforms, buoys, coastal gateways) to address 

sparse infrastructure and long radio horizons offshore, 

shifting more access and aggregation to air and space [22]. 

Within either SAGIN or SAGS, performance hinges on 

role assignment and interconnection. Common patterns 

include space-centric aggregation with ground-based 

access, air-assisted coverage for restoration or demand 

hotspots, and mixed designs that stage lightweight 

functions aloft—aggregation, caching, header 

adaptation—to shorten paths and stabilize noisy links. 

Interconnection choices resolve to gateway-centric routes 

that ascend to space and return to ground gateways, 

mixed routes that combine gateways with lateral aloft 

segments (ISL/IHL) [23] to shorten paths and diversify 

failure modes, and air–ground aggregation paths where 

aerial nodes collect traffic from devices or small cells 

before forwarding to space or terrestrial backhaul. These 

choices determine where buffering and prioritization 

reside and thus the attainable envelopes for latency, 

resilience, and loss. 

Deployments adapt these architectural patterns to their 

specific context. High-altitude platforms may be 

configured as super-macro canopies to stabilize wide 

areas and accelerate post-disaster restoration. Lateral aloft 

meshes are introduced where gateway density is limited 

or latency requirements are stringent. Integrated access-

and-aggregation on air or space tiers is adopted where 

terrestrial build-out is constrained. The choice among 

these patterns is shaped by geography, demand dynamics, 

and the feasibility of gateway siting and backhaul.  

Designing a credible multi-layer system requires 

careful balancing of interdependent factors [18]. The 

latency–coverage trade-off arises because space and high-

altitude tiers extend reach but increase delay and timing 

dynamics, while dense ground deployments achieve 

lower latency at the cost of higher infrastructure 

investment. Capacity placement and gateway topology 

also shape performance, as inserting capacity aloft 

improves agility and restoration yet faces power and 

thermal limits, whereas concentrating capacity at 

gateways simplifies operations but elongates paths and 

risks bottlenecks; denser gateway grids, in turn, reduce 

route length but demand greater spectrum, siting, and 

backhaul resources. Energy posture and regulatory 

constraints further condition feasibility, with UAV 

endurance, satellite and HAPS power budgets, and 

terrestrial cell-sleeping policies requiring joint 

optimization, while spectrum allocations and coexistence 

requirements must be treated as primary architectural 

inputs. 

C. Plane-Based Architectural Integration  

Plane-based integration specifies how control, user, 

and management functions are distributed across 

terrestrial and non-terrestrial domains, and how their 
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coordination ensures consistent policy, mobility, Quality-

of-Service (QoS), and assurance. It provides the logical 

skeleton that binds heterogeneous strata into an end-to-

end system. 

1) Control-plane integration 

The control plane governs registration, mobility, and 

policy enforcement. Loose integration maintains 

independent control domains with only gateway-level 

signaling, limiting handover efficiency [16]. Tight 

integration anchors terrestrial and non-terrestrial access 

on the same core functions, supporting shared subscriber 

identity, make-before-break handover, and coordinated 

dual connectivity. Deep integration extends this to a 

unified policy and intent namespace distributed across 

ground, aerial, and orbital nodes, enabling globally 

consistent but locally responsive control decisions. 
2) User-plane integration 

The user plane delivers forwarding, steering, and QoS 

treatment. Tight integration allows bearer- or flow-level 

splitting across domains while maintaining slice 

semantics. Deep integration distributes forwarding and 

buffering closer to access, including on high-altitude or 

regenerative satellites, to reduce path length and backhaul 

load. Key design issues include mobility anchor 

relocation without excessive state churn, buffering 

strategies for heterogeneous delays, and robust mapping 

of radio-layer QoS into transport schedulers. 

3) Cross-plane co-design  

Deterministic services such as time-sensitive control, 

holographic media, or joint sensing–communication 

demand coordinated plane behavior. Control commits 

resources and pre-computes feasible paths, the user plane 

ensures continuity through replication or fast switchover, 

and management validates conformance and initiates 

recovery under defined policy [24]. Time synchronization, 

admission control with budget tracking, and explicit 

failure semantics are prerequisites for making such 

guarantees verifiable. 

4) Management and orchestration  

The management plane spans configuration, telemetry, 

and assurance. In tight integration, management is 

federated with harmonized data models but domain-local 

operations [25]. Deep integration enables cross-domain 

orchestration in which a single service definition drives 

placement, scaling, and healing across layers, supported 

by closed-loop assurance. Achieving this requires 

normalized telemetry, synchronized timing across strata, 

and bounded monitoring overhead. 

D. Cooperative-Driven Integration 

Cooperative patterns capture how TN-NTN 

collaborate at run time once the overall layer composition 

and plane placement are defined. They determine how 

roles are allocated across tiers and how coordination 

sustains coverage, capacity, coexistence, and efficiency. 

1) Access- versus backhaul-integrated operation 

In access-integrated mode, the non-terrestrial stratum 

provides direct service to end devices, extending reach 

into maritime, remote, or emergency contexts. In 

backhaul-integrated mode, satellites or aerial platforms 

primarily transport traffic for terrestrial access nodes, 

stabilizing device requirements and reusing mature access 

technologies. The choice is deployment-specific [26]: 

access-integration offers coverage agility, while 

backhaul-integration supports dense access under fiber or 

microwave constraints. Tighter coupling enhances both, 

enabling seamless mobility in the former and coordinated 

traffic engineering in the latter. 

2) HAPS-assisted cooperation 

High-altitude platforms function as wide-area canopies 

and regional aggregation points. They absorb demand 

surges, mitigate terrain-induced coverage gaps, and 

collect traffic from UAV relays or ground cells before 

forwarding to gateways or satellites [27]. In disruptions, 

HAPS provide rapid baseline restoration, while in normal 

operation they support energy savings by allowing 

ground cells to enter sleep states. Their effectiveness 

depends on altitude, footprint, and payload budgets, and 

benefits can be amplified by predictive, AI-driven 

orchestration [28]. 

3) Spectrum sharing and coexistence 

Where terrestrial and non-terrestrial domains operate in 

adjacent or overlapping bands, three strategies recur. 

Partitioned sharing assigns separate frequency, time, or 

spatial domains, yielding robustness but low  

efficiency [29]. Coordinated sharing exchanges intent and 

interference budgets across domains, increasing 

efficiency at the cost of tighter synchronization and 

trusted interfaces. Opportunistic sharing exploits idle 

spectrum windows, suitable for sparse deployments but 

dependent on rapid sensing and conservative protection. 

Deployment environments dictate the choice—coastal 

and urban edges often benefit from coordination, while 

remote areas can tolerate opportunistic operation. 

