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Abstract—This study proposes an automated framework for 

detecting and tracking concealed weapons in thermal video, 

aimed at real-time surveillance in high-security public areas 

like airports and stadiums. Due to the lack of relevant public 

datasets, thermal videos were recorded using an infrared 

camera in scenarios simulating concealed weapons. Frames 

extracted from the videos were automatically annotated 

using the GroundedSAM model, which aligns textual 

prompts (“gun”, “knife”) with image content, eliminating 

manual labeling. A YOLOv11n model was trained on over 

6,200 labeled thermal images, achieving 81% precision, 82% 

recall, and 87% mAP@50. For tracking across frames, a 

Graph Neural Network (GNN) connected detected objects 

over time, 0.88 consistency for guns, and 0.66 consistency for 

knives. The integration of smart annotation, thermal-aware 

detection, and GNN tracking demonstrates strong potential 

for real-time, robust weapon detection in crowded, security-

sensitive environments.  

Index Terms—GroundedSAM, autodistill, YOLOv11n, 

thermal video dataset, Graph Neural Network (GNN) 

tracking algorithm, special evaluation metrics for tracking 

 

I. INTRODUCTION 

Continuous monitoring for concealed weaponry and 
dangerous objects has remained a significant problem in 
security constantly, especially in crowded areas (e.g., 
airports) and public venues (e.g., stadiums) where manual 
surveillance of each person is impossible [1, 2]. This has 
fueled an increasing requirement for automated, stand-off 
security systems to detect threats with sufficient precision 
to allow for their isolation or neutralization on time with 
minimum damage to civilian persons [1, 3]. 

Electromagnetic (EM) waves have long been utilized in 
non-contact security screening systems. Technologies 
such as X-rays, Millimeter Waves (MMW), and Terahertz 
(THz) waves are among the most employed modalities for 
detecting concealed objects in human subjects [1, 3, 4]. 
The internal X-ray images are more detailed, as X-rays 
have a high penetration depth. Still, their use is becoming 
more and more limited due to the health risks related to 
ionizing radiation exposure [5–7]. 

Although the wavelength of the IR thermography is 
between a few and ten micrometers, which is not the same 

as that of MMW and THz, security practices have certain 
special advantages. While it has some limitations 
regarding penetration under thick clothing, it offers better 
spatial resolution (and thus better visualization at a 
distance) [2, 8, 9]. Also, because iris recognition as a 
biometric system requires facial identification (due to the 
facial characteristics embedded in the iris), such IR-based 
imagery can provide enhanced privacy and offers fewer 
facial features implied in the form of the iris capture at 
passive presentation [10] . In passive thermography, the 
human body acts as the thermal source, and variations in 
heat distribution caused by concealed objects can be 
detected through thermal gradients on the surface of 
clothing [11, 12]. 

Even though IR has limited ability to perceive the 
surrounding environment, IR technology has exhibited 
great potential when integrated with Artificial  
Intelligence (AI) methods, especially Convolutional 
Neural Networks (CNNs), which have achieved good 
performance in several thermal imaging missions such as 
damage detection and object segmentation [13–16]. 
Nevertheless, IR-based systems may have inconsistency 
when they are manually made (especially in the case of 
layered clothing). Thus, adopting machine learning 
algorithms is important to increase the robustness and 
accuracy of detection results [17]. 

This study proposes a deep learning-based approach for 
concealed weapon detection and tracking in thermal video 
using CNNs. The researcher collected a custom dataset of 
thermal videos, and the training labels were automatically 
generated using the GroundedSAM model, which 
annotates thermal images based on textual descriptions 
such as “weapon” or “knife.” These annotations were then 
used to train a YOLOv11n object detection model. The 
proposed framework enables efficient and automated 
threat identification, significantly reducing the reliance on 
human intervention in surveillance scenarios. 

II. RELATED WORK  

The recent progress in deep learning, along with the 
advances in thermal imaging, has markedly enhanced the 
performance of detecting concealed weapons from 
challenging surveillance scenes. Several studies have 
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investigated combining CNNs architecture with infrared 
data to detect hidden threats with high precision. The 
authors have also used thermal-RGB fusion, active 
segmentation, and logistic regression-based classification 
in a low-visibility environment. Despite encouraging 
performance, most current models do not support real-time 
tracking and depend on costly manual annotation. In this 
section, we introduce related work and emphasize the 
novelty of our combined auto-labeling GNN-based 
tracking framework. 

