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Abstract—This study proposes an automated framework for
detecting and tracking concealed weapons in thermal video,
aimed at real-time surveillance in high-security public areas
like airports and stadiums. Due to the lack of relevant public
datasets, thermal videos were recorded using an infrared
camera in scenarios simulating concealed weapons. Frames
extracted from the videos were automatically annotated
using the GroundedSAM model, which aligns textual
prompts (“gun”, “knife”) with image content, eliminating
manual labeling. A YOLOv11n model was trained on over
6,200 labeled thermal images, achieving 81% precision, 82%
recall, and 87% mAP@50. For tracking across frames, a
Graph Neural Network (GNN) connected detected objects
over time, 0.88 consistency for guns, and 0.66 consistency for
knives. The integration of smart annotation, thermal-aware
detection, and GNN tracking demonstrates strong potential
for real-time, robust weapon detection in crowded, security-
sensitive environments.

Index Terms—GroundedSAM, autodistill, YOLOv1ln,
thermal video dataset, Graph Neural Network (GNN)
tracking algorithm, special evaluation metrics for tracking
algorithm

I. INTRODUCTION

Continuous monitoring for concealed weaponry and
dangerous objects has remained a significant problem in
security constantly, especially in crowded areas (e.g.,
airports) and public venues (e.g., stadiums) where manual
surveillance of each person is impossible [1, 2]. This has
fueled an increasing requirement for automated, stand-off
security systems to detect threats with sufficient precision
to allow for their isolation or neutralization on time with
minimum damage to civilian persons [1, 3].

Electromagnetic (EM) waves have long been utilized in
non-contact security screening systems. Technologies
such as X-rays, Millimeter Waves (MMW), and Terahertz
(THz) waves are among the most employed modalities for
detecting concealed objects in human subjects [1, 3, 4].
The internal X-ray images are more detailed, as X-rays
have a high penetration depth. Still, their use is becoming
more and more limited due to the health risks related to
ionizing radiation exposure [5-7].

Although the wavelength of the IR thermography is
between a few and ten micrometers, which is not the same
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as that of MMW and THz, security practices have certain
special advantages. While it has some limitations
regarding penetration under thick clothing, it offers better
spatial resolution (and thus better visualization at a
distance) [2, 8, 9]. Also, because iris recognition as a
biometric system requires facial identification (due to the
facial characteristics embedded in the iris), such IR-based
imagery can provide enhanced privacy and offers fewer
facial features implied in the form of the iris capture at
passive presentation [10[. In passive thermography, the
human body acts as the thermal source, and variations in
heat distribution caused by concealed objects can be
detected through thermal gradients on the surface of
clothing [11, 12].

Even though IR has limited ability to perceive the
surrounding environment, IR technology has exhibited
great potential when integrated with Artificial
Intelligence (AI) methods, especially Convolutional
Neural Networks (CNNs), which have achieved good
performance in several thermal imaging missions such as
damage detection and object segmentation [13—16].
Nevertheless, IR-based systems may have inconsistency
when they are manually made (especially in the case of
layered clothing). Thus, adopting machine learning
algorithms is important to increase the robustness and
accuracy of detection results [17].

This study proposes a deep learning-based approach for
concealed weapon detection and tracking in thermal video
using CNNs. The researcher collected a custom dataset of
thermal videos, and the training labels were automatically
generated using the GroundedSAM model, which
annotates thermal images based on textual descriptions
such as “weapon” or “knife.” These annotations were then
used to train a YOLOvV11n object detection model. The
proposed framework enables efficient and automated
threat identification, significantly reducing the reliance on
human intervention in surveillance scenarios.

II. RELATED WORK

The recent progress in deep learning, along with the
advances in thermal imaging, has markedly enhanced the
performance of detecting concealed weapons from
challenging surveillance scenes. Several studies have
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investigated combining CNNs architecture with infrared
data to detect hidden threats with high precision. The
authors have also used thermal-RGB fusion, active
segmentation, and logistic regression-based classification
in a low-visibility environment. Despite encouraging
performance, most current models do not support real-time
tracking and depend on costly manual annotation. In this
section, we introduce related work and emphasize the
novelty of our combined auto-labeling GNN-based
tracking framework.

