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Abstract—The increasing penetration of intermittent
Renewable Energy Sources (RES), coupled with the
decentralized architecture of modern power distribution
networks, has introduced substantial challenges in
maintaining system stability and ensuring power quality—
particularly under fault conditions and nonlinear operating
regimes. This paper proposes a dynamic self-healing model
for smart distribution systems based on an Improved Whale
Optimization Algorithm (IWOA), with the objective of
simultaneously optimizing active power loss, voltage
deviation, Total Harmonic Distortion (THD), and Phase
Voltage Unbalance Ratio (PVUR). The proposed IWOA
incorporates a nonlinear shrinking mechanism, discrete
solution mapping, and a normalized, equally weighted multi-
objective function structure. These enhancements
significantly improve convergence behavior, solution
accuracy, and optimization performance in complex
combinatorial search spaces. The proposed framework is
validated on a modified IEEE 33-bus distribution system
featuring unbalanced topologies, harmonic disturbances, and
distributed RES integration. Simulation results demonstrate
that IWOA outperforms conventional metaheuristics such as
Particle Swarm Optimization (PSO), Differential Evolution
(DE), and the original WOA in terms of convergence speed,
energy efficiency, and power quality enhancement. This
study highlights a promising direction for advanced
automated optimization strategies in resilient and sustainable
energy distribution infrastructures.

Index Terms—self-healing distribution networks, Improved
Whale Optimization Algorithm (IWOA), power quality
optimization, voltage unbalance, harmonic distortion, smart
microgrid reconfiguration

I. INTRODUCTION

The transition toward modern distribution power
systems with deep integration of renewable energy sources,
such as Photovoltaic (PV) and wind power, presents both
tremendous opportunities and significant challenges in
ensuring system stability and power quality. These RES
are inherently intermittent and rapidly fluctuating in nature,
and are typically interfaced through power electronic
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converters, which are well-known contributors to
harmonic distortion and severe phase voltage unbalance in
distribution networks [1-3]. These issues become even
more critical in the context of smart microgrids, where the
combination of nonlinear loads, dynamically
reconfigurable topologies, and widespread single-phase
DER integration exacerbates local instability and
deteriorates overall Power Quality (PQ) [4, 5].

To address these challenges, numerous studies have
proposed Distribution Network Reconfiguration (DNR)
strategies aimed at minimizing power losses and
improving voltage profiles [6-8]. However, many
conventional approaches tend to focus solely on these two
objectives, while largely neglecting important power
quality metrics such as Total Harmonic Distortion (THD)
and Phase Voltage Unbalance Ratio (PVUR) particularly
critical in networks with single-phase RES [9, 10].

Several recent studies have made initial attempts to
incorporate PQ considerations into reconfiguration
frameworks. For example, Elazim et al. [11] introduced
the Modified Sperm Swarm Optimization algorithm
(MSSO) algorithm to enhance distribution system
reliability, but without addressing harmonics or phase
imbalance. Babu et al. [12] applied a CS-GWO-based
approach to optimize network reconfiguration with
improvements in loss reduction, yet PQ metrics were not
incorporated. Liu et al [13] employed an Improved Whale
Optimization Algorithm (IWOA) but restricted the
formulation to single-objective optimization. Mohammad
Nadimi-Shahraki et al. [14] enhanced WOA for optimal
capacitor placement with emphasis on voltage profile
enhancement, without addressing THD or unbalance.
Lu et al. [15] extended IWOA for microgrid scheduling
but did not consider its application in self-healing under
harmonic disturbance scenarios.

More recently, some advanced approaches have
emerged that incorporate multiple power quality
objectives  into  the  reconfiguration  problem.
Wang et al. [16] conducted a comprehensive review of
WOA improvements for multi-objective optimization;
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Hakim et al. [17] utilized binary PSO for reconfiguring
PV-integrated networks, though PQ-related objectives
were not considered and Fayumi et al. [18] introduced a
Selective Particle Swarm Optimization and Interior Point
Optimization (SPSO-IPOPT) algorithm-based framework
for dynamic reconfiguration with integrated Distributed
Energy Resources (DERs).

