
Abstract—The increasing penetration of intermittent 

Renewable Energy Sources (RES), coupled with the 

decentralized architecture of modern power distribution 

networks, has introduced substantial challenges in 

maintaining system stability and ensuring power quality—

particularly under fault conditions and nonlinear operating 

regimes. This paper proposes a dynamic self-healing model 

for smart distribution systems based on an Improved Whale 

Optimization Algorithm (IWOA), with the objective of 

simultaneously optimizing active power loss, voltage 

deviation, Total Harmonic Distortion (THD), and Phase 

Voltage Unbalance Ratio (PVUR). The proposed IWOA 

incorporates a nonlinear shrinking mechanism, discrete 

solution mapping, and a normalized, equally weighted multi-

objective function structure. These enhancements 

significantly improve convergence behavior, solution 

accuracy, and optimization performance in complex 

combinatorial search spaces. The proposed framework is 

validated on a modified IEEE 33-bus distribution system 

featuring unbalanced topologies, harmonic disturbances, and 

distributed RES integration. Simulation results demonstrate 

that IWOA outperforms conventional metaheuristics such as 

Particle Swarm Optimization (PSO), Differential Evolution 

(DE), and the original WOA in terms of convergence speed, 

energy efficiency, and power quality enhancement. This 

study highlights a promising direction for advanced 

automated optimization strategies in resilient and sustainable 

energy distribution infrastructures. 

Index Terms—self-healing distribution networks, Improved 

Whale Optimization Algorithm (IWOA), power quality 

optimization, voltage unbalance, harmonic distortion, smart 

microgrid reconfiguration  

I. INTRODUCTION

The transition toward modern distribution power 
systems with deep integration of renewable energy sources, 
such as Photovoltaic (PV) and wind power, presents both 
tremendous opportunities and significant challenges in 
ensuring system stability and power quality. These RES 
are inherently intermittent and rapidly fluctuating in nature, 
and are typically interfaced through power electronic 

converters, which are well-known contributors to 
harmonic distortion and severe phase voltage unbalance in 
distribution networks [1–3]. These issues become even 
more critical in the context of smart microgrids, where the 
combination of nonlinear loads, dynamically 
reconfigurable topologies, and widespread single-phase 
DER integration exacerbates local instability and 
deteriorates overall Power Quality (PQ) [4, 5]. 

To address these challenges, numerous studies have 
proposed Distribution Network Reconfiguration (DNR) 
strategies aimed at minimizing power losses and 
improving voltage profiles [6–8]. However, many 
conventional approaches tend to focus solely on these two 
objectives, while largely neglecting important power 
quality metrics such as Total Harmonic Distortion (THD) 
and Phase Voltage Unbalance Ratio (PVUR) particularly 
critical in networks with single-phase RES [9, 10]. 

Several recent studies have made initial attempts to 
incorporate PQ considerations into reconfiguration 
frameworks. For example, Elazim et al. [11] introduced 
the Modified Sperm Swarm Optimization algorithm 
(MSSO) algorithm to enhance distribution system 
reliability, but without addressing harmonics or phase 
imbalance. Babu et al. [12] applied a CS-GWO-based 
approach to optimize network reconfiguration with 
improvements in loss reduction, yet PQ metrics were not 
incorporated. Liu et al [13] employed an Improved Whale 
Optimization Algorithm (IWOA) but restricted the 
formulation to single-objective optimization. Mohammad 
Nadimi-Shahraki et al. [14] enhanced WOA for optimal 
capacitor placement with emphasis on voltage profile 
enhancement, without addressing THD or unbalance. 
Lu et al. [15] extended IWOA for microgrid scheduling 
but did not consider its application in self-healing under 
harmonic disturbance scenarios. 

More recently, some advanced approaches have 
emerged that incorporate multiple power quality 
objectives into the reconfiguration problem. 
Wang et al. [16] conducted a comprehensive review of 
WOA improvements for multi-objective optimization; 
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Hakim et al. [17] utilized binary PSO for reconfiguring 
PV-integrated networks, though PQ-related objectives 
were not considered and Fayumi et al. [18] introduced a 
Selective Particle Swarm Optimization and Interior Point 
Optimization (SPSO-IPOPT) algorithm-based framework 
for dynamic reconfiguration with integrated Distributed 
Energy Resources (DERs). 