4) Energy-aware cooperation 

Multi-tier systems can shift users and flows across 

strata to minimize energy consumption while preserving 

QoS. Low-load ground cells may transfer users to aerial 

or LEO overlays, while high-power coverage may yield 

to terrestrial small cells when demand intensifies  

locally [30]. Decisions balance link budgets, trajectory 

visibility, switching costs, and carbon intensity of the 

underlying power source. Guarding against excessive 

switching and aligning policies with sustainability targets 

are key. AI-based prediction and policy learning further 

stabilize such strategies under fluctuating demand and 

channel conditions. 

E. Fabric-Based Architecture  

Fabric-based architecture defines the structural 

choices that determine which functions are executed aloft, 

how platforms interconnect with terrestrial gateways, and 

how the system sustains operation under intermittency. 

Unlike plane-based or cooperative perspectives, the focus 

here is on payload design and the transport fabric. 

1) Payload capability 

Payloads are categorized as transparent or 

regenerative [31]. Transparent payloads simply forward 

waveforms, offering low power use and simpler 

certification, but shift all adaptation tasks to terrestrial 
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gateways, increasing latency and creating bottlenecks. 

Regenerative payloads re-emit signals at higher layers, 

enabling header adaptation, retransmission, caching, and 

lightweight user-plane functions. These reduce latency 

and improve traffic steering over noisy links but demand 

higher power, thermal capacity, and validation. 

Transparent payloads suit gateway-centric hub-and-spoke 

designs, while regenerative payloads support distributed 

processing and deeper TN–NTN integration. 

2) Transport topology 

Three interconnection patterns dominate. Gateway-

centric routing uses terrestrial gateways, leveraging 

existing infrastructure but concentrating delay and 

resilience issues. Lateral inter-platform links create mesh 

topologies that shorten routes and add path diversity, 

though they require precise pointing and timing. 

Integrated IAB reuses spectrum for backhaul through 

satellites or HAPS, rapidly extending coverage in fiber-

sparse areas [32]. Transparent payloads centralize QoS at 

gateways, whereas regenerative payloads enable on-board 

shaping to reduce jitter and blocking. In practice, hybrid 

approaches combine these patterns, balancing gateway 

density, mesh connectivity, and resource partitioning to 

optimize latency, resilience, and capacity. 

3) Intermittency and DTN 

In disrupted environments such as polar routes, oceans, 

or sparse gateway regions, delay-/Disruption-Tolerant 

Networking (DTN) supports store–carry–forward with 

time-aware contact plans and custody transfer [33]. DTN 

separates delay-tolerant from delay-critical flows, 

protecting real-time traffic during short visibility 

windows. Transparent payloads treat aloft segments as 

variable trunks, while regenerative payloads enable 

selective retransmission and aggregation. Properly 

designed, DTN transforms intermittency from a limitation 

into a predictable performance parameter, ensuring 

reliable operation where continuous end-to-end paths are 

unavailable. 

F. Enabler-Driven Architecture 

Enabling technologies are reshaping integrated TN–

NTN architectures by influencing the placement of 

functions, the interfaces exercised, and the performance 

envelopes attainable. Three enablers stand out - RIS, 

NGMA, and ISAC alongside coexistence-first design 

principles that treat spectrum sharing as a primary 

constraint rather than a secondary optimization. 

1) Reconfigurable Intelligent Surfaces (RIS)  

RIS panels are engineered radio surfaces that 

manipulate propagation without full transceivers [34]. In 

TN–NTN systems, they can be deployed on terrestrial 

sites to mitigate blockage, mounted on high-altitude 

platforms to act as reconfigurable reflectors, or installed 

on maritime platforms to stabilize links near the horizon. 

Their architectural role lies in shaping coverage and 

recovering link budgets at stratum boundaries, thereby 

reducing the need for dense gateways or additional relays. 

Design choices concern placement, aperture, and the 

specific interfaces supported (service or feeder links). 

Properly integrated, RIS reduces energy per delivered bit 

and extends system agility, but requires dedicated control 

and calibration resources. 

2) Next-Generation Multiple Access (NGMA)  

NGMA methods, such as NOMA and RSMA [2, 35], 

shift contention from connection establishment to 

receiver processing. This enables uplink aggregation at 

HAPS or UAVs, where partially separated streams can be 

forwarded efficiently, or regenerative processing on 

satellites, where precoding or stream separation reduces 

feeder load. Architecturally, the main variables are the 

locus of processing (ground, air, or orbital) and the 

mapping of user groups to transport trunks. NGMA 

reduces signaling overhead and random-access contention 

but introduces additional processing and validation 

demands, particularly when functions are moved aloft. 

3) Integrated Sensing and Communication (ISAC) 

ISAC jointly designs waveforms and scheduling to 

serve communication and sensing tasks. In SAG and 

SAGS deployments, altitude and geometry provide 

advantageous baselines for localization and 

environmental monitoring. ISAC makes timing 

determinism and line-of-sight preservation first-order 

design constraints, leading to architectural choices [1] 

such as stable HAPS anchors, prioritized lateral aloft 

links, and compute placement on HAPS or regenerative 

satellites for fast fusion and feedback. These features 

favor deeper coupling, where shared identity and time 

bases can support both sensing and communications. 

4) Coexistence-first blueprints  

In scenarios, where TN and NTN share spectrum, 

coexistence becomes an architectural baseline [29]. Four 

patterns are common. Partitioned coexistence separates 

resources by time, frequency, or space, offering 

robustness at the cost of spectral efficiency. Coordinated 

coexistence exchanges scheduling and interference 

budgets across domains, enabling efficient use in 

contested areas but requiring trusted interfaces. 

Opportunistic coexistence exploits temporal or spatial 

gaps, suiting sparse deployments with bursty traffic. 

Reverse-pairing duplexing assigns opposite directions to 

TN and NTN in shared bands, reducing interference 

along feeder arcs and coastal cells. These strategies shape 

gateway siting, beam geometry, and telemetry needs, 

directly constraining feasible topologies. 

These enablers are complementary but compete for 

power, spectrum, and control budgets. RIS can offset 

gateway density but requires physical siting and 

calibration. NGMA improves spectrum use but increases 

on-platform processing demands. ISAC strengthens 

sensing capabilities but narrows flexibility in path 

diversity and energy-saving policies. Coexistence-first 

designs cap peak throughput but can recover efficiency 

through RIS or NGMA if supported by sufficient 

observability. Collectively, these enablers are not 

peripheral but central to architectural design, determining 

where capacity is inserted, how paths are conditioned, 

and which service guarantees can be credibly sustained at 

scale. Table II summarizes how the architectural 

approaches for TN–NTN integration, as discussed above, 

have been addressed in the existing literature.  
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TABLE II: REVIEW OF ARCHITECTURES APPROACHES FOR TN–NTN INTEGRATION 

Ref. Focus Architectural Approach Contribution 

[22] 
Multi-layer integration of TN–

NTN for 6G 

3GPP roadmap + modular waveform + 

cross-domain management 

Proposed a multi-layer approach combining terrestrial, aerial, and 

satellite; addressed seamless connectivity, resource optimization, 

and FSO management. 