Overall, the literature reveals a clear progression from
single objective to multi-objective  optimization
frameworks that address PQ. Although several recent
studies have investigated optimization-based
reconfiguration,  they  still  exhibit  significant
methodological gaps in scope or objective coverage. For
instance, Liu et al. [13] proposed an IWOA-based
approach for grid operation scheduling but focused solely
on power loss minimization without addressing PQ
metrics such as harmonics or voltage imbalance.
Fayumi et al. [17] developed a dynamic reconfiguration
method using SPSO-IPOPT, considering DER integration
but without incorporating harmonic distortion or PVUR.
Similarly, Hakim et al. [18] addressed PV-based
reconfiguration using binary optimization but did not
account for phase unbalance or nonlinear harmonic
propagation. These comparisons highlight that while
multi-objective optimization is gaining traction, a
comprehensive treatment that simultaneously considers
power loss, voltage deviation, THD, and PVUR—
especially in unbalanced and harmonic-rich networks—
remains largely unexplored. The present study directly
addresses this gap through a unified multi-objective,
discrete-optimization ~ framework  with  real-world
operational constraints.

Nevertheless, several critical gaps remain unaddressed.
First, no existing study has proposed a framework that
optimizes all four objectives: power losses, voltage
deviation, THD, and PVUR. Second, dynamic self-healing
models that accommodate unbalanced loading, RES
intermittency, and nonlinear harmonic distortion are still
lacking. Third, many metaheuristic-based methods suffer
from premature convergence or get trapped in local
optima—especially in discrete combinatorial search
spaces [19].

To address these deficiencies, this paper proposes a
dynamic self-healing system based on an Improved Whale
Optimization Algorithm (IWOA) designed to concurrently
optimize Pioss, Vaev, THD, and PVUR. The algorithm is
enhanced with an adaptive search mechanism, solution
diversity preservation, and discrete-space mapping to
improve convergence characteristics and solution
robustness in nonlinear, unbalanced, and harmonically
polluted environments.

Compared to recent studies such as [13, 17, 18], which
omit key PQ metrics, our model incorporates harmonics
and phase imbalance.

The proposed model is validated on the IEEE 33-bus
distribution test system, modified to reflect practical grid
conditions including single-phase and unbalanced loads,
harmonic injection, and multiple fault scenarios (N-1, N-
2). This study aims to fill the research gaps while offering
a robust and scalable tool for real-time, power-quality-
aware operation of modern smart distribution systems.
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II. MATHEMATICAL MODEL AND OPTIMIZATION FUNCTION

A. Overview of the Problem Formulation

In the context of modern distribution systems with high
penetration of renewable energy sources, network
reconfiguration must not only aim for fast service
restoration following contingencies (self-healing) but also
ensure the continuous optimization of PQ. Dynamic
Network Reconfiguration for Self-Healing (DNR-SH)
refers to the process of determining the optimal
combination of switch states (open/close) to restore power
delivery, maintain system stability, and enhance
operational performance under conditions involving
dynamic faults, load unbalance, and harmonic distortion.

The problem addressed in this study is formulated as a
constrained multi-objective combinatorial optimization
task. The decision variables represent the configuration of
switching devices across the distribution network. The
objective function is designed to simultaneously minimize
four critical indicators: active power loss (Pioss), voltage
deviation (V4ev), Total Harmonic Distortion (THD), and
Phase Voltage Unbalance Ratio (PVUR).

B. Multi-Objective Function and Constraints

The composite objective function is formulated using a
weighted-sum approach, enabling the simultaneous
optimization of multiple criteria by converting the problem
into an equivalent single-objective framework.

Minimize:

F = w;Pigss + Wy Ve + w3 THD + w,PVOR (1)
where w; € [0,1] represents the weighting coefficient
assigned to the ith objective, subject to the constraint
Y w; = 1.In this study, equal weights are adopted. w;
w, =ws =w, =0.25 to ensure a balanced and
comprehensive optimization across all objectives. The
terms Pyss, Vgey, THD, PVUR denote the normalized
values of each respective objective, computed relative to

their base-case values in the original (unreconfigured)
network.