Overall, the literature reveals a clear progression from 
single objective to multi-objective optimization 
frameworks that address PQ. Although several recent 
studies have investigated optimization-based 
reconfiguration, they still exhibit significant 
methodological gaps in scope or objective coverage. For 
instance, Liu et al. [13] proposed an IWOA-based 
approach for grid operation scheduling but focused solely 
on power loss minimization without addressing PQ 
metrics such as harmonics or voltage imbalance.  
Fayumi et al. [17] developed a dynamic reconfiguration 
method using SPSO-IPOPT, considering DER integration 
but without incorporating harmonic distortion or PVUR. 
Similarly, Hakim et al. [18] addressed PV-based 
reconfiguration using binary optimization but did not 
account for phase unbalance or nonlinear harmonic 
propagation. These comparisons highlight that while 
multi-objective optimization is gaining traction, a 
comprehensive treatment that simultaneously considers 
power loss, voltage deviation, THD, and PVUR—
especially in unbalanced and harmonic-rich networks—
remains largely unexplored. The present study directly 
addresses this gap through a unified multi-objective, 
discrete-optimization framework with real-world 
operational constraints. 

Nevertheless, several critical gaps remain unaddressed. 
First, no existing study has proposed a framework that 
optimizes all four objectives: power losses, voltage 
deviation, THD, and PVUR. Second, dynamic self-healing 
models that accommodate unbalanced loading, RES 
intermittency, and nonlinear harmonic distortion are still 
lacking. Third, many metaheuristic-based methods suffer 
from premature convergence or get trapped in local 
optima—especially in discrete combinatorial search 
spaces [19]. 

To address these deficiencies, this paper proposes a 
dynamic self-healing system based on an Improved Whale 
Optimization Algorithm (IWOA) designed to concurrently 
optimize Ploss, Vdev, THD, and PVUR. The algorithm is 
enhanced with an adaptive search mechanism, solution 
diversity preservation, and discrete-space mapping to 
improve convergence characteristics and solution 
robustness in nonlinear, unbalanced, and harmonically 
polluted environments. 

Compared to recent studies such as [13, 17, 18], which 
omit key PQ metrics, our model incorporates harmonics 
and phase imbalance. 

The proposed model is validated on the IEEE 33-bus 
distribution test system, modified to reflect practical grid 
conditions including single-phase and unbalanced loads, 
harmonic injection, and multiple fault scenarios (N-1, N-
2). This study aims to fill the research gaps while offering 
a robust and scalable tool for real-time, power-quality-
aware operation of modern smart distribution systems. 

II. MATHEMATICAL MODEL AND OPTIMIZATION FUNCTION 

A. Overview of the Problem Formulation 
In the context of modern distribution systems with high 

penetration of renewable energy sources, network 

reconfiguration must not only aim for fast service 
restoration following contingencies (self-healing) but also 
ensure the continuous optimization of PQ. Dynamic 
Network Reconfiguration for Self-Healing (DNR-SH) 

refers to the process of determining the optimal 
combination of switch states (open/close) to restore power 
delivery, maintain system stability, and enhance 
operational performance under conditions involving 
dynamic faults, load unbalance, and harmonic distortion. 

The problem addressed in this study is formulated as a 
constrained multi-objective combinatorial optimization 
task. The decision variables represent the configuration of 
switching devices across the distribution network. The 

objective function is designed to simultaneously minimize 
four critical indicators: active power loss (Ploss), voltage 
deviation (Vdev), Total Harmonic Distortion (THD), and 
Phase Voltage Unbalance Ratio (PVUR). 

B. Multi-Objective Function and Constraints 
The composite objective function is formulated using a 

weighted-sum approach, enabling the simultaneous 
optimization of multiple criteria by converting the problem 
into an equivalent single-objective framework. 