[23] 
Hierarchical NTN with LAPs, 

HAPs, and satellites 

Comparative analysis of multilayer 

configs 

Analyzed different multilayer configurations; provided design 

guidelines for balancing flexibility, coverage, and latency vs. 

stand-alone systems. 

[18] 
NTN architecture under realistic 

hardware limitations 

RIS + NGMA integration + 

impairment-aware architecture 

Proposed multi-layer NTN including HAPS-SMBS, RIS-enabled 

UAVs, and NOMA; evaluated hardware impairments; suggested 

future directions in RF mitigation, UAV power 

[16] 
Integrated control plane for TN–

NTN convergence 

Control-plane architecture for 

orchestration & monitoring 

Designed TN–NTN control plane for interoperability and QoS 

assurance; enabled performance monitoring and end-to-end 

orchestration across heterogeneous domains. 

[24] 

Cross-domain SDN for multi-

layer space–terrestrial integrated 

networks 

Domain-split SDN (satellite, aerial, 

terrestrial) 

Proposed SDN-based MLSTIN architecture; improved 

reconfigurability and decision-making efficiency; identified 

challenges in managing heterogeneous devices. 

[25] 

Controller placement in SDN-

based satellite–terrestrial 

networks 

Distributed multi-layer hierarchical 

controller model 

Proposed super/master/slave controller hierarchy; introduced 

time-slot stabilization and inter-layer strategies; improved 

scalability, stability, and cost-efficiency. 

[26] 

Cooperative NTN–TN 

architecture for extreme 6G 

coverage 

Cooperative HAPS integration, shared 

spectrum, dual connectivity 

Proposed cooperative NTN–TN with spectrum/resource sharing; 

evaluated HAPS performance in 6G simulator, enabling 

ubiquitous, cost-efficient extreme coverage. 

[27] 

Cooperative multilayer edge 

caching in satellite–terrestrial 

networks 

Three-layer cooperative caching (BS, 

satellite, gateway) + iterative 

algorithms 

Proposed cooperative caching strategies to minimize content 

retrieval delay; introduced cache hit probability analysis and 

optimal placement algorithms. 

[28] 

TaNTIN – Collaborative 

technologies for B5G/6G TN–

NTN 

Conceptual framework (AI, 

blockchain, MEC, tactile Internet, 

AR/VR) 

Reviewed collaborative technologies in TaNTIN; highlighted their 

role in enabling QoS for telemedicine, e-education, gaming, and 

business applications. 

[29] 
Spectrum coexistence in S-band 

for TN–NTN 

Stochastic geometry modeling of 

coexistence scenarios 

Derived analytical models for coverage and data rate; identified 

conditions where TN–NTN coexistence is feasible; provided 

insights for spectrum sharing. 

[30] 

Space–Air–Ground–Sea 

(SAGS) cooperative integration 

system 

AI-driven situational awareness (RL, 

GCN, multimodal fusion), robust 

transmission 

Designed a SAGS cooperative architecture for global coverage; 

improved convergence, latency, and throughput via AI-enhanced 

awareness, reliability, and scheduling. 

[31] 
Dynamic topology & routing for 

STNs 

Dyna-STN framework + OSPF overlay 

routing 

Proposed dynamic discrete topology model with virtual nodes; 

improved routing, packet forwarding, and service continuity under 

time-varying STN topology. 

[32] 
Integrating TN–NTN via IAB 

technology 

System-level simulation tool for IAB + 

satellite backhaul 

Analyzed IAB with LEO/GEO satellites; evaluated registration 

time, link capacity, latency; showed feasibility with constraints 

from satellite links. 

[33] 

Delay & Disruption Tolerant 

Networking (DTN) for 

terrestrial & TCP/IP 

Systematic Literature Review (SLR) 

Surveyed DTN applications for terrestrial/space; classified studies 

by architecture, routing, performance; provided research gaps via 

color-coded matrix. 

[2] 
3GPP-driven TN–NTN 

integration 

3GPP guidelines + AI-assisted 

beamforming 

Illustrated TN–NTN integration roadmap via 3GPP; highlighted 

AI/beamforming role; validated effectiveness through numerical 

analysis. 

[1] 

AI-assisted maritime 

communications (SeaX-G 

architecture) 

Review + AI/ML-based optimization 

scenarios 

Proposed TN–NTN architecture for maritime; mapped 6G 

enablers (AI, spectrum, offloading) to use cases (fleet 

coordination, logistics, emergency response). 

Fig. 3. Key dimensions of AI techniques for TN–NTN integration. 

V. AI-DRIVEN TECHNIQUES FOR 6G TN-NTN SYSTEMS

AI has emerged as a cornerstone in shaping TN–NTN 

convergence, providing an overarching intelligence layer 

that influences resource management, mobility, 

scheduling, and orchestration. To capture this breadth, the 

following subsections organize AI contributions into 

learning paradigms, functional domains, and application-

specific strategies. This structure enables a holistic view 

of how AI shapes integrated architectures into adaptive 

and sustainable communication systems. Fig. 3 illustrates 

the key dimensions of AI techniques for TN–NTN 

integration. 

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 15, No. 1, 2026

8



A. AI Learning Paradigm  

AI has emerged as a central enabler for TN–NTN 

integration, governing both the optimization of network 

functions and the orchestration of heterogeneous 

resources. The architectural challenge lies in selecting 

appropriate learning paradigms for different decision 

loops ranging from fine-grained radio resource 

management to system-wide policy control. 

Supervised Learning (SL) and Unsupervised Learning 

(UL): SL is applied where labeled datasets exist, for 

example in channel prediction or mobility classification, 

enabling accurate regression or classification of radio 

conditions [14]. UL is suited for anomaly detection, 

clustering of traffic patterns, and unsupervised beam 

selection in highly dynamic NTN scenarios, particularly 

where labeled data is scarce [15]. 

Reinforcement Learning (RL) and Deep RL (DRL): RL 

enables agents to adapt policies based on feedback from 

the environment, making it particularly relevant for 

spectrum sharing, inter-tier handover, and resource 

scheduling under uncertainty. DRL scales this paradigm 

to high-dimensional state spaces, allowing UAV 

trajectory optimization, adaptive satellite beamforming, 

and dynamic slice admission to be jointly optimized with 

latency and energy constraints [36, 37]. 

Federated Learning (FL): FL distributes model 

training across devices, gateways, or even satellites, 

aggregating model updates rather than raw data. This 

paradigm respects privacy and reduces backhaul load, 

while enabling adaptation to region-specific conditions. 

Architecturally, FL aligns with deep coupling, where 

common models are maintained but personalized updates 

reflect local context [38]. 

Self-supervised learning leverages unlabeled traffic 

and environmental data to pre-train representations that 

reduce the need for curated datasets [39]. This is 

particularly valuable in NTN environments where 

labeling costs are prohibitive and channel conditions 

evolve rapidly. Pre-trained models can then be fine-tuned 

for tasks such as interference prediction, anomaly 

detection, or beam alignment. 