Santos et al. [18] conducted a systematic review on deep
learning-based weapon detection in surveillance footage,
focusing on the methods employed, dataset characteristics,
and challenges in automatic weapon detection. The review
highlights several models, including Faster R-CNN and
YOLO (You Only Look Once) architecture. The study
discussed datasets that incorporate Realistic images and
synthetic data, which have been shown to improve
detection performance. The review notes that while
various models demonstrated improvements in accuracy,
specific numerical metrics were not consistently provided.
However, it emphasizes that the performance of these
models significantly decreases under challenging
conditions, such as poor lighting and small weapon
detection. The main challenges identified include Poor
lighting conditions affecting detection accuracy.

Gosain et al. [19] presented an automatic weapon
detection system based on image processing and machine
learning that aims to be an alternative to classic X-ray
techniques. The presented approach combines thermal/IR
images and traditional RGB or HSV images by applying
Discrete Wavelet Transform (DWT) to suppress noise
while retaining essential features for weapon detection and
extracting the facial features. The processed video feeds
are then analyzed through a two-step pipeline: we make
use of YOLOvV6 to detect objects by having a focus on
weapon-related segments to prevent false positives and
then we employ a Convolutional Neural Network (CNN)
based on VGGNet to classify firearms. This final weapon
classification model is logistic regression, which has been
trained on a custom 1,759 weapon image dataset. Tested
on 32 random images, the system produced promising
performance metrics, suggesting possible real-time
surveillance and threat localization by correctly
identifying concealed weapons, yet preserving facial
details for quick threat elimination.

Ahmar et al. [20] used them as the benchmark to
compare the performance of thermal imaging for object
detection and tracking in degraded lighting context with
state-of-the-art detection-based algorithms, namely, the
Task-Aligned One-Stage Object Detection (TOOD) and
the Varifocal Feature Network (VFNet), applied to thermal
vs. RGB images. Their experiments on the City Scene
RGB-Thermal MOT Dataset, which consists of paired
thermal and visible images labeled manually from FLIR
cameras, showed that the thermal-based trackers are much
stronger than the RGB trackers, especially in low-light
conditions. While precise accuracy measurements were
not provided, the thermal models achieved high recall and
strong detection across a range of conditions. In addition,
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a dynamic cut-off was also introduced within the tracking-
by-detection pipelines, which uses the bounding box
dimension as input to improve the association in multi-
object tracking. These results highlight the usefulness of
thermal imaging in reliable object detection and tracking
in challenging lighting conditions.

Veranyurt et al. [21] proposed a deep learning-based
framework for real-time detection and localization of
concealed pistols using thermal imagery. The system
combines two deep learning models: a fine-tuned VGG19
convolutional neural network for classification, which
achieved an F1 score of 0.84 on the test set, and a fine-
tuned YOLOv3 model for multi-task classification and
localization, attaining a mean average precision (mAP) of
0.95 with bounding box detection in approximately 10
milliseconds. The authors created a custom dataset
comprising thermal video recordings of multiple human
models alongside publicly available thermal images to
simulate various concealment scenarios. Their results
demonstrate the effectiveness and robustness of
integrating thermal imaging with advanced neural
networks for enhancing security surveillance through
accurate and rapid concealed weapon detection.

Khor et al. [2] investigated the use of infrared
thermography combined with machine learning techniques
for non-invasive detection and classification of concealed
objects beneath clothing. The study employs
Convolutional Neural Networks (CNN), specifically a
transfer-learned ResNet-50 model pre-trained on
ImageNet, fine-tuned with infrared images from controlled
experiments simulating security checkpoint scenarios.
Several image preprocessing techniques were applied to
enhance object visualization, including principal
component analysis, Chan-Vese active contour
segmentation, and Fuzzy-c clustering. The optimized
ResNet-50 classifier achieved Area-Under-Curve (AUC)
values of 0.869 and 0.922 on datasets of 900 and 3082
images, respectively, with prediction errors reduced to
19.9% and 14.9% after threshold optimization. This work
demonstrates the potential of combining thermal imaging
and deep learning for effective, real-time concealed object
detection in security screening applications.