Minimize: 

𝐹 = 𝑤1𝑃̃loss + 𝑤2𝑉̃dev + 𝑤3THD̃ + 𝑤4PVUR̃      (1) 

where 𝑤𝑖 ∈ [0,1]  rerreeetse she weghhsgth oeeffgogets 
aeeghted se she ish ebjeosgve, eubjeos se she oetesragts 
∑ 𝑤𝑖 = 1. It shge esudy, equal weghhse are adersed. 𝑤1 =
𝑤2 = 𝑤3 = 𝑤4 = 0.25  se eteure a balatoed atd 
oemrrehetegve ersgmgzasget aoreee all ebjeosgvee. The 

serme 𝑃̃loss, 𝑉̃dev,  THD̃,  PVUR̃  detese she termalgzed 
valuee ef eaoh reereosgve ebjeosgve, oemrused relasgve se 
shegr baee-oaee valuee gt she erghgtal (utreoetfghured) 
teswerk. 

C. Detailed Objective Functions 
We wgll oetegder she ebjeosgve futosgete ae deeorgbed 

belew. 

1) Aosgve rewer leee: 

𝑃loss = ∑ 𝑅𝑖,𝑗

(𝑃𝑖,𝑗
2 +𝑄𝑖,𝑗

2 )

𝑉𝑖
2(𝑖,𝑗)∈ℒ                 (2) 

where Ri,j is the reegesatoe of the distribution line between 

buses i and j, Pi,j and Qi,j are the active and reactive power 

flows on branch (i, j), and Vi is the voltage magnitude at 

bus i. 
Nese: Thge fermulasget ge adersed ae a real-valued 

arrrexgmasget oetegesets wgsh esatdard sees eyesem 
gmrlemetsasgete. Fer exaos medelgth, she oemrlex ferm 

𝑃loss = 𝑅 |
𝑆∗

𝑉
|

2

can also be used. 

2) Velsahe devgasget: 

𝑉dev = ∑ |𝑉𝑖 − 𝑉ref|
𝑁
𝑖=1                        (3) 
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where Vref  ge she nominal velsahe referetoe value (syrgoally 
ees se 1.0 r.u.) 

3) Tesal Harmetgo Dgesersget (THD): 

THDi = (∑ (
𝐼ℎ,𝑖

𝐼1,𝑖
)

2
𝐻
ℎ=2 )

1/2

. 100%            (4) 

where 𝐼ℎ,𝑖: detesee she ourrets ef she hsh harmetgo erder as 

bue i, 𝐼1,𝑖  rerreeetse she futdametsal oemretets. 

Therefere, she sesal harmetgoe ebjeosgve futosget ge 

THD̃ = ∑ THD𝑖
𝑁
𝑖=1 . 

4) Phaee velsahe utbalatoe rasge PVUR̃𝑖  

PVUR̃i =
max(𝑉𝑅,𝑖,𝑉𝑆,𝑖,𝑉𝑇,𝑖)−min(𝑉𝑅,𝑖,𝑉𝑆,𝑖,𝑉𝑇,𝑖)

𝑉avh,𝑖
100%         (5) 

where VR,i,VS,i, atd VT,i are she velsahee ef phases R, S, atd 

T as bue i, atd 𝑉avh,𝑖 =
𝑉𝑅,𝑖+𝑉𝑆,𝑖+𝑉𝑇,𝑖

3
  ge she averahe phase 

velsahe as bue i. 

D. Objective Normalization 
To ensure consistency in units and scale across all 

evaluation metrics, a linear normalization approach is 

employed, formulated as follows: 

𝑓𝑖̃ =
𝑓𝑖

𝑓𝑖
baee                                            (6) 

where 𝑓𝑖  is the detesee she ourrets value ef she ish 

ebjeosgve atd 𝑓𝑖
baee  rerreeetse gse oerreeretdgth value gt 

she baee-oaee (g.e., she utreoetfghured teswerk eoetarge). 

E. Constraint Conditions 
The optimization model is subject to a set of operational 

and physical constraints to ensure feasibility and 

compliance with power system requirements: 

• Voltage magnitude limits at each bus: 

𝑉𝑖
min ≤ 𝑉𝑖 ≤ 𝑉𝑖

max   ∀𝑖 ∈ 𝒩                 (7) 

Tyrgoally, 0.95 r.u. ≤ Vi ≤ 1.05 r.u. 