Santos et al. [18] conducted a systematic review on deep 
learning-based weapon detection in surveillance footage, 
focusing on the methods employed, dataset characteristics, 
and challenges in automatic weapon detection. The review 
highlights several models, including Faster R-CNN and 
YOLO (You Only Look Once) architecture. The study 
discussed datasets that incorporate Realistic images and 
synthetic data, which have been shown to improve 
detection performance. The review notes that while 
various models demonstrated improvements in accuracy, 
specific numerical metrics were not consistently provided. 
However, it emphasizes that the performance of these 
models significantly decreases under challenging 
conditions, such as poor lighting and small weapon 
detection. The main challenges identified include Poor 
lighting conditions affecting detection accuracy. 

Gosain et al. [19] presented an automatic weapon 
detection system based on image processing and machine 
learning that aims to be an alternative to classic X-ray 
techniques. The presented approach combines thermal/IR 
images and traditional RGB or HSV images by applying 
Discrete Wavelet Transform (DWT) to suppress noise 
while retaining essential features for weapon detection and 
extracting the facial features. The processed video feeds 
are then analyzed through a two-step pipeline: we make 
use of YOLOv6 to detect objects by having a focus on 
weapon-related segments to prevent false positives and 
then we employ a Convolutional Neural Network (CNN) 
based on VGGNet to classify firearms. This final weapon 
classification model is logistic regression, which has been 
trained on a custom 1,759 weapon image dataset. Tested 
on 32 random images, the system produced promising 
performance metrics, suggesting possible real-time 
surveillance and threat localization by correctly 
identifying concealed weapons, yet preserving facial 
details for quick threat elimination. 

Ahmar et al. [20] used them as the benchmark to 
compare the performance of thermal imaging for object 
detection and tracking in degraded lighting context with 
state-of-the-art detection-based algorithms, namely, the 
Task-Aligned One-Stage Object Detection (TOOD) and 
the Varifocal Feature Network (VFNet), applied to thermal 
vs. RGB images. Their experiments on the City Scene 
RGB-Thermal MOT Dataset, which consists of paired 
thermal and visible images labeled manually from FLIR 
cameras, showed that the thermal-based trackers are much 
stronger than the RGB trackers, especially in low-light 
conditions. While precise accuracy measurements were 
not provided, the thermal models achieved high recall and 
strong detection across a range of conditions. In addition, 

a dynamic cut-off was also introduced within the tracking‐
by‐detection pipelines, which uses the bounding box 
dimension as input to improve the association in multi‐
object tracking. These results highlight the usefulness of 
thermal imaging in reliable object detection and tracking 
in challenging lighting conditions. 

Veranyurt et al. [21] proposed a deep learning-based 
framework for real-time detection and localization of 
concealed pistols using thermal imagery. The system 
combines two deep learning models: a fine-tuned VGG19 
convolutional neural network for classification, which 
achieved an F1 score of 0.84 on the test set, and a fine-
tuned YOLOv3 model for multi-task classification and 
localization, attaining a mean average precision (mAP) of 
0.95 with bounding box detection in approximately 10 
milliseconds. The authors created a custom dataset 
comprising thermal video recordings of multiple human 
models alongside publicly available thermal images to 
simulate various concealment scenarios. Their results 
demonstrate the effectiveness and robustness of 
integrating thermal imaging with advanced neural 
networks for enhancing security surveillance through 
accurate and rapid concealed weapon detection. 

Khor et al. [2] investigated the use of infrared 
thermography combined with machine learning techniques 
for non-invasive detection and classification of concealed 
objects beneath clothing. The study employs 
Convolutional Neural Networks (CNN), specifically a 
transfer-learned ResNet-50 model pre-trained on 
ImageNet, fine-tuned with infrared images from controlled 
experiments simulating security checkpoint scenarios. 
Several image preprocessing techniques were applied to 
enhance object visualization, including principal 
component analysis, Chan-Vese active contour 
segmentation, and Fuzzy-c clustering. The optimized 
ResNet-50 classifier achieved Area-Under-Curve (AUC) 
values of 0.869 and 0.922 on datasets of 900 and 3082 
images, respectively, with prediction errors reduced to 
19.9% and 14.9% after threshold optimization. This work 
demonstrates the potential of combining thermal imaging 
and deep learning for effective, real-time concealed object 
detection in security screening applications. 