C. Detailed Objective Functions

We will consider the objective functions as described
below.
1) Active power loss:

2 2
Ploss = Xqijec Rij % )
where R;;is the resistance of the distribution line between
buses i and j, P;; and Q;; are the active and reactive power
flows on branch (i, ), and V; is the voltage magnitude at
bus i.

Note: This formulation is adopted as a real-valued
approximation consistent with standard test system

implementations. For exact modeling, the complex form
* 2
s
Poss =R |7| can also be used.

2) Voltage deviation:

Vdev = Z?Izl |VL - Vrefl (3)
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where Vier is the nominal voltage reference value (typically
setto 1.0 p.u.)
3) Total Harmonic Distortion (THD):

2\ 1/2
THD; =( H (’L> ) .100%

Iy,i

“

where Iy ;: denotes the current of the 4th harmonic order at
bus i, I;; represents the fundamental component.
Therefore, the total harmonics objective function is

THD = Z{v=1 THD;.
4) Phase voltage unbalance ratio PVUR;

max(Vg Vs, Vr,i)-min(Ve Vs,

') 1009,

Vavg,i

where Vr;, Vs, and Vr; are the voltages of phases R, S, and
. VRi+VsitVr,

T at bus i, and V,,,; = ZRIT7SITITL

voltage at bus 7.

is the average phase

D. Objective Normalization
To ensure consistency in units and scale across all

evaluation metrics, a linear normalization approach is
employed, formulated as follows:

7 fi
fi= e (6)

where f; is the denotes the current value of the ith
objective and f°*° represents its corresponding value in

the base-case (i.e., the unreconfigured network scenario).

E. Constraint Conditions

The optimization model is subject to a set of operational
and physical constraints to ensure feasibility and
compliance with power system requirements:

o Joltage magnitude limits at each bus:

yonin <y <YM yie v (7)
Typically, 0.95 p.u. < V; < 1.05 p.u.
e Branch current limits:
L; < I{}’ax v(i,j) L ®)

This constraint ensures that the thermal capacity of the
branches is not exceeded under any loading condition.
o Radial topology constraint:

Number of closed switches = Ny, — 1

(€))

This ensures that the network remains radial and avoids
meshed configurations that may compromise protection
coordination.

o Nodal power balance:

Yjen Pij = Pri— Pg; (10)

where Py ; is the load and Pg, is the generation at node i
o Switching operation limit:

VieEN

change
N, <N max

switch —

an

This constraint restricts the number of switching actions
during reconfiguration, aiming to reduce mechanical wear
and limit control complexity
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III. IMPROVED WHALE OPTIMIZATION ALGORITHM

A. Overview of the Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm (WOA), originally
proposed by Mirjalili and Lewis [20], is a prominent
metaheuristic inspired by the hunting behavior of
humpback whales. WOA simulates two primary stages of
whale predation: the encircling phase and the bubble-net
attacking phase. In continuous search spaces, this strategy
allows the algorithm to approach the global optimum in a
flexible and relatively efficient manner for simple
optimization problems.

The Whale Optimization Algorithm has been applied
across various domains of electrical engineering,
particularly in solving problems related to power loss
minimization and voltage regulation [16]. However, when
extended to more complex multi-objective combinatorial
problems—such as distribution network reconfiguration
under nonlinear and harmonic-rich environments—the
standard WOA framework reveals several critical
limitations:

e Premature convergence: Due to its linearly decreasing
control parameter, the algorithm is prone to being
trapped in local optima.

e Inadaptability to discrete search spaces: The on/off
configuration of switches in network reconfiguration
constitutes a discrete combinatorial problem, which the
basic WOA is ill-equipped to handle effectively.

e Inefficiency in handling heterogeneous multi-objective
problems: The standard WOA does not account for
discrepancies in units and scales across multiple
objectives (e.g., THD in percentage vs. Ploss in
kilowatts).

To overcome these limitations, this study proposes an
enhanced version of the algorithm, referred to as the
Improved Whale Optimization Algorithm (IWOA),
incorporating several key modifications to address the
above challenges and improve performance in complex
grid optimization tasks.