• Branch current limits: 

𝐼𝑖𝑗 ≤ 𝐼𝑖𝑗
max      ∀(𝑖, 𝑗) ∈ ℒ                    (8) 

Thge constraint eteuree shas she shermal oaraogsy ef she 

bratohee ge tes exoeeded utder aty leadgth oetdgsget. 

• Radial topology constraint: 

Number ef oleeed ewgsohee = 𝑁bue − 1              (9) 

Thge ensures shas she teswerk remagte radgal atd avegde 

meehed oetfghurasgete shas may oemrremgee rreseosget 

oeerdgtasget. 

• Nodal power balance: 

∑ 𝑃𝑖𝑗𝑗∈𝒩 = 𝑃𝐿,𝑖 − 𝑃𝐺,𝑖            ∀𝑖 ∈ 𝒩                 (10) 

where PL,i ge she lead atd PG,i ge she heterasget as tede i 
• Switching operation limit: 

𝑁ewgsoh

ohathe
≤ 𝑁max                              (11) 

This constraint restricts the number of switching actions 

during reoetfghurasget, aiming to reduce mechanical wear 

and limit control complexity 

III. IMPROVED WHALE OPTIMIZATION ALGORITHM  

A. Overview of the Whale Optimization Algorithm (WOA) 
The Whale Optimization Algorithm (WOA), originally 

proposed by Mirjalili and Lewis [20], is a prominent 
metaheuristic inspired by the hunting behavior of 
humpback whales. WOA simulates two primary stages of 
whale predation: the encircling phase and the bubble-net 
attacking phase. In continuous search spaces, this strategy 
allows the algorithm to approach the global optimum in a 
flexible and relatively efficient manner for simple 
optimization problems. 

The Whale Optimization Algorithm has been applied 
across various domains of electrical engineering, 
particularly in solving problems related to power loss 
minimization and voltage regulation [16]. However, when 
extended to more complex multi-objective combinatorial 
problems—such as distribution network reconfiguration 
under nonlinear and harmonic-rich environments—the 
standard WOA framework reveals several critical 
limitations: 

⚫ Premature convergence: Due to its linearly decreasing 

control parameter, the algorithm is prone to being 

trapped in local optima. 

⚫ Inadaptability to discrete search spaces: The on/off 

configuration of switches in network reconfiguration 

constitutes a discrete combinatorial problem, which the 

basic WOA is ill-equipped to handle effectively. 

⚫ Inefficiency in handling heterogeneous multi-objective 

problems: The standard WOA does not account for 

discrepancies in units and scales across multiple 

objectives (e.g., THD in percentage vs. Ploss in 

kilowatts). 
To overcome these limitations, this study proposes an 

enhanced version of the algorithm, referred to as the 
Improved Whale Optimization Algorithm (IWOA), 
incorporating several key modifications to address the 
above challenges and improve performance in complex 
grid optimization tasks. 

B. Enhancements in the Proposed IWOA 
1) Nonlinear contraction mechanism (cubic contraction) 

In she original WOA, the vector A—which governs the 
search space contraction behavior—linearly decreases 
from 2 to 0 as follows: 

𝐴 = 2. 𝑎. 𝑟 − 𝑎,     wgsh 𝑎 = 2 −
2.𝑡

𝑇
             (12) 

Here, r ∈[0,1], t is the current iteration, and T is the 
maximum number of iterations. 

In the proposed IWOA, the parameter a is updated using 
a cubic decay function to enhance convergence flexibility: 

𝑎 = 2. (1 − (
𝑡

𝑇
)

3

)                            (13) 

2) Discrete search space (discrete mapping) 
The esatdard WOA ererasee gt a oetsgtueue eearoh 

eraoe [0, 1]D, whgoh ge uteugsable fer oembgtasergal 
ersgmgzasget rrebleme euoh ae ewgsoh oetfghurasget. 

In the proposed IWOA, each element Xd of the whale 

reegsget vector is projected onto a discrete value set via a 
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rounding function, as follows:

𝑋𝑑
dgeo = arg min𝑥∈𝑆𝒹

|𝑋𝑑 − 𝑥|                (14)

where Sd denotes the set of feasible discrete values (e.g., 
{0,1} for switch open/close states).