Muñoz et al. [17] proposed a novel two-stage method 
for concealed handgun detection that integrates thermal 
imaging with deep learning techniques. The method first 
detects potential firearms at the frame level and 
subsequently verifies their association with detected 
persons, effectively reducing false positives and negatives.  

A significant contribution is the development of a 
lightweight algorithm optimized for low-end embedded 
devices, facilitating deployment on wearable and mobile 
platforms such as chest-worn Android smartphones 
equipped with miniature thermal cameras. The study 
includes a tailored thermal dataset simulating controlled 
concealment scenarios for system validation. 
Experimental results demonstrate an mAP@50-95 of 
64.52%, outperforming previous state-of-the-art 
approaches and confirming the method’s effectiveness and 
scalability for real-world law enforcement and 
surveillance applications. 
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Muñoz et al. [22] introduced a novel two-stage 
concealed handgun detection method leveraging thermal 
imaging combined with deep learning. The approach first 
detects handguns at the frame level and then verifies their 
spatial association with detected persons to reduce false 
alarms. A lightweight algorithm optimized for low-end 
embedded devices enables deployment on wearable 
platforms such as chest-worn Android smartphones with 
miniature thermal cameras. The authors also developed a 
dedicated thermal dataset simulating various concealment 
scenarios, including clothing types and distances. 
Experimental results show promising detection 
performance with a balance between accuracy and 
computational efficiency, achieving a mean Average 
Precision (mAP) of approximately 64.5% on the test sets. 
This work demonstrates the feasibility of real-time, hands-
free concealed weapon detection suitable for security 
applications in airports, public events, and law 
enforcement operations. 

Torregrosa-Domínguez et al. [23] aimed at enhancing 
on-the-fly weapon detection in industrial environments, 
with special emphasis on small weapons, for which hiding 
is still tricky. The proposed work uses the current state-of-
the-art object detection models, i.e., YOLOv5, YOLOv7, 
YOLOv8, and proposes Scale Match, which aims to 
improve the detection quality for weapons with one of the 
smallest aspect ratios. Authors created Disarm-Dataset as 
a collection of datasets, including new and previously 
obtained images, to cover complex scenes where weapons 
are not easily identified from simpler scenes with 
identifiable weapons. 

Despite the numerous contributions to concealed 
weapon detection using thermal imaging and deep learning, 
most prior works, such as Alavi et al. [18],  
Veranyurt et al. [21], and Khor et al. [2], focused solely on 
detection without integrating object tracking mechanisms. 
While Muñoz et al. [17, 22] introduced a two-stage 
detection and association method, they focused on mobile 
deployment rather than scalable deep learning tracking 
architectures. Moreover, most existing literature relies on 
manually annotated datasets [18, 22], which can be 
resource-intensive. In contrast, our approach incorporates 
automatic labeling through GroundedSAM, enabling 
scalable dataset preparation. Furthermore, our system 
uniquely integrates YOLOv11n for lightweight yet 
accurate detection and leverages Graph Neural Networks 
(GNN) for robust multi-frame tracking, filling the gap in 
real-time, end-to-end concealed weapon detection and 
tracking in thermal videos. 

III. METHODOLOGY 

The proposed method consists of a multi-stage pipeline 
for detecting and tracking concealed weapons in thermal 
video streams. As illustrated in Fig. 1, the system begins 
with an infrared camera’s thermal data acquisition, 
followed by frame extraction and automatic annotation 
using GroundedSAM. Preprocessed images are then used 
to train the YOLOv11n detection model. Detected objects 
are subsequently tracked across frames using a Graph 
Neural Network (GNN), which assigns consistent 

identities based on spatial and temporal features. 

 
Fig. 1. Stages of the proposed method. 

A. Data Acquisition (Thermal Imaging Equipment) 
This study’s thermal video data was exclusively 

captured using the Hikvision DS-2TD2617B-6/PA bi-
spectrum network camera, as shown in Fig. 2. Although 
the device supports both thermal and optical imaging, only 
the thermal imaging capability was utilized to ensure 
consistency with the research objectives. 

This camera provides thermal data for reliable object 
detection and analysis in low-visibility or concealed 
environments. The thermal sensor operates in the Long-
Wave Infrared (LWIR) range with a resolution of 160 × 
120 pixels and a Noise Equivalent Temperature Difference 
(NETD) of less than 40 mK, enabling the detection of 
subtle temperature variations across objects and surfaces. 