B. Enhancements in the Proposed IWOA

1) Nonlinear contraction mechanism (cubic contraction)

In the original WOA, the vector A—which governs the
search space contraction behavior—Ilinearly decreases
from 2 to 0 as follows:

A=2.ar—a, (12)
Here, r €[0,1], ¢ is the current iteration, and T is the
maximum number of iterations.
In the proposed IWOA, the parameter a is updated using
a cubic decay function to enhance convergence flexibility:

t 3
a=2. (1 -(3) )
2) Discrete search space (discrete mapping)
The standard WOA operates in a continuous search
space [0, 1]P, which is unsuitable for combinatorial
optimization problems such as switch configuration.

In the proposed IWOA, each element X, of the whale
position vector is projected onto a discrete value set via a

witha=2—ﬁ
T

(13)
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rounding function, as follows:

Xdise = argminyeg, [Xq — x| (14)

where S; denotes the set of feasible discrete values (e.g.,
{0,1} for switch open/close states).

3) Adaptive parameter control mechanism

The IWOA incorporates an adaptive weighting function
to dynamically balance exploration and exploitation
capabilities throughout the optimization process, governed
by the parameter A(f)

A() = Amax (1 = 2) (15)

Remark: As t increases, A(?) decreases, thereby increasing
the emphasis on local exploitation.

4) Normalized multi-objective fitness function

The IWOA addresses the four-objective optimization
problem by applying normalization and assigning equal
weighting to each criterion (as referenced in Eq. (1)). This
approach enables consistent evaluation of objectives with
heterogeneous units such as kilowatts (kW), percent (%),
and per unit (p.u.) within a unified assessment framework.

C. Pseudocode for Problem

Input: Network data, population size N, maximum
iterations T, objective weights w_i
1. Initialize a population of N individuals X i with random
switch configurations
2. Evaluate the objective function F(X 1) using (1)
3. Identify the best individual X best
Fort=1to T do:
For each individual X i in the population do:
- Update vectors A and C according to (12) and (13)
- If rand < 0.5 then:
- Apply shrink encircling or spiral bubble-net
attack
- Else:
- Perform random exploration
- Project solution to discrete search space using (14)
End For
Update X_best if a better solution is found
End For
Output: Optimal switch configuration with minimized
objective function F

D. Convergence and Computational Complexity Analysis

Convergence: The integration of cubic parameter decay
and adaptive control mechanisms significantly enhances
global search capability and accelerates convergence.
Experimental evaluations (as presented in later sections)
demonstrate  that IWOA  achieves convergence
approximately 30% to 40% faster than the original WOA
in terms of the number of iterations required.

Computational Complexity: For a population of N
individuals and 7 iterations, the total time complexity of
the IWOA is:

a(NTfevalf) (16)

where fevair denotes the computational cost of evaluating
the objective function. This complexity is comparable to
that of PSO and GWO; however, due to its faster
convergence behavior, IWOA achieves a reduced overall
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runtime in practice.
The proposed algorithm is illustrated in Fig. 1, and its
operational steps are described as follows:

Initialize a population with random
switch conflguratlon

Evaluate objective value for each
search agent

Determine the best search agent

Update coefficients a, A, C, A(t),
using Egs.. (12), (13) and (15)

[
[
[
[

]
]
|
]

Exploration
phase

Exploration Bubble -net

e )
= )=

Map each solution to the discrete space ]

v

[Evaluate objective value for each search agent ]

[ Output the optimal switch configuration ]

[ )

Fig. 1. Improved Whale Opimization Algorithm (IWOA).

Step 1: Population Initialization: Generate a set of
individuals (agents), where everyone represents a
randomly generated switch open/close configuration
within the distribution network.

Step 2: Objective Function Evaluation:Compute the
multi-objective fitness function—including power loss,
voltage deviation, THD, and PVUR—for each individual
in the population.

Step 3: Best Individual Identification: Record the
individual with the best (i.e., lowest) objective function
value as Xpeq

Step 4: Algorithmic Coefficient Update: Update the
control parameters a, 4, C, and A(f) according to (12), (13),
and (15), which govern the search behavior.

