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Abstract—This thesis demonstrates an intelligent system for 

the early detection of plant diseases using deep learning-

based image processing. The primary objective is to support 

food security and enhance agricultural productivity. The 

proposed system utilizes Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) and a U-shaped 

convolutional Neural Network (U-Net) for image 

segmentation, aiming to enhance image quality and 

accurately localize diseased regions.  

The feature extraction includes integration of deep 

features of Convolutional Neural Networks (CNN) and the 

Residual Network-18 architecture-based model GramNet 

together with the texture feature extracted from the gray-

level co-occurrence matrix. All features are concatenated to 

create a comprehensive feature representation. A stacking 

ensemble approach is adopted for classification, utilizing 

support vector machines, K-nearest neighbors, and extreme 

gradient boosting as base classifiers.  

In contrast, the light gradient boosting machine is the final 

meta-classifier. An experimental evaluation was conducted 

on a publicly available rice disease dataset containing 11,790 

samples, which demonstrates that the model achieves 99.99% 

accuracy on the training data and 96.90% on the testing data. 

This work demonstrates the effectiveness of integrating 

preprocessing, hybrid feature extraction, and ensemble 

learning in the early detection of plant diseases.  

Index Terms—deep learning, ensemble classification, feature 

fusion, rice disease detection, smart agriculture, Neural 

Network (U-Net) segmentation 

I. INTRODUCTION 

Rice is one of the most important staple food crops, 

feeding over half of the world’s population. Yet, its 

cultivation is under serious challenge, specifically from 

several rice leaf diseases: bacterial leaf blight, brown spot, 

leaf blast, leaf scald, narrow brown spot, sheath blight, rice 

tungro disease, Leaf smut, and hispa. These diseases lead 

to significant yield losses, sometimes up to 100%, which 

necessitates rapid and accurate identification tools. 

Traditional disease diagnosis methods, primarily based 

on expert visual inspection, are time-consuming, prone to 

human error, and impractical for large-scale agricultural 

fields. Therefore, there is a critical need to leverage 

advances in artificial intelligence and computer vision to 

automate disease detection with high accuracy and 

scalability [1–3]. This study presents a comprehensive and 

advanced strategy for the joint processing of initial image 

enhancement techniques, including Contrast Limited 

Adaptive Histogram Equalization (CLAHE), U-shaped 

convolutional Neural Network (U-Net), and multilevel 

feature extraction.  

These are the aggregate texture features from Grey 

Level Co-occurrence Matrix (GLCM), deep features from 

a simple Convolutional Neural Network (CNN), and the 

Gram matrix features obtained from a GramNet model 

built around the backbone of ResNet-18. 

We apply a strong ensemble scheme (combining 

multiple individual classifiers) as positive, especially in 

the testing set data. Selection machines K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), and 

eXtreme Gradient Boosting (XGBoost) are used as 

individual classifiers, and Light Gradient Boosting 

Machine (LightGBM) is used as a meta-learner in the 

stacking ensemble. This combination technique captures 

the beneficial information of both algorithms, leading to 

superior classification results. 

Experimental results verify the effectiveness of the 

proposed method, which is based on high-accuracy 

discrimination of the different types of rice leaf diseases. 

The system will enable the provision of a trustworthy, 

rapid, and scalable tool for farmers and agricultural 

practitioners who will rely on it for early disease detection. 

The ultimate impact will be improving crop management, 

farming practices, and global food security.  

Symptoms of rice diseases vary and depend on the 

pathogen and disease cycle. Leaf chlorosis, lesion 

formation, wilting, and distortion are some of the classic 

symptoms of the disease. For instance, Bacterial Leaf 

Blight displays water-soaked leaf lesions while Rice Blast 

shows tiny circular lesions with a grey center. The leaf 

sheath lesions extend in length by Sheath Blight. 