Muiioz et al. [17] proposed a novel two-stage method
for concealed handgun detection that integrates thermal
imaging with deep learning techniques. The method first
detects potential firecarms at the frame Ilevel and
subsequently verifies their association with detected
persons, effectively reducing false positives and negatives.

A significant contribution is the development of a
lightweight algorithm optimized for low-end embedded
devices, facilitating deployment on wearable and mobile
platforms such as chest-worn Android smartphones
equipped with miniature thermal cameras. The study
includes a tailored thermal dataset simulating controlled
concealment  scenarios for system  validation.
Experimental results demonstrate an mAP@50-95 of
64.52%,  outperforming  previous  state-of-the-art
approaches and confirming the method’s effectiveness and
scalability for real-world law enforcement and
surveillance applications.
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Muifioz et al. [22] introduced a novel two-stage
concealed handgun detection method leveraging thermal
imaging combined with deep learning. The approach first
detects handguns at the frame level and then verifies their
spatial association with detected persons to reduce false
alarms. A lightweight algorithm optimized for low-end
embedded devices enables deployment on wearable
platforms such as chest-worn Android smartphones with
miniature thermal cameras. The authors also developed a
dedicated thermal dataset simulating various concealment
scenarios, including clothing types and distances.
Experimental results show promising detection
performance with a balance between accuracy and
computational efficiency, achieving a mean Average
Precision (mAP) of approximately 64.5% on the test sets.
This work demonstrates the feasibility of real-time, hands-
free concealed weapon detection suitable for security
applications in airports, public events, and law
enforcement operations.

Torregrosa-Dominguez et al. [23] aimed at enhancing
on-the-fly weapon detection in industrial environments,
with special emphasis on small weapons, for which hiding
is still tricky. The proposed work uses the current state-of-
the-art object detection models, i.e., YOLOVS, YOLOV7,
YOLOvVS8, and proposes Scale Match, which aims to
improve the detection quality for weapons with one of the
smallest aspect ratios. Authors created Disarm-Dataset as
a collection of datasets, including new and previously
obtained images, to cover complex scenes where weapons
are not easily identified from simpler scenes with
identifiable weapons.

Despite the numerous contributions to concealed
weapon detection using thermal imaging and deep learning,
most prior works, such as Alavi et al. [18],
Veranyurt et al. [21], and Khor ef al. [2], focused solely on
detection without integrating object tracking mechanisms.
While Mufoz et al. [17, 22] introduced a two-stage
detection and association method, they focused on mobile
deployment rather than scalable deep learning tracking
architectures. Moreover, most existing literature relies on
manually annotated datasets [18, 22], which can be
resource-intensive. In contrast, our approach incorporates
automatic labeling through GroundedSAM, enabling
scalable dataset preparation. Furthermore, our system
uniquely integrates YOLOvlln for lightweight yet
accurate detection and leverages Graph Neural Networks
(GNN) for robust multi-frame tracking, filling the gap in
real-time, end-to-end concealed weapon detection and
tracking in thermal videos.

III. METHODOLOGY

The proposed method consists of a multi-stage pipeline
for detecting and tracking concealed weapons in thermal
video streams. As illustrated in Fig. 1, the system begins
with an infrared camera’s thermal data acquisition,
followed by frame extraction and automatic annotation
using GroundedSAM. Preprocessed images are then used
to train the YOLOvVI1 1n detection model. Detected objects
are subsequently tracked across frames using a Graph
Neural Network (GNN), which assigns consistent
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identities based on spatial and temporal features.

Dataset Image pre-
Data. Preparation and {1 8¢ P
Acquisition Annotation processing
A4
YOLOvlln | GNN-based || Tracked Video
Detection Tracking with IDs

Fig. 1. Stages of the proposed method.

A. Data Acquisition (Thermal Imaging Equipment)

This study’s thermal video data was exclusively
captured using the Hikvision DS-2TD2617B-6/PA bi-
spectrum network camera, as shown in Fig. 2. Although
the device supports both thermal and optical imaging, only
the thermal imaging capability was utilized to ensure
consistency with the research objectives.

This camera provides thermal data for reliable object
detection and analysis in low-visibility or concealed
environments. The thermal sensor operates in the Long-
Wave Infrared (LWIR) range with a resolution of 160 x
120 pixels and a Noise Equivalent Temperature Difference
(NETD) of less than 40 mK, enabling the detection of
subtle temperature variations across objects and surfaces.