Step 5: Behavior Phase Selection:

If rand <0.5 select the exploitation phase — direct
movement toward Xpest

Else: select the bubble-net attack phase, applying either
spiral motion or contraction.

Otherwise: perform the exploration phase through random
search.

Step 6: Discrete Solution Mapping: Project each
continuous solution vector onto a feasible combinatorial
space (e.g., map each value to 0 or 1 for binary switch
status).
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Step 7: Fitness Reevaluation: Recalculate the objective
function values for all individuals in the updated
population.

Step 8: Iteration Loop: Increment the iteration counter
t=t+1 and repeat the above steps until the maximum
number of iterations 7 is reached.

Step 9: Output Result: Return the optimal switch
configuration corresponding to the minimum objective
function value found during the optimization process.

IV. IMPROVED WHALE OPTIMIZATION ALGORITHM

A. Test System Setup

To evaluate the effectiveness of the proposed IWOA
under realistic operating conditions, simulations were
conducted on a modified IEEE 33-bus distribution system.
(Detailed data for unbalanced phase loads and DER
integration are provided in Appendix A) The test system
includes four interconnected microgrid clusters, each
integrating various types of renewable energy sources such
as Photovoltaic (PV), wind turbines, Battery Energy
Storage Systems (BESS), and Distributed Generation
(DG). The model incorporates three-phase unbalanced
load conditions as well as time-varying harmonic injection
profiles to closely reflect practical scenarios. Two fault
scenarios are considered: 1) an N—1 contingency involving
the loss of a single branch during peak PV generation

5

w

©
-

hours, and 2) an N-2 contingency involving the
simultaneous loss of two branches during the system's
peak load period.

The performance of the proposed IWOA is compared
against three benchmark algorithms: Particle Swarm
Optimization (PSO), Differential Evolution (DE), and the
original Whale Optimization Algorithm (WOA).

B. Node-Wise Power Quality Assessment

Following the application of each optimization
algorithm for network reconfiguration, the Total Harmonic
Distortion (THD) and Phase Voltage Unbalance Ratio
(PVUR) indices were computed for every node in the
system. Fig. 2 and Fig. 3 illustrate the comparative
performance of IWOA versus the original WOA in terms
of node-level THD and PVUR distributions, respectively.

Overall, under the coordination of IWOA, the THD is
tightly regulated, maintaining values within the range of
approximately 2.0% to 2.7%, which is significantly lower
than those observed with the original WOA—where many
nodes exceed the 5.0% threshold. Similarly, the Phase
Voltage Unbalance Ratio (PVUR) under IWOA remains
below 1.0% at all nodes, whereas WOA exceeds the 2.0%
margin at several nodes with single-phase PV integration.
These results clearly demonstrate the superior capability of
IWOA in managing harmonic distortion and phase balance
on a node-by-node basis.
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Fig. 2. Node-wise THD comparison between IWOA and WOA.
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Fig. 3. Node-wise PVUR comparison between IWOA and WOA.
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C. Assessment Convergence Behavior of the Objective
Function

One of the key aspects in any optimization problem is
the speed and stability of convergence. Fig. 4 illustrates the
convergence trajectories of the considered algorithms.

The IWOA achieves rapid convergence within
approximately 12 iterations and stabilizes at a lower
objective function value compared to the other methods. It
should be noted that Table I presents the number of
iterations required for each algorithm to achieve
convergence based on the termination criteria (i.e.,
minimal change in objective value over successive
iterations). In contrast, Fig. 4 illustrates the complete
convergence trajectories across all iterations up to the
predefined maximum. This distinction highlights not only
the efficiency but also the stability of the proposed IWOA
compared to other algorithms. While WOA and DE exhibit
slower or oscillatory convergence patterns, IWOA
stabilizes within fewer than 12 iterations, demonstrating
faster convergence and robustness. PSO and DE require
18-21 iterations to reach a steady state, while the original
WOA converges earlier but becomes trapped in local
optima, yielding inferior solution quality. These
observations underscore the practical effectiveness of the
proposed nonlinear contraction vector and discrete-space
mapping strategies employed in IWOA.
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Fig. 4. Convergence curves of the objective function.