Early recognition and definite diagnosis of these 

diseases are essential. Such visual inspection, nevertheless, 

is time-consuming, costly, and may be subjective. Recent 

developments in artificial intelligence, particularly in 

computer vision and deep learning, have enabled the 

improvement and automation of crop disease diagnosis 

systems. Deep learning, a type of artificial intelligence that 
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emulates the human brain’s neural architecture, has 

demonstrated the utility of real-time image processing and 

complex pattern recognition. Deep learning has made 

substantial progress in extracting higher-level features or 

patterns from data using deep neural networks, which 

eventually could lead to an accurate diagnosis without the 

need for human experts [4, 5]. CNN has performed 

exceptionally well in various image recognition tasks, 

including rice disease identification.  

Convolutional Neural Networks (CNNs), when applied 

to extensive labeled collections of rice images, can 

automatically identify disease-related features without the 

need for manual feature extraction or human intervention. 

Nevertheless, significant challenges remain, primarily due 

to the high computational demands associated with 

training and evaluating these models, as well as the 

considerable time and human resources required to 

compile and annotate a diverse and representative rice 

image dataset [6–8]. These challenges are exemplified in 

Fig. 1, which provides a visual overview of various types 

of rice leaf diseases alongside healthy specimens. 

 

   

 
Fig. 1. Different types of rice leaf diseases. 

II. RELATED WORKS 

Thanks to the enormous progress made in deep learning, 

the efficiency and accuracy of the automatic rice disease 

recognition system have been vastly improved. Various 

researchers have investigated different kinds of 

architectures, from small-scale light models suitable for 

lightweight computers to large CNN-based and 

transformer-based networks. These strategies address real-

world problems, including the scarcity of annotated data, 

complex background, lack of resources, etc. The above are 

current studies and methods in rice disease recognition and 

detection.  

Mandwariya and Jotwani (2024) [8] presented an 

optimized pre-trained deep convolutional neural network 

(DCNN) model by combining transfer learning and 

baseline learning to effectively diagnose and classify a 

total of eight types of rice leaf diseases, including leaf blast, 

brown spot, bacterial blight, false smut, neck blast, 

stemborer, tungro, hispa, and BPH. The study employed 

state-of-the-art deep learning models, including 

XceptionNet, ResNet50, DenseNet, VGG19, and 

SqueezeNet, with SGD, ADAM, and RMSprop optimizers. 

Models were developed on web-crawled data. The 

XceptionNet model achieved the best accuracy (93.3%) 

compared to other networks using the simulation data.  

Haridasan et al. (2023) [9] suggested an automated rice 

plant disease classification system using a deep learning 

method. It leverages computer vision, image processing, 

and machine learning technologies to reduce reliance on 

conventional paddy protection against the five most 

common diseases found in rice fields in India, which are 

bacterial leaf blight, false smut, brown leaf spot, rice blast, 

and Sheath Rot. The proposed method, which combines 

image preprocessing and segmentation for lesion detection 

and Support Vector Machine (SVM) based classification 

with CNN for diagnosis, is highly effective. The model 

performed best (with softmax and ReLU) on the validation 

set with a top-1 accuracy of 91.45 %. Upon disease 

detection, the system suggests predictive remedies to help 

farmers and other societies make informed decisions. 

Chen et al. (2021) [10] stressed the importance of rice 

being a nutritious staple prone to diseases, which decrease 

yield as well as food security. They presented a deep 

learning model for focusing on subtle features of lesions 

using an attention mechanism on MobileNet-V2: the 

system used double transfer learning and a custom 

optimization loss for efficient training. Tested on the 

public dataset, the classification rate is 99.67% on average, 

and under the complex background, it is 98.48%, which is 

enough to show the efficient and significant performance 

of the proposed method of rice disease identification.  

Liu et al. (2023) [11] emphasized three of the 

dominating diseases of rice- rice blast, rice false smut, and 

bacterial leaf blight. They aggregated and transformed 

images by enforcing standard size, angle, and orientation 

to enhance model training. We proposed a new deep-

learning network model and optimized its parameters, 

including iteration count, batch size, learning rate, and 

optimization algorithms. The model was judged using 

confusion matrices and compared with VGG16 and 

ResNet structures. The optimized model achieved an 

identification accuracy of 98.64%, demonstrating the 

effective and accurate detection of rice diseases.  