The thermal lens has a focal length of 6 mm, optimized
for mid-range detection. The camera offers connectivity
with PC and NVR systems through USB and LAN
interfaces and is manageable using Hikvision software
tools such as iVMS-4200 and HikCentral. The camera was
tripod-mounted for stability during experiments and
simulations, as depicted in Fig. 2.

TN -
TR
- <& P .\‘/ P> 4

N 3
SN

Fig. 2. Thermal camera mounted on tripod for stable video capture.

This setup enabled the collection of a reliable thermal
dataset under controlled indoor and outdoor conditions,
featuring human subjects carrying concealed objects and
subjects without concealed items intended for subsequent
detection analysis.

Fig. 3 illustrates the tools used to collect the recorded
data, representing a mock-up of weapons concealed during
the recording process. These tools include a field knife
with a leather sheath and an automatic pistol. These
models were displayed against a wooden background to
highlight their physical characteristics and design details,
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emphasizing that they were concealed under clothing
during the data collection phase.

il

Fig. 3. Knife with a leather sheath and an automatic pistol.

B. Dataset Preparation and Annotation

Thermal video streams were converted into a dataset of
over 6,200 frames, extracted at a rate of one every five
frames wusing the Supervision library. Automatic
annotation was performed using GroundedSAM, guided
by a caption ontology that defined “Gun” and “Knife” as
target categories.

This process significantly reduced the need for manual
labeling while generating accurate bounding boxes. The
annotations were structured in YOLOvI In-compatible
format and used for training.

C. Image Preprocessing

Each extracted frame underwent a preprocessing stage
to enhance the visibility of thermal features and improve

detection accuracy. The following techniques were applied:

e Contrast enhancement using CLAHE (Contrast
Limited Adaptive Histogram Equalization) [24, 25]

adaptively boosts local contrast and enhances

thermal edges while minimizing noise amplification.

This was especially useful for highlighting subtle
temperature variations and object contours in
thermal frames, as shown in Fig. 4 [26, 27].
Background suppression  using intensity
thresholding techniques to remove low-temperature
regions irrelevant to the detection task [28, 29].
e Normalization of thermal intensities, ensuring
consistent pixel value distributions across varying
lighting conditions and thermal gradients.

Camera 02

Canera 02

(a) (b)
Fig. 4. (a) Raw thermal image. (b) Enhanced using CLAHE to improve
contrast and visibility.

D. Automatic Annotation Using GroundedSAM

GroundedSAM stands as an advanced framework in
semantic segmentation, specifically designed to tackle the
challenges posed by open-set object detection and
adaptable segmentation across a wide range of visual
domains. This innovative system combines two leading-
edge components: Grounding DINO, an open-vocabulary
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object detector capable of zero-shot detection, and the
segment anything model (SAM), a flexible segmentation
architecture that generalizes effectively across various
image types and tasks [30].

For the automatic annotation of guns and knives in
thermal video, GroundedSAM works as follows:

1) Textual prompt input

e The user is asked to input text prompts: “gun” and
“knife”.
Frame-by-frame detection with grounding DINO
Each thermal frame is feed into Grounding DINO.
It leverages the prompts to do zero-shot detection,
producing bounding boxes around guns and knives,
even though those kinds of items weren’t in its
training data.
Pixel-level segmentation with SAM
SAM takes the bounding boxes or textual guidance
and performs fine-grained segmentation on each
detected object.
The result of this feature is a mask that segments
the exact shape of each gun or knife in the image.
4) Automated annotation output

The output of each frame also includes the object

label (“gun”, “knife”), the bounding box, and the

segmentation mask.

E. Model Training

The YOLOvI11n model, a lightweight, real-time object
detection architecture, was trained on the prepared thermal
dataset. The training dataset comprised approximately
6,200 images extracted from thermal video streams under
varied conditions to ensure robust generalization. The
model was trained under the following settings: Image
resolution: 640x640 pixels and number of epochs: 50.
Training progress was closely monitored using Ultralytics’
built-in  tools, which  provided comprehensive
visualizations of performance metrics, including
classification loss, localization loss, and objectivity loss.