The thermal lens has a focal length of 6 mm, optimized 
for mid-range detection. The camera offers connectivity 
with PC and NVR systems through USB and LAN 
interfaces and is manageable using Hikvision software 
tools such as iVMS-4200 and HikCentral. The camera was 
tripod-mounted for stability during experiments and 
simulations, as depicted in Fig. 2. 

 
Fig. 2. Thermal camera mounted on tripod for stable video capture. 

This setup enabled the collection of a reliable thermal 
dataset under controlled indoor and outdoor conditions, 
featuring human subjects carrying concealed objects and 
subjects without concealed items intended for subsequent 
detection analysis. 

Fig. 3 illustrates the tools used to collect the recorded 
data, representing a mock-up of weapons concealed during 
the recording process. These tools include a field knife 
with a leather sheath and an automatic pistol. These 
models were displayed against a wooden background to 
highlight their physical characteristics and design details, 

Data 
Acquisition  

Dataset 
Preparation and 

Annotation 

Image pre-
processing 

YOLOv11n 
Detection 

GNN-based 
Tracking 

Tracked Video 
with IDs 
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emphasizing that they were concealed under clothing 
during the data collection phase. 

 
Fig. 3. Knife with a leather sheath and an automatic pistol. 

B. Dataset Preparation and Annotation 
Thermal video streams were converted into a dataset of 

over 6,200 frames, extracted at a rate of one every five 
frames using the Supervision library. Automatic 
annotation was performed using GroundedSAM, guided 
by a caption ontology that defined “Gun” and “Knife” as 
target categories. 

This process significantly reduced the need for manual 
labeling while generating accurate bounding boxes. The 
annotations were structured in YOLOv11n-compatible 
format and used for training. 

C. Image Preprocessing 
Each extracted frame underwent a preprocessing stage 

to enhance the visibility of thermal features and improve 
detection accuracy. The following techniques were applied: 

• Contrast enhancement using CLAHE (Contrast 
Limited Adaptive Histogram Equalization) [24, 25] 
adaptively boosts local contrast and enhances 
thermal edges while minimizing noise amplification. 
This was especially useful for highlighting subtle 
temperature variations and object contours in 
thermal frames, as shown in Fig. 4 [26, 27]. 

• Background suppression using intensity 
thresholding techniques to remove low-temperature 
regions irrelevant to the detection task [28, 29]. 

• Normalization of thermal intensities, ensuring 
consistent pixel value distributions across varying 
lighting conditions and thermal gradients. 

 
(a)                                                    (b) 

Fig. 4. (a) Raw thermal image. (b) Enhanced using CLAHE to improve 
contrast and visibility. 

D. Automatic Annotation Using GroundedSAM 
GroundedSAM stands as an advanced framework in 

semantic segmentation, specifically designed to tackle the 
challenges posed by open-set object detection and 
adaptable segmentation across a wide range of visual 
domains. This innovative system combines two leading-
edge components: Grounding DINO, an open-vocabulary 

object detector capable of zero-shot detection, and the 
segment anything model (SAM), a flexible segmentation 
architecture that generalizes effectively across various 
image types and tasks [30]. 

For the automatic annotation of guns and knives in 
thermal video, GroundedSAM works as follows: 

1) Textual prompt input 
• The user is asked to input text prompts: “gun” and 

“knife”. 
2) Frame-by-frame detection with grounding DINO 
• Each thermal frame is feed into Grounding DINO. 
• It leverages the prompts to do zero-shot detection, 

producing bounding boxes around guns and knives, 
even though those kinds of items weren’t in its 
training data. 

3) Pixel-level segmentation with SAM 
• SAM takes the bounding boxes or textual guidance 

and performs fine-grained segmentation on each 
detected object. 

• The result of this feature is a mask that segments 
the exact shape of each gun or knife in the image. 

4) Automated annotation output 
The output of each frame also includes the object 
label (“gun”, “knife”), the bounding box, and the 
segmentation mask. 

E. Model Training 
The YOLOv11n model, a lightweight, real-time object 

detection architecture, was trained on the prepared thermal 
dataset. The training dataset comprised approximately 
6,200 images extracted from thermal video streams under 
varied conditions to ensure robust generalization. The 
model was trained under the following settings: Image 
resolution: 640×640 pixels and number of epochs: 50. 
Training progress was closely monitored using Ultralytics’ 
built-in tools, which provided comprehensive 
visualizations of performance metrics, including 
classification loss, localization loss, and objectivity loss.  