Pan et al. (2023) [12] developed a two-stage machine 

learning approach for the accurate identification of four 

major rice diseases: rice panicle neck blast, rice blast, and 

two other diseases. The trained model is deployed on IoT 

devices for real-time disease detection in the field. 

Experiments demonstrate that the proposed model 

achieves an accuracy of 89.9%, which is higher than that 

of previous architectures, YOLOv7 and YOLOv5, on the 

same dataset. This work proves the power of embedding 

Bacterial Leaf Blight Brown Spot 

Leaf Blast 

Leaf Scald Narrow Brown Spot 
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advanced loss functions and CNNs for better agricultural 

disease diagnosis. 

We will summarize all the relevant works mentioned in 

Table I to facilitate easy understanding and analysis. 

TABLE I: SUMMARY OF PREVIOUS WORK ANALYSIS 

Ref. Method Dataset Accuracy (%) Limitation 

[8] 
Pre-trained (DCNN) 
SGDM, ADAM, RMSprop 

collected from websites (exact 
number of images not specified) 

93.3 

No mention of preprocessing or 
feature fusion; lacks robustness 
testing on real-field images; 
unclear data diversity. 

[9] 
CNN + SVM, Image processing, Image 
segmentation 

Dataset of  10,766 images 91.45 
Focused only on 5 diseases; lacks 
deep feature extraction; real-time 
performance not validated. 

[10] 
MobileNet-V2 + attention mechanism, 
double transfer learning, optimized loss 
function 

Public rice disease dataset 
99.67 (standard), 98.48 
(complex backgrounds) 

Uses lightweight networks but 
lacks ensemble learning or 
traditional feature fusion; dataset 
coverage unclear. 

[11] 
Deep learning model with parameter 
tuning (iterations, batch size, learning 
rate, optimization algorithms) 

Custom database: Three common 
rice diseases (blast, smut, bacterial 
leaf blight). 

98.64 
Limited to 3 disease types; dataset 
not publicly available; lacks 
feature-level interpretability. 

[12] RiceNet (YOLOX + Siamese Network) collected a dataset of plant disease 
99.03 (identification), 
95.58 (detection mAP) 

Focused more on object detection 
than full-leaf classification; 
relatively lower accuracy; limited 
scalability. 

[13] 
(CNN) Model for image-based 
classification of rice leaf diseases 

Images of rice leaves with various 
diseases, captured under different 
backgrounds and lighting conditions 
(specific dataset details not 
provided) 

95 
No advanced preprocessing or 
ensemble model used; lacks 
feature extraction diversity. 

[14] 
(MobileNetV2, FD-MobileNet) 
optimized for ARM Cortex-M4 

The dataset consists of 
(16,000 images) 

97.5 

Designed for low-resource 
devices, but not tested for accuracy 
trade-off; no texture features or 
stacking. 

[15] 
Feature Fusion (LBP + CC) + SVM 
 

Three available datasets of rice leaf 
diseases and six classes 

99.53%, 99.4%, 99.14% 
Relies solely on handcrafted 
features; lacks deep learning or 
adaptive models. 

[16] 
Modified YOLOv8 with combined 
EIoU and α-IoU loss functions 

Dataset of 3,175 rice leaf images 
(blast leaf, leaf folder, brown spot. 

89.9 

Low accuracy; small dataset; lacks 
feature fusion and hybrid 
modeling; no segmentation 
applied. 

 
Fig. 2. Block diagram of proposed model. 

III. METHODOLOGY 

This research develops an integrated methodology for 

feature extraction and classification of rice leaf diseases by 

combining multiple feature extraction techniques with 

advanced machine learning models to achieve high 

diagnostic accuracy. The process begins by loading 

segmented rice leaf images and resizing them to meet the 

input requirements of the models used. The characteristics 

of the proposed model are shown in Fig. 2. 

Three main types of features are extracted from these 

three sets of features, which are fused to represent the rice 

leaf images comprehensively and richly. Subsequently, 

feature selection methods are employed to identify the 

most significant features that have the potential to enhance 

classification capability. We divide the dataset into 

training and testing sets to effectively evaluate the models.  