The model demonstrated reliable performance under
diverse thermal conditions in detection, as shown in Fig. 5.
It consistently detected concealed weapons, although
detection accuracy declined slightly when objects were
hidden beneath thick fabrics. This was attributed to
emissive differences between materials (e.g., cotton =~ 0.67
vs. polyester =~ 0.80). Despite this, the model maintained
robust performance, particularly for firearms.

2)

3)

01-01-1970 Thu 00:39:41 =

Canera 02

Fig. 5. The process of detecting the gun and knife.

F. Tracking Hidden Weapons

The next step in the weapons detection stage, which
involves tracking hidden weapons across video frames,
was implemented by integrating a Graph Neural Network
(GNN) framework using PyTorch Geometric. Each
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detection obtained by the YOLOv11n model was treated
as a node within a constructed graph, where edges were
established between temporally adjacent detections of the
same object class (either “Gun” or “Knife”).

The GNN was trained to predict Track IDs by
evaluating spatial proximity and appearance similarities
across detections, effectively associating objects over time
and forming coherent trajectories. A tracked video
(tracked output.mp4) was generated after completing the
tracking process. In this video, bounding boxes and
corresponding assigned track IDs were visualized,
illustrating the successful association of objects across
frames under challenging thermal imaging conditions,
where conventional appearance-based trackers often fail
due to limited visual cues, as shown in Fig. 6.

01-01-1970 Thu 00:12:20

Fig. 6. Tracking gun and knife across frames using GNN, with unique
IDs and bounding boxes.

The tracking pipeline can be summarized as follows:
o Detection Phase: Object detection was performed
on each video frame using the YOLOv11n model at
an input resolution of 640 x 640 pixels. Some frames
did not produce detections, primarily due to
concealment or environmental factors.
Tracking Phase: Detections were converted into a
graph structure modeling object relations across
frames. The GNN assigned consistent Track IDs
based on learned spatial and appearance features.
The tracked video was outputted and saved as
tracked_output.mp4.
e Postprocessing and Analysis: Tracking results were
analyzed to extract performance metrics evaluating

train/box_loss train/cls_loss

train/dfi_loss

tracking consistency and reliability. This approach
allowed the system to maintain stable object
identities even under partial occlusions or variable
thermal conditions.

Object tracking performance: The performance of
object tracking was quantified using the following
metrics. Results showed good gun up-to-down
consistency, no false ID switches, and an average
consistency score of 0.88. These results also
demonstrate the system’s capability to preserve
consistent object identities over multiple frames,
even while dealing with partially occluded and/or
thermally different provided resized objects.

IV. RESULTS ANALYSIS

A. Analysis of Auto-Detection and Annotation Results

The automatic detection and annotation pipeline quality
was quantitatively evaluated using several criteria. Results
validate the ability of the system to detect concealed
weapons in thermal imagery. We summarize the results for
our detection accuracy in Table I, showing that the
proposed approach achieves high precision and recall for
the defined classes of weapons.

TABLE I: WEAPON DETECTION ACCURACY METRICS

Metric Value
Precision ~81%
Recall =~ 82%
mAP@50 =~ 87%
mAP@50-95 ~ 85%

The precision-recall curves and loss plots over training
epochs are visualized in Fig. 7, yielding intuitive
knowledge about the convergence pattern of the model and
the class-specific prediction accuracy.

The curves showed a continuous increase in precision
and recall with the advancement of training, which means
that the model learns well. With it, reduced training and
validation loss could mean that the model was well learned
and the overfitting was minimal.

metrics/precision(B) metrics/recall(B)

i —e— results 4
o7 2.0 +* smooth K 0.80 A 080
0.95
0.6 1 0.75
0.75 1
1.5
0.5 1 0.70+
0.70 1
0.4 1 ] 0.65
0 0.65 - .
0.3 0.60 -
0.60 -
: ‘ ‘ 37, ‘ : : : : : ‘ — 1 0554, ‘ ‘
0 20 40 0 20 40 o] 20 40 0 20 40 0 20 40
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0.7 0.8
1.00¥
0.6 0.7
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0.5 0.6
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o
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Fig .7. Precision-recall curves and loss graphs.
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Fig. 8. Confusion matrix.