Large Language Models (LLMs) introduce a new layer 

of capability at the level of intent interpretation and 

policy synthesis. By processing high-level service 

descriptions or operator intents, LLMs can translate 

requirements into admissible network policies, 

interfacing with orchestration frameworks via 

standardized northbound APIs [40]. While not replacing 

domain-specific optimization, LLMs augment human 

operators by providing explainable reasoning, rapid 

policy adaptation, and multi-domain coordination across 

terrestrial and non-terrestrial segments. 

Taken together, these paradigms define a layered AI 

toolkit. SL and UL provide foundational perception and 

clustering capabilities; RL and DRL deliver adaptive 

decision-making in dynamic environments; FL extends 

learning across distributed nodes; self-supervision 

improves scalability where labels are sparse; and LLM-

assisted control elevates AI’s role to high-level policy 

management. Their integration transforms TN–NTN 

systems from static infrastructures into adaptive fabrics 

capable of sustaining 6G-scale inclusiveness, resilience, 

and sustainability. 

B. Radio Resource Management (RRM) 

RRM is a critical function in the integration of TN–

NTN, as it governs spectrum allocation, beam scheduling, 

power control, and interference management across 

heterogeneous strata. Architecturally, RRM decisions 

determine how resources are mapped onto multi-layer 

stacks, coordinated across coupling depths, and executed 

through enablers such as RIS and NGMA. AI has 

increasingly been adopted to address these challenges, 

offering adaptive decision-making under the uncertainty 

of dynamic topology, intermittent connectivity, and 

diverse service requirements. 

1) Beamforming and beam-hopping. 
Satellite and high-altitude systems rely heavily on 

multi-beam coverage and beam-hopping to manage 
spatial and temporal variability. Conventional static 
scheduling often leads to inefficient utilization under 
bursty traffic or mobility-induced demand. AI techniques, 
particularly RL and DRL, have been shown to optimize 
beam-hopping patterns by learning demand distributions 
and minimizing service outage [41], while SL models 
exploit historical propagation data to calibrate beam 
pointing and reduce sidelobe interference. In deeply 
coupled architectures, AI-driven beam management can 
be integrated with terrestrial schedulers to ensure end-to-
end QoS continuity across space–air–ground domains. 

2) Power allocation  

Power allocation is a fundamental design concern in 

cooperative TN–NTN systems [42]. AI-driven methods 

enable adaptive and distributed power control that 

accounts for Doppler shifts, variable channel states, and 

platform-specific energy budgets. Multi-agent RL 

frameworks have demonstrated superior performance in 

balancing transmit power across heterogeneous nodes, 

while FL has been proposed for UAVs and LEO satellites 

to collaboratively optimize power without centralizing 

sensitive channel state data [2]. Such approaches align 

with sustainability goals by minimizing energy per 

delivered bit and supporting carbon-aware switching 

policies. 

3) NGMA schemes  
NGMA schemes such as NOMA and RSMA, rely on 

intelligent user grouping to achieve high spectral 

efficiency. Clustering methods based on unsupervised 

learning have been applied to partition users according to 

channel and QoS characteristics, while DRL-based 

schedulers dynamically adapt grouping to maintain stable 

throughput under gateway-sparse or interference-prone 

conditions [43, 44]. Architecturally, AI-enabled grouping 

decisions interact closely with the payload and transport 

fabric, determining whether grouping is realized at the 

terrestrial edge, the air tier, or regenerative satellites. 

4) RIS control  
RIS control offer an additional lever for shaping 

propagation in TN–NTN systems. However, the high 

dimensionality of RIS configuration makes manual 

optimization impractical. AI has been widely investigated 
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as a solution: SL techniques map channel conditions to 

RIS states [34], while DRL frameworks optimize RIS 

configuration jointly with beamforming and power 

allocation, reducing outage probability and enhancing 

spectral efficiency [45]. In tight and deep coupling 

regimes, AI-driven RIS orchestration ensures consistency 

with end-to-end slice policies and facilitates cross-plane 

coordination. 

Across these domains, AI converts RRM from a static 

configuration problem into an adaptive control loop that 

exploits real-time telemetry and historical data.  By 

embedding learning paradigms—SL, RL/DRL, FL, and 

self-supervision—into beam management, power 

allocation, NGMA grouping, and RIS control, integrated 

TN–NTN systems achieve higher resilience, efficiency, 

and scalability.  Importantly, these AI-driven strategies 

not only optimize performance but also reinforce the 

architectural goals of inclusiveness, sustainability, and 

service intelligence envisioned for 6G. 

C. Mobility and Connectivity Management  

Mobility and multi-connectivity are central challenges 

in the integration of TN–NTN. Architecturally, they 

determine how user sessions are maintained across 

heterogeneous strata, how anchors are relocated in multi-

layer stacks, and how continuity is preserved under 

different coupling depths. Conventional handover and 

connectivity procedures originally designed for terrestrial 

domains struggle in integrated settings due to long 

propagation delays, Doppler shifts, and intermittent link 

visibility. AI offers mechanisms to predict mobility 

patterns, orchestrate make-before-break transitions, and 

optimize multi-connectivity policies in real time. 

1) Connectivity management 

In loosely coupled deployments, mobility events across 

TN and NTN are typically handled as disjoint domain 

transitions, often leading to service interruption. AI-

driven approaches mitigate this by predicting handover 

triggers in advance, using trajectory data, historical 

mobility traces, and environmental context. RL and DRL 

have been employed to select optimal target cells in 

dynamic aerial and satellite scenarios, reducing handover 

failures and packet loss [15, 46]. FL extends these 

capabilities by enabling localized mobility prediction 

models at UAVs, HAPS, or satellites without centralizing 

user data, thereby aligning with privacy and latency 

constraints. In deeply coupled architectures, AI allows 

distributed mobility anchors to coordinate anchor 

relocation seamlessly, ensuring continuity even in 

gateway-sparse or high-mobility environments. 

2) Multi-connectivity  

Simultaneous connectivity across TN and NTN is 

critical for resilience, throughput aggregation, and 

URLLC. AI enhances multi-connectivity by dynamically 

selecting and weighting active links across space, air, and 

ground domains based on instantaneous channel 

conditions, queue states, and service-level objectives. 

Multi-agent RL has been applied to balance traffic across 

heterogeneous interfaces, improving reliability under 

fast-varying satellite topologies [37]. SL and UL methods 

assist in clustering and prioritizing link combinations, 

optimizing scheduling across terrestrial, aerial, and 

orbital segments. Moreover, AI-driven slice-aware 

policies can assign different flows to different links, 

latency-critical data through terrestrial or aerial paths, 

while delay-tolerant traffic is offloaded to satellite links, 
thereby harmonizing efficiency and QoS [36, 47]. 