TABLE I: SUMMARY OF OPTIMIZATION ALGORITHM PERFORMANCE

Algorithm TDH PVUR Plosse Iteration DeltaU
TB(%) TV(%) kW) (pw)
IWOA 2.32 0.61 0.121 12 0.015
PSO 2.68 0.78 0.124 18 0.018
DE 2.59 0.69 0.126 21 0.020
WOA 4.15 1.17 0.221 15 0.026

D. Power Loss Comparison

In Fig. 5 illustrates the total active power loss obtained
by each algorithm following network reconfiguration.

The IWOA achieves the lowest power loss at 0.121 MW,
representing an improvement of approximately 5-7%
compared to PSO and DE, and a substantial reduction of
nearly 45% relative to the original WOA, which records a
loss of 0.221 MW. This result not only validates the
efficiency of IWOA in power flow coordination but also
suggests its potential for long-term economic benefits in
grid operation.
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Fig. 5. Power loss comparison among optimization algorithms.

While [13, 18] focus on loss minimization or PV
support, they do not explicitly address phase unbalance or
THD. Our method addresses all four objectives
simultaneously.

E. Summary of Algorithm Performance

The overall performance metrics of all algorithms are
consolidated in Table I. From the results presented in
Table 1, it is evident that IWOA delivers superior overall
performance. It achieves the lowest average THD (2.32%),
the lowest PVUR (0.61%), the least power loss, the fastest
convergence rate, and the smallest voltage deviation
among all compared algorithms. While PSO and DE
demonstrate reasonable effectiveness, they fall short of the
holistic consistency achieved by IWOA. The original
WOA clearly exhibits limitations when applied to
nonlinear, multi-objective optimization in distribution
systems.

F. Sensitivity Analysis of Weighting Factors

A sensitivity analysis was conducted by varying the
weights assigned to each objective in the composite fitness
function. The results indicate that increasing the weight of
THD from 0.25 to 0.4 reduces THD by approximately 0.3—
0.4% but leads to a 6-8% increase in power losses.
Conversely, lowering the weight of power loss improves
power quality but degrades energy efficiency. Therefore,
the configuration with equal weights w=0.25 provides the
most stable and robust performance across all metrics.
Increasing the weight assigned to THD (e.g., from 0.25 to
0.40) results in a more aggressive minimization of
harmonic distortion, reducing average THD by
approximately 0.3% to 0.4%. However, this prioritization
compromises energy efficiency, leading to a 6% to 8%
increase in total active power loss. Similarly, assigning
lower weights to power loss improves PQ indicators but
degrades overall system efficiency. This behavior
highlights the inherent trade-offs among the four
objectives, reinforcing the rationale for using uniform
weighting. Such balanced weighting enables robust and
stable performance across various operating scenarios,
without overfitting the optimization toward any single
objective.

G. Factors Overall Evaluation and Discussion

Considering power quality enhancement, energy
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efficiency, convergence speed, and algorithmic stability,
IWOA consistently outperforms the alternative methods.
Its integration of a nonlinear contraction strategy, discrete
solution mapping, and normalized multi-objective
formulation enables faster convergence, greater accuracy,
and more robust optimization under highly dynamic and
uncertain  distribution  system conditions. These
enhancements collectively empower IWOA to serve as an
effective solution for complex reconfiguration tasks in
smart distribution grids.

V. CONCLUSION

This study presents a comprehensive and technically
rigorous self-healing reconfiguration framework for
unbalanced and harmonic-rich distribution networks,
leveraging the Improved Whale Optimization Algorithm
to address four simultaneously critical operational
objectives: active power losses, voltage deviation, total
harmonic distortion, and phase voltage unbalance ratio.
The proposed approach significantly advances existing
literature by unifying multi-objective optimization,
discrete decision variables, and nonlinear grid dynamics
into a coherent and scalable control solution—particularly
suited for modern distribution systems with high
penetration of distributed energy resources and nonlinear
loads.