One way to evaluate the accuracy of detection and
labeling is by using a confusion matrix, as shown in Fig. 8.
This matrix indicates that the model can correctly classify
objects labeled as “gun” and “knife,” regardless of whether
they are in the background. The confusion matrix
highlights that knives were detected more reliably than
guns, suggesting areas for targeted improvements in
firearm detection accuracy by augmenting training
samples or enhancing feature extraction techniques for
guns under thermal imaging conditions.

Additionally, the overall trends observed in the
precision-recall curves and loss graphs (Fig. 5) support the
findings from the confusion matrix, showing steady

improvements in class-specific accuracy throughout

training.

B. Analysis  Results:  Hidden  Weapons  Tracking
Performance

The tracking quality was quantitatively evaluated using
several metrics, as summarized in Table II (Tracking
Quality Summary). The results demonstrate high
consistency in tracking guns, with zero ID switches and a
high consistency score of 0.88, indicating robust temporal
association.

TABLE II: TRACKING QUALITY SUMMARY

Metric Gun Knife
Total Detections 2179.0 3783.0

Unique Track IDs 1.0 2.0
Average Frames per Track 1927.0 1246.5

ID Switches 0.0 1.0

Track Fragmentation 81 60
Maximum Track Length (frames) 1927.0 2491.0

Consistency Score 0.88 0.66
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In contrast, knife tracking exhibited slightly greater
fragmentation and ID switching, with a lower consistency
score of 0.66. This behavior is expected, given Knife due
to its small size and weak thermal signature, leading to ID

switches. Future work may improve this using multi-
modal inputs or specialized tracking models. The system’s
processing efficiency was also evaluated to verify its
suitability for real-time applications. The average
processing times per frame were: Preprocessing: 2.3
milliseconds, Inference: 9.0  milliseconds, and
Postprocessing: 0.7 milliseconds.

These latency results validate the real-time capability of
the system and its potential suitability for use in real-time
monitoring applications where fast detection and tracking
are required.

C. Tracking Quality Evaluation

To evaluate the performance of the object tracking
model, we employed several standard metrics commonly
used in multi-object tracking (MOT) tasks. These metrics
include Average Frames per Track, ID Switches,
Fragmentation, and Consistency Score and are defined as
follows:

Total detections (TD): Total Detections represent the
cumulative number of times all objects are detected across
all frames. It indicates how frequently the tracker identifies
any object, regardless of identity. Higher values suggest
increased object visibility and detection activity. This is a

metric that can be calculated as Eq. (1):
TD =YL, d; (1

where N is the total number of frames, and d; is the number
of detected objects in the frame i.
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Unique track IDs (UT): This metric counts the number
of distinct object IDs assigned during tracking. It reflects
how well the tracker distinguishes between different
objects. A higher count typically indicates greater object
diversity or potential over-fragmentation. This metric can
get it value as Eq. (2):

uT = |{1Dy) @

where {ID;} is a set of unique track IDs assigned during
the tracking period and |[{ID;}| is the a size of the set.
Average Frames per Track (AFT): This metric measures
the average number of frames in which each object is
successfully tracked, and this metric can be calculated as

Eq. (3):
3)

where UT is the total number of unique track IDs and F; is
the Number of frames in which the object I was tracked.

ID Switches (IDS): An ID switch occurs when the
identity assigned to an object changes between frames, and
this metric can be calculated as Eq. (4):

IDS= VT IDS;

1
AFT=—3 I F;

“

where IDS; is the number of ID switches for track i.

Fragmentation (Frg): This indicates how often the
tracking of an object is interrupted, and this metric can be
calculated as Eq. (5).

Frg=X5 -1 (&)

where S; is the number of continuous fragments for the
track i

Maximum Track Length (MTL): This metric represents
the maximum frame duration for which any single object
is continuously tracked. It highlights the tracker’s capacity
for long-term persistence. Higher values indicate robust
tracking performance for at least one object. The metric
can calculate as Eq. (6).

(6)

where MTL is the maximum track length, UT is the total
number of track IDs and F; is the number of continuous
frames for track i.

Consistency score: Unlike classical metrics that are
computed individually, the Consistency Score enables a
holistic view of tracking reliability. For example, good
temporal coherence is characterized by a high average
frame rate per track and zero ID switches, with low
fragmentation. Compared to separate F scores, this score
eases object-type comparison (guns vs. knife).