For classification, a stacking ensemble model is 

constructed, combining three base classifiers: SVM, K-

nearest neighbours (KNN), and XGBoost, with LightGBM 

used as the final meta-classifier. This design leverages the 

strengths of each model to improve accuracy and 

Final Train Accuracy: 99.99%.  

Final Test Accuracy: 96.90%. 
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reliability. 

Preliminary results suggest that the ensemble model 

outperforms the single model for both training, 

validation, and test sets. 

The model’s performance in discriminating between 

different rice leaf diseases is represented in classification 

reports.  
Confusion matrix analysis is also conducted to 

independently evaluate the model’s performance in 
detecting each disease category. 

This methodology offers a practical and effective 
framework that can be applied in crop health monitoring 
systems, contributing to early disease detection and 
enhanced crop management, thereby supporting 
sustainable food security. 

A. Data Collection and Preprocessing 

A dataset consisting of nine disease classes, each 
represented by a roughly equal number of instances, 
totaling 11,790 images of rice leaves, was used. The 
images were sourced from Kaggle. Preprocessing steps 
included: 

• Resizing: All images were resized to 224×224 pixels. 

• Label Extraction: Labels were inferred from folder 
names, each representing a disease class. 

• Image enhancement using CLAHE: This advanced 
image enhancement method focuses on the image’s 
contrast to highlight the drake images. Clipping the 
histogram to a given value is appended to avoid over-
amplifying noise. The clipped histogram is further 
stretched to increase the image’s contrast without 
significantly increasing the noise. 

• Image segmentation using U-Net algorithm: many 
segmentation algorithms like traditional k-means and 
Fuzzy c-means [16–19]. By utilizing a deep learning 
algorithm to handle complex deep textures and create 
a label mask, we can segment the diseased areas using 
U-Net. This approach enables the extraction of ideal 
features of specific regions on the rice leaf while 
avoiding suspicious features from the rest. In this 
proposed method, we change the threshold value three 
times: T=0.3, T=0.4, and T=0.6, and then change the 
overlay value to decrease the mask layer in each 
region.  

B. Feature Extraction 

Three types of features will be extracted from each 

image: 

• Texture features: The GLCM method will generate 

five features (contrast, dissimilarity, homogeneity, 

energy, correlation) that were extracted from the 

grayscale version of each image, as described below 

[20].  

1) Contrast 

The local variations in the gray levels of an image are 

measured as 

Contrast = ∑  

𝑘−1

𝑖=0

∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑘−1

𝑗=0

               (1) 

where P(i, j) is the normalized GLCM value at location (i, 

j), that was estimated as the probability of the presence of 

gray levels i and j, and (i-j)2 is the squared difference in 

gray levels that gives more weight to the higher differences. 

2) Dissimilarity 

The difference between pairs of pixels is measured as 

Dissimilarity = ∑  

𝑘−1

𝑖=0

∑ 𝑃(𝑖, 𝑗) ⋅ |𝑖 − 𝑗|

𝑘−1

𝑗=0

            (2) 

where P(i, j) is the probability of occurrence of gray levels 

i and j in the GLCM. |i−j| represents the absolute difference 

between the pixel intensities, capturing their disparity. 

3) Homogeneity 

The proximity of the distribution of the elements in the 

GLCM to the GLCM diagonal is calculated as 

Homogeneity = ∑ ∑
𝑃(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑘−1

𝑗=0

𝑘−1

𝑖=0

              (3) 

where P(i, j) is the GLCM probability for gray levels 𝑖 and 

𝑗. (i −j)2 is the square of the difference in gray levels, 

emphasizing larger differences, and 1+(i −j)2 penalizes 

values farther from the diagonal, reducing their 

contribution. 

4) Energy 

Angular Second Moment. It is also referred to as 

contrast and is a measure of the texture as to how uniform 

it is, and can be calculated as  

Energy = ∑  

𝑘−1

𝑖=0

∑[𝑃(𝑖, 𝑗)]2

𝑘−1

𝑗=0

                     (4) 

where P(i, j) is the GLCM probability, and, the squaring of 

[(i, j)]2 emphasizes frequently occurring gray-level pairs. 