By embedding AI into mobility and multi-
connectivity functions, integrated TN–NTN architectures 
evolve from reactive handover and static link aggregation 
toward proactive, predictive, and policy-driven 
connectivity. Learning paradigms such as DRL, FL, and 
self-supervised models enable adaptation to dynamic 
mobility regimes, ephemeris dynamics, and traffic 
heterogeneity [38]. These approaches not only stabilize 
user experience across domains but also reduce signaling 
overhead, energy consumption, and outage probability, 
reinforcing the architectural objectives of seamless global 
service continuity and sustainable 6G operations. 

D. Scheduling and Slicing  

Scheduling and slicing are central to service 
differentiation in integrated TN–NTN architectures. They 
determine how heterogeneous resources are partitioned 
across layers, how priorities are enforced under different 
coupling depths, and how service-level objectives are 
preserved across the control, user, and management 
planes. AI augments these processes by enabling 
predictive, adaptive, and cross-domain coordination of 
resources. 

1) Scheduling  

Traditional schedulers rely on static heuristics that fail 

to adapt to fast-varying satellite visibility, mobility, or 

bursty demand [48]. AI techniques transform scheduling 

into a predictive and adaptive task. RL and DRL models 

dynamically assign time–frequency–power resources 

across strata, optimizing latency and throughput under 

non-stationary conditions [48]. Multi-agent RL extends 

this by coordinating scheduling between terrestrial base 

stations, UAV relays, and satellites, thereby balancing 

load while reducing inter-tier interference. SL models 

trained on historical traffic traces anticipate demand 

surges and pre-allocate capacity, while unsupervised 

clustering groups flows with similar QoS requirements 

for efficient batch scheduling. 

2) Cross-domain slicing  

Slice admission and orchestration in TN–NTN settings 

require policies that adapt to heterogeneous constraints 

such as orbital dynamics, gateway density, and backhaul 

availability [49]. AI-based decision engines predict slice 

demand, reserve resources proactively, and harmonize 

scheduler decisions across domains. For example, DRL-

based frameworks map traffic classes to slices while 

respecting latency budgets, whereas FL allows distributed 

slice controllers on satellites or HAPS [50] to adapt 

policies locally and share model updates for global 

consistency. Self-supervised approaches are emerging to 

detect slice performance drifts without labeled fault data, 

allowing early adaptation before SLA violations occur. 
3) SLA assurance  

End-to-end SLA assurance requires that scheduling 

and slicing decisions remain consistent across multiple 
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planes. AI facilitates closed-loop assurance by correlating 

telemetry from ground, air, and space nodes into unified 

performance views. Graph Neural Networks (GNNs) and 

anomaly detection models identify bottlenecks in multi-

layer paths, triggering adaptive re-scheduling or slice 

reconfiguration [45]. AI-driven controllers also 

implement pre-emption and priority enforcement, 

ensuring that critical flows maintain service continuity 

even during congestion or link outages. 

E. Routing and Transport Service 

Routing and transport functions in integrated TN–NTN 

define how traffic traverses multi-layer paths, interacts 

with payload and topology choices, and adapts to 

coupling depth. Conventional routing protocols, designed 

for static terrestrial domains, are challenged by orbital 

dynamics, intermittent visibility, and heterogeneous link 

characteristics. AI enhances routing and transport by 

embedding predictive, adaptive, and data-driven decision-

making into path selection, congestion control, and 

reliability management. 

1) Path selection  

Dynamic topologies in LEO constellations, UAV 

relays, and HAPS networks render static routing tables 

inadequate. DRL has been applied to learn optimal next-

hop policies under changing connectivity graphs, 

reducing latency and improving delivery ratio. GNNs 

further enable AI-driven routing by embedding the time-

varying network graph into a feature space where 

shortest-delay or energy-efficient paths can be inferred in 

real time [14]. In deep coupling architectures, AI-based 

controllers can coordinate routing jointly across space, air, 

and ground tiers, ensuring end-to-end path continuity and 

slice compliance. 
2) Congestion and load balancing  

Transport efficiency depends on how flows are 

balanced across heterogeneous routes and gateways. 

MARL frameworks have demonstrated the ability to 

distribute traffic across lateral inter-satellite links (ISLs), 

gateways, and HAPS relays, thereby avoiding bottlenecks 

and stabilizing latency variance [51]. SL and UL 

approaches leverage historical traffic patterns to 

anticipate congestion and pre-emptively reroute traffic 

before overload occurs. Such AI-driven balancing is 

particularly relevant to backhaul-integrated operation, 

where gateway capacity and feeder link utilization dictate 

performance. 

3) DTN  

In contexts where intermittency is intrinsic, AI 

augments DTN protocols by optimizing store–carry–

forward operations. Predictive models exploit orbital 

ephemeris, mobility trajectories, and contact history to 

refine contact plans, custody transfer, and buffer 

prioritization [33]. RL agents dynamically schedule 

transmissions across contact opportunities, improving 

delivery ratios and reducing wasted retransmissions under 

uncertain link availability. 

4) Transport-layer adaptation  

End-to-end quality depends not only on routing but 

also on adaptive transport. AI-enhanced congestion 

control mechanisms, including DRL-based TCP variants, 

dynamically tune window sizes and retransmission timers 

to heterogeneous round-trip times in TN–NTN links [52]. 

Similarly, FL has been explored for adaptive coding and 

error control across distributed aerial and space nodes, 

enabling localized adaptation without centralizing 

telemetry. These approaches ensure that transport 

semantics (throughput, fairness, reliability) are preserved 

across strata. 

F. Computation Offloading and Service Placement  

Computation offloading and function placement are 

central to the design of integrated TN–NTN since they 

determine where tasks such as inference, caching, and 

analytics are executed across ground, aerial, and orbital 

resources. Architecturally, offloading decisions intersect 

with multi-layer compositions, cooperative patterns, and 

payload capabilities. Traditional offloading frameworks 

assume stable terrestrial links and homogeneous compute 

resources, but TN–NTN integration introduces additional 

uncertainties including intermittent visibility, 

heterogeneous energy budgets, and highly variable 

latency. AI has therefore emerged as an essential enabler 

for adaptive and context-aware offloading strategies. 

1) Dynamic offloading decisions 

AI techniques determine when and where tasks should 

be executed under dynamic connectivity conditions. RL 

and DRL have been applied to optimize task partitioning 

between terrestrial edge nodes, UAV relays, and LEO 

satellites, balancing delay against system load [53]. FL 

extends these schemes by enabling local models on 

UAVs and high-altitude platforms to collaboratively learn 

offloading policies without centralizing user data, which 

aligns with privacy and latency constraints [54]. 

Predictive supervised learning models have also been 

used to anticipate link intermittency, such as LEO 

handover windows, and proactively migrate tasks to 

stable anchors. 