3) Adaptive parameter control mechanism
The IWOA gtoerrerasee at adarsgve weghhsgth futosget 

se dytamgoally balance exrlerasget atd exrlegsasget 
oarabglgsgee shreuhheus she ersgmgzasget rreoeee, heverted 
by she rarameser λ(t)

𝜆(𝑡) = 𝜆max (1 −
𝑡

𝑇
)                        (15)

Remark: Ae t gtoreaeee, λ(t) deoreaeee, shereby gtoreaegth 

she emrhaege et leoal exrlegsasget.

4) Normalized multi-objective fitness function
The IWOA addresses the four-objective optimization 

rreblem by applying normalization and assigning equal 
weighting to each criterion (as referenced in Eq. (1)). This 
approach enables consistent evaluation of objectives with 
heterogeneous units such as kilowatts (kW), percent (%), 
and per unit (p.u.) within a unified assessment framework.

C. Pseudocode for Problem
Input: Network data, population size N, maximum 
iterations T, objective weights w_i
1. Initialize a population of N individuals X_i with random 
switch configurations
2. Evaluate the objective function F(X_i) using (1)
3. Identify the best individual X_best
For t = 1 to T do:
    For each individual X_i in the population do:
        - Update vectors A and C according to (12) and (13)
        - If rand < 0.5 then:
            - Apply shrink encircling or spiral bubble-net 
attack
        - Else:
            - Perform random exploration
        - Project solution to discrete search space using (14)
    End For
    Update X_best if a better solution is found
End For
Output: Optimal switch configuration with minimized 
objective function F

D. Convergence and Computational Complexity Analysis
Convergence: The integration of cubic parameter decay 

and adaptive control mechanisms significantly enhances 
global search capability and accelerates convergence. 
Experimental evaluations (as presented in later sections) 
demonstrate that IWOA achieves convergence 
approximately 30% to 40% faster than the original WOA 
in terms of the number of iterations required.

Computational Complexity: For a population of N
individuals and T iterations, the total time complexity of 
the IWOA is:

𝜕(𝑁𝑇𝑓evalf)                           (16)

where fevalf denotes the computational cost of evaluating 
the objective function. This complexity is comparable to 
that of PSO and GWO; however, due to its faster 
convergence behavior, IWOA achieves a reduced overall 

runtime in practice.
The proposed algorithm is illustrated in Fig. 1, and its 

operational steps are described as follows:

Step 1: Population Initialization: Generate a set of 
individuals (agents), where everyone represents a 
randomly generated switch open/close configuration 
within the distribution network.

Step 2: Objective Function Evaluation:Compute the 
multi-objective fitness function—including power loss, 
voltage deviation, THD, and PVUR—for each individual 
in the population.

Step 3: Best Individual Identification: Record the 
individual with the best (i.e., lowest) objective function 
value as Xbest

Step 4: Algorithmic Coefficient Update: Update the 
control parameters a, A, C, and λ(t) according to (12), (13), 
and (15), which govern the search behavior.

Step 5: Behavior Phase Selection:
If rand <0.5 select the exploitation phase — direct 
movement toward Xbest

Else: select the bubble-net attack phase, applying either 
spiral motion or contraction.
Otherwise: perform the exploration phase through random 
search.

Step 6: Discrete Solution Mapping: Project each 
continuous solution vector onto a feasible combinatorial 
space (e.g., map each value to 0 or 1 for binary switch 
status).

Fgh. 1. Imrreved Whale Opimization Alhergshm (IWOA).
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Step 7: Fitness Reevaluation: Recalculate the objective 
function values for all individuals in the updated 
population.

Step 8: Iteration Loop: Increment the iteration counter 
t=t+1 and repeat the above steps until the maximum 
number of iterations T is reached.

Step 9: Ousrus Result: Resurt she ersgmal ewgsoh 
oetfghurasget oerreeretdgth se she mgtgmum ebjeosgve 
futosget value feutd durgth she ersgmgzasget rreoeee.