Methodologically, the IWOA integrates several key
algorithmic enhancements, including nonlinear cubic
contraction for  balanced exploration-exploitation
dynamics, discrete solution space mapping for effective
handling of switching configurations, and an equally
weighted normalization scheme to  standardize
heterogeneous objectives. These innovations collectively
enable superior convergence speed, global optimality, and
robustness in complex combinatorial search spaces.
Simulation results on the modified IEEE 33-bus test feeder
demonstrate consistent improvements over benchmark
algorithms such as PSO, DE, and classical WOA, across
all performance indicators—namely power quality, energy
efficiency, and convergence behavior.

Nonetheless, the study acknowledges several
limitations. First, validation is currently confined to a
standard-scale benchmark system, which may not fully
encapsulate the spatial and temporal diversity of real-
world grids. Second, the model assumes idealized
communication and actuation infrastructure, while
practical deployments must contend with latency, noise,
and switching delays. To address these constraints, future
research will explore extensions to large-scale systems,
incorporation of delay-aware and transient constraints, and
hybridization with deep reinforcement learning to enable
adaptive, context-aware control. Hardware-In-the-Loop
(HIL) testing is also envisioned to bridge the gap between
simulation and field-level implementation.

In essence, this research not only delivers a high-
performance algorithmic tool but also lays a strategic
foundation for the development of resilient, intelligent,
and self-healing power distribution infrastructures in the
era of decentralized energy systems.
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APPENDIX

A. Unbalanced Load and DER Profiles for IEEE 33-Bus

System

This appendix provides the complete unbalanced load
distribution (Table AI) and distributed energy resources
(DER) allocation (Table AII) used in the modified IEEE
33-bus test system. The system simulates realistic
conditions with unbalanced three-phase loads and DER
integration including PV, Wind, DG, and BESS.

TABLE AL: UNBALANCED PHASE LOAD DISTRIBUTION
Phase A Phase B Phase C

Bus No. Load Load Load ’(l;:)\t;;;‘(])aag
(kW/kVar) (kW/kVar) (kW/kVar)
1 50/30 0/0 42/23 92/53
2 60/36 46/23 49/26 155785
3 70/ 42 0/0 0/0 70/ 42
4 80/48 30/ 15 42/23 152/ 86
5 40/24 0/0 49/26 89/50
6 50/30 46/23 0/0 96/53
7 60 /36 0/0 42/23 102 /59
8 70/ 42 30/ 15 49/26 149/83
9 80/48 0/0 0/0 80 /48
10 40/24 46/23 42/23 128 /70
11 50/30 0/0 49/26 99 /56
12 60/36 30/ 15 0/0 90 /51
13 70/42 0/0 42/23 112 /65
14 80/48 46/23 49/26 175797
15 40/24 0/0 0/0 40/24
16 50/30 30/ 15 42/23 122 /68
17 60/36 0/0 49/26 109/ 62
18 70/42 46/23 0/0 116/ 65
19 80/48 0/0 42/23 122/71
20 40/24 30/ 15 49/26 119/65
21 50/30 0/0 0/0 50/30
22 60 /36 46/23 42/23 148/ 82
23 70/42 0/0 49/26 119/ 68
24 80/48 30/ 15 0/0 110/63
25 40/24 0/0 42/23 82/47
26 50/30 46/23 49/26 145/79
27 60/36 0/0 0/0 60/36
28 70 /42 30/ 15 42/23 142/ 80
29 80/48 0/0 49/26 129/74
30 40/24 46/23 0/0 86 /47
31 50/30 0/0 42/23 92/53
32 60 /36 30/ 15 49/26 139/77
33 70 /42 0/0 0/0 70 /42

Note: The loads are representative synthetic values to reflect phase
unbalance across the network.

TABLE All: DISTRIBUTED ENERGY RESOURCES (DER) ALLOCATION

Bus No. DER Type Rate(:kC\:/;) acity Phase Connection
6 PV 50 Phase A
13 Wind 75 Three-phase
18 BESS 40 Phase B
22 DG 60 Phase C
30 PV 45 Phase B
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