2) Service placement across strata 

The location of compute functions, whether at ground 

edges, aerial nodes, or regenerative payloads, directly 

shapes service quality. DRL-based orchestration 

dynamically allocates Virtual Network Functions (VNFs) 

across tiers to minimize latency and reduce backhaul  

load [55]. Self-supervised learning methods have also 

been explored to infer optimal placement under sparse 

telemetry conditions, particularly in maritime or polar 

contexts [56]. Architecturally, these placement strategies 

align with programmable fabrics and cross-plane 

orchestration. 

AI transforms computation offloading and placement 

from static heuristics into adaptive processes that account 

for mobility, intermittency, and heterogeneous resource 

availability. Table III summarizes how the AI techniques 

for TN–NTN integration, as discussed above, have been 

addressed in the existing literature. 
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TABLE III: REVIEW OF AI TECHNIQUES FOR 6G TN–NTN SYSTEMS  

Study  Focus AI Techniques  Contribution 

[41] 
Predictive beamforming for 

RSMA 

Transformer + CNN 

(TranCN) 

Introduced TranCN for predictive precoder design using 

historical CSI, improving WESR and reducing feedback in 

dynamic NTN channels.  

[2, 42, 43, 

44] 
AI-enabled spectrum sharing 

HDRL + AI-assisted 

frameworks 

Proposed HDRL and AI-based spectrum sharing; positioned 

TN–NTN integration within 3GPP guidelines with validated 

numerical insights.  

[34, 45] 
AI for spectrum and 

beamforming management  

AI/ML (RIS 

beamforming, SDN) 

Reviewed RIS and SDN–AI frameworks for 
spectrum/beamforming optimization, improving energy 

efficiency and adaptability 

[14,46,47] 
AI for TN–NTN integration and 

connectivity 

ML (supervised, RL, 

DRL) + AI frameworks 

Surveys and frameworks on ML/AI-enabled TN–NTN 
integration; covers beamforming, spectrum sharing, Doppler 

mitigation, and AI-empowered NTN strategies. 

[48] 
User scheduling in satellite–

HAPS–ground networks 
Ensemble DNNs 

ML-based scheduling to balance load in heterogeneous 

networks, enabling real-time optimization under high 

complexity. 

[37, 49, 

50] 

AI-based network slicing & 

scheduling (vehicular, power 

grid, IoT resilience) 

RL (PPO, A2C) + AI 

orchestration 

Joint slicing & scheduling with RL, resilient slicing designs; 

reduced costs, higher slice satisfaction, and fault-tolerant 

STECN operations. 

[13, 51, 

52] 

AI-enhanced routing & load 

balancing in TN–NTN 

MADDPG, Federated 

RL, Fuzzy logic, CNN 

Proposed AoI-aware routing, fuzzy-logic load balancing, and 

hybrid CNN–fuzzy routing; improved QoE, reduced overload, 

and optimized inter-satellite traffic. 

[53, 55] 
RL-based task offloading 

(vehicular & general) 

RL (Q-learning, DQL, 

DDQN, DDPG) 

RL-driven offloading strategies for MEC-enabled TN–NTN, 
reducing system overhead and energy consumption by up to 

55%. 

[54] 
Privacy-preserving task 

offloading  
DRL-based optimization 

Introduced privacy-aware task offloading balancing completion 

time, energy, and user privacy. 

[56] 
Traffic offloading in hybrid 

satellite–terrestrial networks 

Recurrent Neuro-Fuzzy + 

SDN 

Dynamic offloading with RNFM + SDN; ~99% accuracy in 
resource allocation, outperforming conventional prediction 

algorithms. 

 

G. Efficacy and Progress of AI  

Existing research provides growing evidence that AI 

has already produced tangible performance gains across 

several core functions of 6G TN–NTN systems [2]. 

Reinforcement learning, Transformer-based prediction, 

and graph neural networks have demonstrated improved 

beam management, more accurate spectrum coordination, 

and more adaptive routing and congestion control in 

dynamic LEO–HAPS–terrestrial environments [6]. These 

techniques consistently outperform traditional rule-based 

and heuristic approaches, particularly under conditions of 

fast-changing topology, heterogeneous link quality, and 

intermittent visibility. AI has also proven effective in 

mobility prediction, handover optimization, task 

offloading, and service placement, reducing latency, 

energy consumption, and computation load in UAV- and 

HAPS-assisted MEC architectures [14, 15]. Collectively, 

these results indicate that AI is not merely a conceptual 

enabler but a practical driver of improved efficiency, 

resilience, and adaptability in integrated space–air–

ground networks. 

Despite this progress, the maturity of AI technologies 

within TN–NTN systems is uneven. Techniques such as 

RL-based scheduling, supervised channel prediction, and 

clustering-driven NGMA user grouping are relatively 

well validated and approaching deployment readiness. By 

contrast, federated learning for distributed NTN 

environments, DRL for mobility prediction, and AI-

driven spectrum sharing require further evaluation under 

realistic propagation conditions, hardware limitations, 

and multi-operator settings. More emergent directions—

including self-supervised learning for sparse NTN 

datasets and LLMs for intent-driven orchestration [40]—

remain exploratory, constrained by limited datasets, 

insufficient explainability, and the computational 

constraints of satellites, HAPS, and UAV platforms. 

Furthermore, the efficacy of AI is strongly conditioned by 

architectural context, with tightly coupled TN–NTN 

systems offering the unified observability and shared 

control needed for reliable end-to-end optimization [47]. 

Overall, the literature shows that while AI has achieved 

clear and measurable gains, significant methodological, 

architectural, and operational challenges must still be 

addressed before large-scale, real-world deployment 

becomes feasible. 

VI. SUSTAINABILITY STRATEGIES FOR GREEN TN-NTN  

Beyond performance optimization, integrated TN–

NTN systems must align with long-term sustainability 

goals. Energy efficiency, spectrum-aware operations, 

carbon-sensitive orchestration, and rigorous energy 

modeling collectively define how future 6G 

infrastructures can remain environmentally responsible 

while meeting service requirements. To reflect this, the 
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sustainability discussion is organized into multiple 

dimensions, each addressing a specific lever of green 

operation—from optimizing day-to-day network 

functions to embedding carbon awareness into 

orchestration frameworks. Fig. 4 illustrates the key 

sustainability strategies for TN–NTN integration. The 

following subsections outline these strategies in detail. 

Fig. 4. Key sustainability strategies for TN–NTN integration. 

A. Network Operations

AI has become a critical enabler of energy-aware

operations in integrated TN–NTN, allowing networks to 

balance sustainability objectives with service 

performance. By leveraging predictive analytics, adaptive 

control, and distributed learning, AI optimizes how 

energy is consumed across terrestrial, aerial, and orbital 

domains. Traditional schedulers often over-provision 

resources, leading to idle power waste [57–59]. AI-based 

scheduling frameworks predict demand patterns using 

historical traffic and mobility traces, enabling proactive 

activation of cells, beams, or payloads only when 

required. RL and DRL agents have shown effectiveness 

in minimizing idle consumption while preserving latency 

and QoS [60]. 