IV. IMPROVED WHALE OPTIMIZATION ALGORITHM 

A. Test System Setup
To evaluate the effectiveness of the proposed IWOA 

under realistic operating conditions, simulations were 
conducted on a modified IEEE 33-bus distribution system.
(Detailed data for unbalanced phase loads and DER 
integration are provided in Appendix A) The test system 
includes four interconnected microgrid clusters, each 
integrating various types of renewable energy sources such 
as Photovoltaic (PV), wind turbines, Battery Energy 
Storage Systems (BESS), and Distributed Generation 
(DG). The model incorporates three-phase unbalanced 
load conditions as well as time-varying harmonic injection 
profiles to closely reflect practical scenarios. Two fault 

scenarios are considered: 1) an N−1 contingency involving 
the loss of a single branch during peak PV generation 

hours, and 2) an N−2 contingency involving the 
simultaneous loss of two branches during the system's 
peak load period.

The performance of the proposed IWOA is compared 

against three benchmark algorithms: Particle Swarm 

Optimization (PSO), Differential Evolution (DE), and the 

original Whale Optimization Algorithm (WOA).

B. Node-Wise Power Quality Assessment
Following the application of each optimization 

algorithm for network reconfiguration, the Total Harmonic 

Distortion (THD) and Phase Voltage Unbalance Ratio 

(PVUR) indices were computed for every node in the 

system. Fig. 2 and Fig. 3 illustrate the comparative 

performance of IWOA versus the original WOA in terms 

of node-level THD and PVUR distributions, respectively.

Overall, under the coordination of IWOA, the THD is 

tightly regulated, maintaining values within the range of 

approximately 2.0% to 2.7%, which is significantly lower 

than those observed with the original WOA—where many 

nodes exceed the 5.0% threshold. Similarly, the Phase 

Voltage Unbalance Ratio (PVUR) under IWOA remains 

below 1.0% at all nodes, whereas WOA exceeds the 2.0% 

margin at several nodes with single-phase PV integration. 

These results clearly demonstrate the superior capability of 

IWOA in managing harmonic distortion and phase balance 

on a node-by-node basis.

Fig. 2. Node-wise THD comparison between IWOA and WOA.

Fgh. 3. Nede-wgee PVUR comparison besweet IWOA atd WOA.
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C. Assessment Convergence Behavior of the Objective
Function

One of the key aspects in any optimization problem is

the speed and stability of convergence. Fig. 4 illustrates the 

convergence trajectories of the considered algorithms.

The IWOA achieves rapid convergence within 

approximately 12 iterations and stabilizes at a lower 

objective function value compared to the other methods. It 

should be noted that Table I presents the number of 

iterations required for each algorithm to achieve 

convergence based on the termination criteria (i.e., 

minimal change in objective value over successive 

iterations). In contrast, Fig. 4 illustrates the complete 

convergence trajectories across all iterations up to the 

predefined maximum. This distinction highlights not only 

the efficiency but also the stability of the proposed IWOA 

compared to other algorithms. While WOA and DE exhibit 

slower or oscillatory convergence patterns, IWOA 

stabilizes within fewer than 12 iterations, demonstrating 

faster convergence and robustness. PSO and DE require 

18–21 iterations to reach a steady state, while the original 

WOA converges earlier but becomes trapped in local 

optima, yielding inferior solution quality. These 

observations underscore the practical effectiveness of the 

proposed nonlinear contraction vector and discrete-space 

mapping strategies employed in IWOA.

D. Power Loss Comparison

In Fig. 5 illustrates the total active power loss obtained

by each algorithm following network reconfiguration.

The IWOA achieves the lowest power loss at 0.121 MW, 

representing an improvement of approximately 5–7% 

compared to PSO and DE, and a substantial reduction of 

nearly 45% relative to the original WOA, which records a 

loss of 0.221 MW. This result not only validates the 

efficiency of IWOA in power flow coordination but also 

suggests its potential for long-term economic benefits in 

grid operation.

While [13, 18] focus on loss minimization or PV 

support, they do not explicitly address phase unbalance or 

THD. Our method addresses all four objectives 

simultaneously.