The model demonstrated reliable performance under 
diverse thermal conditions in detection,  as shown in Fig. 5. 
It consistently detected concealed weapons, although 
detection accuracy declined slightly when objects were 
hidden beneath thick fabrics. This was attributed to 
emissive differences between materials (e.g., cotton ≈ 0.67 
vs. polyester ≈ 0.80). Despite this, the model maintained 
robust performance, particularly for firearms. 

 
Fig. 5. The process of detecting the gun and knife. 

F. Tracking Hidden Weapons 
The next step in the weapons detection stage, which 

involves tracking hidden weapons across video frames, 
was implemented by integrating a Graph Neural Network 
(GNN) framework using PyTorch Geometric. Each 
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detection obtained by the YOLOv11n model was treated 
as a node within a constructed graph, where edges were 
established between temporally adjacent detections of the 
same object class (either “Gun” or “Knife”). 

The GNN was trained to predict Track IDs by 
evaluating spatial proximity and appearance similarities 
across detections, effectively associating objects over time 
and forming coherent trajectories. A tracked video 
(tracked_output.mp4) was generated after completing the 
tracking process. In this video, bounding boxes and 
corresponding assigned track IDs were visualized, 
illustrating the successful association of objects across 
frames under challenging thermal imaging conditions, 
where conventional appearance-based trackers often fail 
due to limited visual cues, as shown in Fig. 6. 

Fig. 6. Tracking gun and knife across frames using GNN, with unique 
IDs and bounding boxes. 

The tracking pipeline can be summarized as follows: 
• Detection Phase:  Object detection was performed

on each video frame using the YOLOv11n model at
an input resolution of 640 × 640 pixels. Some frames
did not produce detections, primarily due to
concealment or environmental factors.

• Tracking Phase:  Detections were converted into a
graph structure modeling object relations across
frames. The GNN assigned consistent Track IDs
based on learned spatial and appearance features.
The tracked video was outputted and saved as
tracked_output.mp4.

• Postprocessing and Analysis: Tracking results were
analyzed to extract performance metrics evaluating

tracking consistency and reliability. This approach 
allowed the system to maintain stable object 
identities even under partial occlusions or variable 
thermal conditions. 

• Object tracking performance: The performance of
object tracking was quantified using the following
metrics. Results showed good gun up-to-down
consistency, no false ID switches, and an average
consistency score of 0.88. These results also
demonstrate the system’s capability to preserve
consistent object identities over multiple frames,
even while dealing with partially occluded and/or
thermally different provided resized objects.

IV. RESULTS ANALYSIS

A. Analysis of Auto-Detection and Annotation Results
The automatic detection and annotation pipeline quality

was quantitatively evaluated using several criteria. Results 
validate the ability of the system to detect concealed 
weapons in thermal imagery. We summarize the results for 
our detection accuracy in Table I, showing that the 
proposed approach achieves high precision and recall for 
the defined classes of weapons. 

TABLE I: WEAPON DETECTION ACCURACY METRICS 
Metric Value 

Precision ≈ 81% 
Recall ≈ 82% 

mAP@50 ≈ 87% 
mAP@50–95 ≈ 85% 

The precision-recall curves and loss plots over training 
epochs are visualized in Fig. 7, yielding intuitive 
knowledge about the convergence pattern of the model and 
the class-specific prediction accuracy. 

The curves showed a continuous increase in precision 
and recall with the advancement of training, which means 
that the model learns well. With it, reduced training and 
validation loss could mean that the model was well learned 
and the overfitting was minimal. 

Fig .7. Precision-recall curves and loss graphs. 
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Fig. 8. Confusion matrix. 

One way to evaluate the accuracy of detection and 
labeling is by using a confusion matrix, as shown in Fig. 8. 
This matrix indicates that the model can correctly classify 
objects labeled as “gun” and “knife,” regardless of whether 
they are in the background.  The confusion matrix 
highlights that knives were detected more reliably than 
guns, suggesting areas for targeted improvements in 
firearm detection accuracy by augmenting training 
samples or enhancing feature extraction techniques for 
guns under thermal imaging conditions. 

Additionally, the overall trends observed in the 
precision-recall curves and loss graphs (Fig. 5) support the 
findings from the confusion matrix, showing steady 
improvements in class-specific accuracy throughout 
training. 