We have added a more detailed rationale and
mathematical definition of the metric in the new “Tracking
Quality Evaluation” section as (7), clearly interpreting its
value in the comparison expressed in Table II.

uT
MTL = max F;
i=

1 /AFT

1
Score==
3(mTL

1+IDs/TD

1
1+Frg/UT)

(M

where AFT is average frames per track, MTL is maximum
track length, IDS is total ID switches, T is total detections,
Frg is Total fragmentation count, and UT is the Number of
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unique track IDs.

These metrics provide a comprehensive view of the
tracking quality, enabling the evaluation of the robustness
and stability of the proposed system.

This analysis enables a highly systematic examination
of the robustness and operational stability of the tracking
pipeline for the “Gun” and “Knife” categories, as
presented in Table II. The system consistently yielded high
rates when tracking guns, zero ID switches, and a
consistency even scoring above 0.88. For the knife, the
tracking stability was slightly lower, with one ID switch
and a consistency score of 0.66. However, this is still a
reliable performance, given the complex motion and
appearance variations of thermal video sequences.

Notably, the longest track we recorded for the knife
(2,256 frames) highlights the model’s ability to maintain
long-term tracking across consecutive frames, even in
adverse circumstances. Together, these metrics describe
the effectiveness of the detection and tracking integration,
confirming that the proposed pipeline is suitable for real-
world thermal surveillance needs.

V. CONCLUSION

In this work, we proposed an integrated pipeline to
detect and track concealed weapons in thermal video.
Leveraging the YOLOv11n model for object detection and
a Graph Neural Network (GNN) for robust object tracking,
the proposed pipeline demonstrated promising results
across various performance metrics. The detection phase
achieved high levels of accuracy, with a precision 81% and
recall of approximately 82% each, a mAP@50 of 87%, and
a mAP@50-95 of 85%, as illustrated through the
precision-recall curves and loss graphs Fig. 5. The
confusion matrix analysis Fig. 6. revealed a higher
classification accuracy for knives compared to guns,
highlighting potential areas for targeted enhancement,
particularly in firearm detection under thermal imaging
conditions. Tracking performance was assessed through a
detailed tracking quality summary (Fig. 8), demonstrating
the system’s ability to maintain object identities across
video frames. The tracking module achieved zero ID
switches and a consistency score of 0.88 for guns.

In contrast, knife tracking exhibited slightly higher
fragmentation and identity switching. This behavior is
expected, given That Knife Detection Is Challenging due
to its small size and weak thermal signature. Furthermore,
system performance metrics (Fig. 7) confirmed that the
processing pipeline operates in real-time, with an average
of 2.3 ms for preprocessing, 9.0 ms for inference, and 0.7
ms for postprocessing per frame. This real-time capability
makes the system highly suitable for live surveillance
applications requiring immediate threat detection and
continuous object monitoring. Despite the system’s
robustness, certain limitations were observed, particularly
in scenarios involving thick fabric concealment.
Differences in material emissivity, such as those between
cotton (~0.67) and polyester (~0.80), affected the thermal
signature of concealed objects, resulting in minor
reductions in detection accuracy.
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VI. FUTURE WORK

To further enhance the proposed system’s performance

and expand its applicability, the following directions are
suggested:

Dataset augmentation: Enrich the training dataset
with a broader range of weapon types, concealment
materials, and environmental conditions.

Advanced feature extraction: Integrate multi-modal
data sources, such as fusing visible and thermal
imagery, to improve detection under heavy occlusion.
Enhanced tracking algorithms: Explore using more
sophisticated tracking models like DeepSORT or
ByteTrack to reduce ID switching and track
fragmentation.

Model optimization: Implement model compression
techniques (e.g., pruning, quantization) to reduce
computational requirements further while maintaining
accuracy.

Deployment at scale: Validate the system’s
performance on larger datasets and in real-world
surveillance settings to ensure scalability and
operational reliability.

Integrating deep learning-based detection with GNN-

based tracking offers a robust framework for concealed

weapon identification and monitoring, contributing
significantly to advancements in thermal video
surveillance technologies.
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