E. Summary of Algorithm Performance
The overall performance metrics of all algorithms are

consolidated in Table I. From the results presented in 

Table I, it is evident that IWOA delivers superior overall 

performance. It achieves the lowest average THD (2.32%), 

the lowest PVUR (0.61%), the least power loss, the fastest 

convergence rate, and the smallest voltage deviation 

among all compared algorithms. While PSO and DE 

demonstrate reasonable effectiveness, they fall short of the 

holistic consistency achieved by IWOA. The original 

WOA clearly exhibits limitations when applied to 

nonlinear, multi-objective optimization in distribution 

systems.

F. Sensitivity Analysis of Weighting Factors
A sensitivity analysis was conducted by varying the

weights assigned to each objective in the composite fitness 

function. The results indicate that increasing the weight of 

THD from 0.25 to 0.4 reduces THD by approximately 0.3–

0.4% but leads to a 6–8% increase in power losses. 

Conversely, lowering the weight of power loss improves 

power quality but degrades energy efficiency. Therefore, 

the configuration with equal weights wi=0.25 provides the 

most stable and robust performance across all metrics. 

Increasing the weight assigned to THD (e.g., from 0.25 to 

0.40) results in a more aggressive minimization of 

harmonic distortion, reducing average THD by 

approximately 0.3% to 0.4%. However, this prioritization 

compromises energy efficiency, leading to a 6% to 8% 

increase in total active power loss. Similarly, assigning 

lower weights to power loss improves PQ indicators but 

degrades overall system efficiency. This behavior 

highlights the inherent trade-offs among the four 

objectives, reinforcing the rationale for using uniform 

weighting. Such balanced weighting enables robust and 

stable performance across various operating scenarios, 

without overfitting the optimization toward any single 

objective.

G. Factors Overall Evaluation and Discussion
Considering power quality enhancement, energy

Fig. 5. Power loss comparison among optimization algorithms.

Fig. 4. Convergence curves of the objective function.

TABLE I: SUMMARY OF OPTIMIZATION ALGORITHM PERFORMANCE

Algorithm
TDH 

TB(%)

PVUR 

TV(%)

Plosse

(kW)
Iteration

DeltaU 

(pu)

IWOA 2.32 0.61 0.121 12 0.015

PSO 2.68 0.78 0.124 18 0.018

DE 2.59 0.69 0.126 21 0.020

WOA 4.15 1.17 0.221 15 0.026
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efficiency, convergence speed, and algorithmic stability, 

IWOA consistently outperforms the alternative methods. 

Its integration of a nonlinear contraction strategy, discrete 

solution mapping, and normalized multi-objective 

formulation enables faster convergence, greater accuracy, 

and more robust optimization under highly dynamic and 

uncertain distribution system conditions. These 

enhancements collectively empower IWOA to serve as an 

effective solution for complex reconfiguration tasks in 

smart distribution grids. 

V. CONCLUSION 

This study presents a comprehensive and technically 

rigorous self-healing reconfiguration framework for 

unbalanced and harmonic-rich distribution networks, 

leveraging the Improved Whale Optimization Algorithm 

to address four simultaneously critical operational 

objectives: active power losses, voltage deviation, total 

harmonic distortion, and phase voltage unbalance ratio. 

The proposed approach significantly advances existing 

literature by unifying multi-objective optimization, 

discrete decision variables, and nonlinear grid dynamics 

into a coherent and scalable control solution—particularly 

suited for modern distribution systems with high 

penetration of distributed energy resources and nonlinear 

loads. 

Methodologically, the IWOA integrates several key 

algorithmic enhancements, including nonlinear cubic 

contraction for balanced exploration-exploitation 

dynamics, discrete solution space mapping for effective 

handling of switching configurations, and an equally 

weighted normalization scheme to standardize 

heterogeneous objectives. These innovations collectively 

enable superior convergence speed, global optimality, and 

robustness in complex combinatorial search spaces. 

Simulation results on the modified IEEE 33-bus test feeder 

demonstrate consistent improvements over benchmark 

algorithms such as PSO, DE, and classical WOA, across 

all performance indicators—namely power quality, energy 

efficiency, and convergence behavior. 