B. Analysis Results: Hidden Weapons Tracking
Performance

The tracking quality was quantitatively evaluated using
several metrics, as summarized in Table II (Tracking 
Quality Summary). The results demonstrate high 
consistency in tracking guns, with zero ID switches and a 
high consistency score of 0.88, indicating robust temporal 
association. 

TABLE II: TRACKING QUALITY SUMMARY 
Metric Gun Knife 

Total Detections 2179.0 3783.0 
Unique Track IDs 1.0 2.0 

Average Frames per Track 1927.0 1246.5 
ID Switches 0.0 1.0 

Track Fragmentation 81 60 
Maximum Track Length (frames) 1927.0 2491.0 

Consistency Score 0.88 0.66 

In contrast, knife tracking exhibited slightly greater 
fragmentation and ID switching, with a lower consistency 
score of 0.66. This behavior is expected, given Knife due 
to its small size and weak thermal signature, leading to ID 

switches. Future work may improve this using multi-
modal inputs or specialized tracking models. The system’s 
processing efficiency was also evaluated to verify its 
suitability for real-time applications. The average 
processing times per frame were: Preprocessing: 2.3 
milliseconds, Inference: 9.0 milliseconds, and 
Postprocessing: 0.7 milliseconds.  

These latency results validate the real-time capability of 
the system and its potential suitability for use in real-time 
monitoring applications where fast detection and tracking 
are required. 
C. Tracking Quality Evaluation

To evaluate the performance of the object tracking
model, we employed several standard metrics commonly 
used in multi-object tracking (MOT) tasks. These metrics 
include Average Frames per Track, ID Switches, 
Fragmentation, and Consistency Score and are defined as 
follows: 

Total detections (TD): Total Detections represent the 
cumulative number of times all objects are detected across 
all frames. It indicates how frequently the tracker identifies 
any object, regardless of identity. Higher values suggest 
increased object visibility and detection activity. This is a 
metric that can be calculated as Eq. (1): 

𝑇𝐷 = ∑ 𝑑𝑖
𝑁
𝑖=1  (1) 

where N is the total number of frames, and di is the number 
of detected objects in the frame 𝑖. 
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Unique track IDs (UT): This metric counts the number 
of distinct object IDs assigned during tracking. It reflects 
how well the tracker distinguishes between different 
objects. A higher count typically indicates greater object 
diversity or potential over-fragmentation. This metric can 
get it value as Eq. (2): 

𝑈𝑇 = |{𝐼𝐷𝑗}|                            (2) 

where {IDj} is a set of unique track IDs assigned during 
the tracking period and |{IDj}| is the a size of the set.  

Average Frames per Track (AFT): This metric measures 
the average number of frames in which each object is 
successfully tracked, and this metric can be calculated as 
Eq. (3): 

AFT= 1
𝑈𝑇

∑ 𝐹𝑖
UT
i=1                              (3) 

where UT is the total number of unique track IDs and Fi is 
the Number of frames in which the object I was tracked. 

ID Switches (IDS): An ID switch occurs when the 
identity assigned to an object changes between frames, and 
this metric can be calculated as Eq. (4): 

IDS= ∑ 𝐼𝐷𝑆𝑖
𝑈𝑇
𝑖=1                             (4) 

where IDSi is the number of ID switches for track i. 
Fragmentation (Frg): This indicates how often the 

tracking of an object is interrupted, and this metric can be 
calculated as Eq. (5). 

Frg= ∑ (𝑆𝑖 − 1)𝑈𝑇
𝑖=1                      (5) 

where Si is the number of continuous fragments for the 
track 𝑖  

Maximum Track Length (MTL): This metric represents 
the maximum frame duration for which any single object 
is continuously tracked. It highlights the tracker’s capacity 
for long-term persistence. Higher values indicate robust 
tracking performance for at least one object. The metric 
can calculate as Eq. (6). 

𝑀𝑇𝐿 = 𝑚𝑎𝑥
𝑖=1

𝑈𝑇
 𝐹𝑖                                (6) 

where MTL is the maximum track length, UT is the total 
number of track IDs and Fi is the number of continuous 
frames for track i. 

Consistency score: Unlike classical metrics that are 
computed individually, the Consistency Score enables a 
holistic view of tracking reliability. For example, good 
temporal coherence is characterized by a high average 
frame rate per track and zero ID switches, with low 
fragmentation. Compared to separate F scores, this score 
eases object-type comparison (guns vs. knife). 