AI supports dynamic redistribution of traffic across 

ground, aerial, and space tiers based on energy efficiency. 

For example, low-demand periods allow UAVs or HAPS 

to offload users to terrestrial small cells entering low-

power states, while during surges, satellite overlays 

absorb excess demand [61]. MARL enables cooperative 

policies that jointly consider endurance limits, link 

budgets, and QoS requirements, achieving balanced 

energy use without compromising service 

continuity [56, 62]. Energy efficiency also depends on 

reducing signaling and retransmission overhead.  

AI-driven RIS control allows surfaces to adapt their 

reflection states in real time, improving link budgets and 

lowering transmit power requirements. Similarly, 

clustering and grouping strategies in NGMA schemes can 

be optimized through unsupervised learning and DRL, 

ensuring efficient user grouping that minimizes control 

rounds and retransmissions. AI-enabled green operations 

transform energy management from reactive policies into 

predictive and adaptive orchestration loops. By 

integrating AI into scheduling, load shifting, and enabler 

control, TN–NTN systems can significantly reduce 

energy per delivered bit while sustaining service quality, 

reinforcing both sustainability and scalability objectives 

for 6G networks. 

B. Spectrum Management

Spectrum management in integrated TN–NTN
architectures is closely tied to energy performance. 
Coexistence strategies that govern how terrestrial and 
non-terrestrial segments share spectrum—partitioned, 
coordinated, or opportunistic—carry distinct energy 
implications. Partitioned coexistence provides robust 
interference isolation [58] but requires excess spectrum 
allocation, leading to inefficient energy-per-bit outcomes 
[35]. Coordinated coexistence improves spectral 
efficiency through cross-domain scheduling and 
interference alignment but introduces control signaling 
overhead and tight synchronization requirements that 
raise energy cost. Opportunistic coexistence reduces 
active spectrum usage by exploiting idle gaps, yet 
frequent sensing and reconfiguration may offset energy 
savings in dense deployments. 

Critical applications such as time-sensitive control or 
safety services demand deterministic spectrum use with 
strict latency [63] and reliability bounds, often at the 
expense of energy flexibility. In contrast, delay-tolerant 
or non-critical traffic can exploit elastic coexistence 
policies, allowing the system to trade off guaranteed 
capacity for lower energy use. The architectural challenge 
lies in jointly scheduling deterministic and elastic flows 
without compromising service assurance. 

AI offers a means to balance coexistence efficiency 
and energy consumption. Predictive AI models also 
anticipate traffic and interference patterns, enabling 
proactive mode-switching that preserves service quality 
while minimizing unnecessary energy expenditure 

C. Carbon-Aware Orchestration

Carbon-aware orchestration extends energy efficiency
by explicitly considering the carbon intensity of power 
sources that sustain terrestrial, aerial, and orbital 
infrastructure. Rather than focusing solely on energy per 
delivered bit, this approach aligns workload placement 
and routing with the availability of renewable energy and 
low-carbon supply. By embedding real-time carbon-
intensity maps into orchestration frameworks, routing and 
workload placement can favor gateways, edge sites, or 
compute clusters powered by renewable energy. AI-based 
predictors further anticipate regional variations in carbon 
availability, enabling proactive redirection of traffic or 
tasks before intensity peaks occur [64]. 

Carbon-aware strategies extend to gateway activation 
and lateral link utilization. RL and GNNs have been 
applied to select optimal gateway subsets and inter-
platform links based not only on latency and capacity but 
also on renewable supply conditions [65].  

This ensures that non-terrestrial segments dynamically 
align with green terrestrial entry points. Workload 
placement and backhaul routing can be continuously 
tuned to carbon constraints. AI-driven orchestration shifts 
compute-intensive functions toward sites with lower 
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carbon footprints and defers delay-tolerant workloads to 
renewable-rich regions or times. Similarly, backhaul 
functions such as caching or aggregation can be 
reallocated across strata to minimize reliance on fossil-
intensive gateways, with slice controllers enforcing 
service-level guarantees.  

D. Energy Modeling and Efficiency  

Energy modeling is fundamental to sustainable design 

in integrated TN–NTN. A unified framework must 

capture heterogeneous energy characteristics across 

ground, aerial, and orbital strata to ensure performance 

and sustainability. The primary efficiency metric is 

energy consumed per successfully delivered bit, 

encompassing transmit power, protocol overhead, and 

retransmissions [66]. This measure enables comparison 

across terrestrial, aerial, and satellite links and supports 

carbon-aware routing and resource allocation. 

UAVs and HAPS are constrained by propulsion and 

payload endurance, while satellites rely on limited solar 

harvesting and thermal dissipation. These factors 

condition coverage duration, payload operation, and 

communication reliability, making accurate budget 

modeling essential. Efficiency metrics must integrate 

energy with service-level requirements such as latency 

and resilience. Composite indicators—linking energy per 

bit with delay or reliability trade-offs—guide 

orchestration decisions on routing, load balancing, and 

resource allocation across strata [67]. 

Standardized efficiency models that reflect link-level 

and platform-level budgets, combined with cross-stratum 

trade-off metrics, provide the foundation for sustainable 

TN–NTN operation and inform advanced AI-enabled 

orchestration strategies. Table IV summarizes how the 

sustainability strategies for TN–NTN integration, as 

discussed above, have been addressed in the existing 

literature. 

TABLE IV: REVIEW OF SUSTAINABILITY STRATEGIES FOR GREEN TN–NTN ECOSYSTEMS 

Study Focus Sustainability strategies Contribution 

[59–61] 
Adaptive / cooperative 
transmissions in integrated STNs 
and UAV-assisted links 

Trade-off among energy efficiency 
(EE), spectral efficiency (SE), and 
reliability (SER/latency) 

Propose adaptive direct/cooperative transmission 
schemes; demonstrate cooperative relays and adaptive 
mode switching improve EE while sustaining QoS. 

[68, 69] 
Joint UAV offloading, edge 
processing, and satellite forwarding 
under uncertainty 

Robust optimization with probabilistic 
constraints and online learning for 
uncertain UAV–satellite links 

Weighted minimization of propulsion, computation, and 
transmission energy; robust designs improve 
sustainability under uncertain or dynamic NTN 
environments. 

[70] 
IoT task offloading via satellite–
terrestrial terminals (TSTs) 

Two-stage MEC offloading with 
sequential fractional & dual 
decomposition 

E-CORA algorithm reduces IoT device energy by 
balancing ground/space offloading; lowers IMD energy 
consumption while maintaining service quality. 

[62, 71, 
72] 

Dynamic scheduling and offloading 
under satellite energy constraints 
(LEO SEC) 

Lyapunov-based dynamic optimization 
with energy budgets 

Propose task scheduling and offloading strategies that 
minimize completion time while respecting LEO long-
term energy limits; proven near-optimal guarantees. 