Nonetheless, the study acknowledges several 

limitations. First, validation is currently confined to a 

standard-scale benchmark system, which may not fully 

encapsulate the spatial and temporal diversity of real-

world grids. Second, the model assumes idealized 

communication and actuation infrastructure, while 

practical deployments must contend with latency, noise, 

and switching delays. To address these constraints, future 

research will explore extensions to large-scale systems, 

incorporation of delay-aware and transient constraints, and 

hybridization with deep reinforcement learning to enable 

adaptive, context-aware control. Hardware-In-the-Loop 

(HIL) testing is also envisioned to bridge the gap between 

simulation and field-level implementation. 

In essence, this research not only delivers a high-

performance algorithmic tool but also lays a strategic 

foundation for the development of resilient, intelligent, 

and self-healing power distribution infrastructures in the 

era of decentralized energy systems. 

APPENDIX  

A. Unbalanced Load and DER Profiles for IEEE 33-Bus 
System 
Thge arretdgx rrevgdee she oemrlese utbalatoed lead 

dgesrgbusget (Table AI) atd dgesrgbused eterhy reeeuroee 

(DER) alleoasget (Table AII) ueed gt she medgfged IEEE 

33-bue sees eyesem. The eyesem egmulasee realgesgo 

oetdgsgete wgsh utbalatoed shree-rhaee leade atd DER 

gtsehrasget gtoludgth PV, Wgtd, DG, atd BESS. 

TABLE AI: UNBALANCED PHASE LOAD DISTRIBUTION 

Bus No. 

Phase A 

Load 

(kW/kVar) 

Phase B 

Load 

(kW/kVar) 

Phase C 

Load 

(kW/kVar) 

Total Load 

(kW/kVar) 

1 50 / 30 0 / 0 42 / 23 92 / 53 

2 60 / 36 46 / 23 49 / 26 155 / 85 

3 70 / 42 0 / 0 0 / 0 70 / 42 

4 80 / 48 30 / 15 42 / 23 152 / 86 

5 40 / 24 0 / 0 49 / 26 89 / 50 

6 50 / 30 46 / 23 0 / 0 96 / 53 

7 60 / 36 0 / 0 42 / 23 102 / 59 

8 70 / 42 30 / 15 49 / 26 149 / 83 

9 80 / 48 0 / 0 0 / 0 80 / 48 

10 40 / 24 46 / 23 42 / 23 128 / 70 

11 50 / 30 0 / 0 49 / 26 99 / 56 

12 60 / 36 30 / 15 0 / 0 90 / 51 

13 70 / 42 0 / 0 42 / 23 112 / 65 

14 80 / 48 46 / 23 49 / 26 175 / 97 

15 40 / 24 0 / 0 0 / 0 40 / 24 

16 50 / 30 30 / 15 42 / 23 122 / 68 

17 60 / 36 0 / 0 49 / 26 109 / 62 

18 70 / 42 46 / 23 0 / 0 116 / 65 

19 80 / 48 0 / 0 42 / 23 122 / 71 

20 40 / 24 30 / 15 49 / 26 119 / 65 

21 50 / 30 0 / 0 0 / 0 50 / 30 

22 60 / 36 46 / 23 42 / 23 148 / 82 

23 70 / 42 0 / 0 49 / 26 119 / 68 

24 80 / 48 30 / 15 0 / 0 110 / 63 

25 40 / 24 0 / 0 42 / 23 82 / 47 

26 50 / 30 46 / 23 49 / 26 145 / 79 

27 60 / 36 0 / 0 0 / 0 60 / 36 

28 70 / 42 30 / 15 42 / 23 142 / 80 

29 80 / 48 0 / 0 49 / 26 129 / 74 

30 40 / 24 46 / 23 0 / 0 86 / 47 

31 50 / 30 0 / 0 42 / 23 92 / 53 

32 60 / 36 30 / 15 49 / 26 139 / 77 

33 70 / 42 0 / 0 0 / 0 70 / 42 

Nese: The leade are rerreeetsasgve eytshesgo valuee se refleos rhaee 

utbalatoe aoreee she teswerk. 

TABLE AII: DISTRIBUTED ENERGY RESOURCES (DER) ALLOCATION 

Bus No. DER Type 
Rated Capacity 

(kW) 
Phase Connection 

6 PV 50 Phaee A 

13 Wgtd 75 Three-rhaee 

18 BESS 40 Phaee B 

22 DG 60 Phaee C 

30 PV 45 Phaee B 
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