We have added a more detailed rationale and 
mathematical definition of the metric in the new “Tracking 
Quality Evaluation” section as (7), clearly interpreting its 
value in the comparison expressed in Table II. 

Score= 1

3
(

𝐴𝐹𝑇

𝑀𝑇𝐿
+

1

1+𝐼𝐷𝑠 𝑇𝐷⁄
+

1

1+𝐹𝑟𝑔 𝑈𝑇⁄
)             (7) 

where AFT is average frames per track, MTL is maximum 
track length, IDS is total ID switches, T is total detections, 
Frg is Total fragmentation count, and UT is the Number of 

unique track IDs. 
These metrics provide a comprehensive view of the 

tracking quality, enabling the evaluation of the robustness 
and stability of the proposed system. 

This analysis enables a highly systematic examination 
of the robustness and operational stability of the tracking 
pipeline for the “Gun” and “Knife” categories, as 
presented in Table II. The system consistently yielded high 
rates when tracking guns, zero ID switches, and a 
consistency even scoring above 0.88. For the knife, the 
tracking stability was slightly lower, with one ID switch 
and a consistency score of 0.66. However, this is still a 
reliable performance, given the complex motion and 
appearance variations of thermal video sequences. 

Notably, the longest track we recorded for the knife 
(2,256 frames) highlights the model’s ability to maintain 
long-term tracking across consecutive frames, even in 
adverse circumstances. Together, these metrics describe 
the effectiveness of the detection and tracking integration, 
confirming that the proposed pipeline is suitable for real-
world thermal surveillance needs. 

V. CONCLUSION 

In this work, we proposed an integrated pipeline to 
detect and track concealed weapons in thermal video. 
Leveraging the YOLOv11n model for object detection and 
a Graph Neural Network (GNN) for robust object tracking, 
the proposed pipeline demonstrated promising results 
across various performance metrics. The detection phase 
achieved high levels of accuracy, with a precision 81% and 
recall of approximately 82% each, a mAP@50 of 87%, and 
a mAP@50-95 of 85%, as illustrated through the 
precision-recall curves and loss graphs Fig. 5. The 
confusion matrix analysis Fig. 6. revealed a higher 
classification accuracy for knives compared to guns, 
highlighting potential areas for targeted enhancement, 
particularly in firearm detection under thermal imaging 
conditions. Tracking performance was assessed through a 
detailed tracking quality summary (Fig. 8), demonstrating 
the system’s ability to maintain object identities across 
video frames. The tracking module achieved zero ID 
switches and a consistency score of 0.88 for guns. 

In contrast, knife tracking exhibited slightly higher 
fragmentation and identity switching. This behavior is 
expected, given That Knife Detection Is Challenging due 
to its small size and weak thermal signature. Furthermore, 
system performance metrics (Fig. 7) confirmed that the 
processing pipeline operates in real-time, with an average 
of 2.3 ms for preprocessing, 9.0 ms for inference, and 0.7 
ms for postprocessing per frame. This real-time capability 
makes the system highly suitable for live surveillance 
applications requiring immediate threat detection and 
continuous object monitoring. Despite the system’s 
robustness, certain limitations were observed, particularly 
in scenarios involving thick fabric concealment. 
Differences in material emissivity, such as those between 
cotton (~0.67) and polyester (~0.80), affected the thermal 
signature of concealed objects, resulting in minor 
reductions in detection accuracy. 
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VI. FUTURE WORK 

To further enhance the proposed system’s performance 
and expand its applicability, the following directions are 
suggested: 
• Dataset augmentation: Enrich the training dataset 

with a broader range of weapon types, concealment 
materials, and environmental conditions. 

• Advanced feature extraction: Integrate multi-modal 
data sources, such as fusing visible and thermal 
imagery, to improve detection under heavy occlusion. 

• Enhanced tracking algorithms: Explore using more 
sophisticated tracking models like DeepSORT or 
ByteTrack to reduce ID switching and track 
fragmentation. 

• Model optimization: Implement model compression 
techniques (e.g., pruning, quantization) to reduce 
computational requirements further while maintaining 
accuracy. 

• Deployment at scale: Validate the system’s 
performance on larger datasets and in real-world 
surveillance settings to ensure scalability and 
operational reliability. 

Integrating deep learning-based detection with GNN-
based tracking offers a robust framework for concealed 
weapon identification and monitoring, contributing 
significantly to advancements in thermal video 
surveillance technologies. 
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