[35, 58, 
73] 

Energy-aware spectrum/power 
allocation (RSMA, cognitive STN, 
MIMO-NOMA TSN) 

EE-centric spectrum reuse with 
constrained DRL, interference-aware 
power allocation, and hybrid 
beamforming 

Introduce constrained SAC, closed-form optimal power 
allocation, and clustering/beamforming to achieve 
higher EE under QoS and coexistence limits. 

[63] 
RIS/UAV-assisted IoT with satellite 

connectivity 

STAR-RIS + UAV joint 

trajectory/power optimization 

Propose ISRU framework with alternating optimization; 

achieves 40% energy savings and higher sum-rates vs. 

unoptimized schemes. 

[5, 64, 65] 

Multi-tier orchestration: TN–UAV–

HAPS–Sat, maritime SAS-NTN, 

and UAV multicast orchestration 

Cross-stratum sustainable orchestration 

(cell switching, power/trajectory 

optimization, multicast grouping) 

Show improved EE, SE, and multicast delivery through 

latency-aware cell switching, maritime decomposition 

algorithms, and mobility-aware UAV scheduling. 

[66, 67, 

74] 

Energy-aware edge computing & 

freshness for IoT (LEO SEC, AoI, 

MEC for STINs) 

Energy-constrained MEC + AoI–EE 

trade-offs 

Introduce Lyapunov and drift-plus-penalty schemes; 

balance energy vs. freshness; reduce IMD energy 

consumption with satellite-assisted MEC. 

 

VII. HOLISTIC INTEGRATION FRAMEWORK FOR 6G  

The integration of TN-NTN in 6G cannot be fully 

addressed by treating architectural taxonomies, artificial 

intelligence techniques, and sustainability strategies as 

independent dimensions. A comprehensive perspective is 

required to capture how these elements interact to form a 

coherent and adaptive communication fabric. To this end, 

we propose a holistic integration framework for 6G, 

which synthesizes structural, operational, and ecological 

perspectives into a unified foundation for TN–NTN 

convergence. 

From the architectural standpoint, the taxonomies 

outlined earlier provide the structural backbone of 

integration. Variations in coupling depth, multi-layer 

composition, and functional plane distribution determine 

how control, user, and management functions are 

allocated and interconnected across terrestrial, aerial, and 

space domains. These design choices establish the 

attainable performance envelope—covering latency, 

reliability, and coverage—while simultaneously shaping 

the extent to which orchestration and intelligence can be 

embedded into the network. 

Built upon this structural backbone is the AI-enabled 
intelligence layer, which operationalizes the architecture 
by enabling dynamic optimization, predictive decision-
making, and distributed adaptation. Advanced learning 
paradigms—including reinforcement learning, federated 
learning, and self-supervised models—equip the network 
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to evolve beyond static configurations, ensuring that 
beams, slices, mobility anchors, and service placement 
can be continuously aligned with real-time conditions. 
This intelligence layer transforms the architectural design 
into a responsive and adaptive fabric capable of 
withstanding high mobility, intermittent connectivity, and 
heterogeneous service demands. 

The third pillar of the framework is defined by 

sustainability strategies, which embed ecological and 

societal imperatives into the integration process. Energy-

aware operations, spectrum coexistence, carbon-sensitive 

orchestration, and unified efficiency modeling elevate 

sustainability from a secondary consideration to a 

primary design criterion. By integrating these strategies 

directly into architectural choices and AI-driven 

orchestration loops, the framework ensures that 6G 

deployments advance not only toward universal coverage 

and service intelligence but also toward climate resilience 

and environmentally responsible operation. 

Collectively, Fig. 5 illustrates a holistic framework 

where architecture shapes the system’s design, AI shapes 

its operational behavior, and sustainability shapes its 

long-term viability. Their convergence forms the 

cornerstone of TN–NTN integration in 6G, providing 

both a conceptual roadmap for standardization efforts and 

a practical guide for real-world deployment. 

Fig. 5. Holistic framework for TN–NTN integration in 6G. 

VIII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 

Despite notable advances in TN–NTN research, 

several challenges continue to shape the trajectory of 6G 

development. Architecturally, integrating terrestrial, 

aerial, and satellite components remains difficult due to 

heterogeneous mobility, link characteristics, and protocol 

differences, and current standards provide only partial 

support for deep cross-segment coupling. These 

limitations highlight the need for architectural models 

that can accommodate multi-segment heterogeneity while 

enabling unified coordination. 

AI-enabled operation introduces additional constraints. 

Existing models often rely on limited or unevenly 

distributed datasets and are rarely tested under the 

extreme dynamics characteristic of LEO constellations, 

UAV platforms, or time-varying propagation conditions. 

Ensuring robustness, reducing communication overhead 

for distributed learning, and designing resource-efficient 

models suitable for power-constrained airborne and 

satellite nodes remain open areas for investigation. 

Sustainability considerations further complicate 

system design. The energy footprint of satellite 

constellations, HAPS platforms, and dense terrestrial 

deployments is substantial, yet systematic frameworks for 

carbon-aware routing, gateway selection, or lifecycle 

assessment are still underdeveloped. More work is 

needed to integrate energy and carbon modeling into 

architectural and operational decision-making. 

Taken together, these challenges point to future 

research directions that require closer alignment between 

system architecture, AI-driven control, and sustainability 

principles. Promising avenues include integrated design 

frameworks that jointly optimize these dimensions, the 

use of digital-twin environments for predictive and cross-

segment optimization, and sustainable-by-design 

approaches that embed environmental considerations 

early in 6G TN–NTN development. 

IX. CONCLUSION 

This review has examined TN–NTN integration 

through a unified perspective that treats architectural 

design, AI-enabled operation, and sustainability as 

interdependent elements of future 6G systems. The 

primary contribution of this work is the development of 

an integrated architecture–AI–sustainability triadic 

framework, which demonstrates how these dimensions 

collectively shape system behavior, design decisions, and 

long-term operational viability. 

The architectural analysis provides a structured 

foundation for understanding the emerging integration 

models and the constraints inherent in multi-layer, multi-

domain convergence. The synthesis of AI techniques 

shows how learning-driven mechanisms can enhance 

adaptability, autonomy, and coordination across dynamic 

space–air–ground environments. The sustainability 

discussion expands the scope by emphasizing the 

environmental implications of 6G deployments and 

demonstrating why energy- and carbon-efficient 

strategies must become core design principles rather than 

auxiliary considerations. 

Together, these insights underscore the importance of 

advancing TN–NTN research through a holistic lens that 

recognizes the mutual influence of structure, intelligence, 

and sustainability. The proposed triadic framework offers 

a coherent basis for identifying unresolved challenges—

such as interoperability gaps, resource limitations, and the 

absence of unified sustainability metrics—and provides a 

forward-looking direction for developing resilient, 

intelligent, and environmentally responsible 6G TN–NTN 

ecosystems. 
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