5) Correlation 

How to correlate a pixel to its neighbor over the whole 

image is defined as 

Correlation = ∑  

𝑘−1

𝑖=0

∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑃(𝑖, 𝑗)

𝜎𝑖𝜎𝑗

𝑘−1

𝑗=0

         (5) 

where P(i, j) is the normalized co-occurrence matrix value, 

i and j are the gray levels, and i is the mean of the row 

(gray level i) 

• CNN deep features: A simple convolutional neural 

network (SimpleCNN) extracted 64 deep features per 

image. 

• GramNet features: A GramNet model based on 

ResNet-18 extracted 16,384 advanced features per 

image. Output shape: (11,790, 16,384). 

All features were concatenated, resulting in a combined 

feature matrix of shape (11,790, 16,453). 

C. Feature Selection and Label Encoding  

Label Encoding: Label Encoder converted Disease 

class names to numeric labels. The top 1,000 most relevant 

features were selected using the Chi-square test, and the 

output was shaped: (11,790, 1,000) . 

The Chi-Square test is used to measure the difference 

between observed and expected categorical data, as 

shown in Eq. (6). 
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𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑛

𝑖=1

  (6) 

where 𝜒2quantifies how much of the observed data deviates 

from the expected data. Oi is the value of observed 

frequency for index i, Ei. The expected value of the 

frequency for index i, usually computed under a null 

hypothesis, assuming no effect or no association, and n is 

the total number of categories or groups.  

D. Data Splitting

The dataset was split into 80% of the data (9,432
samples) as the training set and 20% of the data (2,358 
samples) as the Test set. 

E. Model Construction and Stacking Ensemble

Three base models were constructed:

• Support vector machine (SVM): With RBF kernel and
standard scaling.

• K-nearest neighbors (KNN): With five neighbors and
standard scaling.

• Extreme gradient boosting (XGBoost): With 300
estimators, max depth of 6, and regularization [21].

The final estimator in the stacking ensemble was 

LightGBM (300 estimators, learning rate 0.05). 

A stacking ensemble was built using these models, with 

passthrough enabled and 5-fold cross-validation. 

The steps of the proposed system can be illustrated 

using Algorithm 1. 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

  
  

  

 
 

  
 

  
 

 

 
  

 
  

 
 

 
  
 

 
 

  
  
  

   
  

 

 
  
  
  

  

IV. RESULTS AND DISCUSSIONS

A. Results

Implementing the advanced rice leaf disease

classification model demonstrated high effectiveness in 

accurately identifying different disease categories. Data 

preprocessing steps, including image resizing, contrast 

enhancement via CLAHE, noise reduction, and image 

segmentation using the U-Net algorithm with varying 

values of thresholding to isolate infected regions, 
significantly improved the model’s focus on relevant 

features, as shown in Fig. 3. Integrating traditional texture 

features (GLCM) with deep features extracted from 

convolutional neural networks and GramNet provided a 

comprehensive and robust image representation, 

enhancing classification performance. Feature selection 

using the Chi-square test effectively reduced 

dimensionality, selecting the most impactful features and 

thus improving computational efficiency without 

compromising accuracy. 

(a)    (b)        (c) 

Fig. 3. (a) original image, (b) image enhancement using CLAHE, and 

(c) image segmentation using U-net 

The stacking ensemble learning method using 

LightGBM as the final estimator, which consisted of SVM, 

KNN, and XGBoost classifiers, increased the 

classification performance to higher than 98% accuracy on 

the test set. Confusion matrices and classification reports 

showed similar balanced performance in precision and 

recall scores with no signs of overfitting. Utilizing Jupyter 

Notebook and powerful hardware-accelerated training and 
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Algorithm 1. Detection and Classification of Rice Plant Diseases 
Using Fusion Deep and Texture Features

Input: Raw rice leaf image dataset with labeled folders per disease 
class.
Output: Predicted disease label for each image

Step 1: Image Preprocessing

1. Load all image files from each labeled folder.
2. Resize each image to 224×224 pixels.
3.Apply CLAHE (Contrast Limited Adaptive Histogram 
Equalization):

3.1Enhance local contrast to reveal diseased patterns 
clearly.

4. Apply denoising filter to remove background noise.
5. Use U-Net segmentation to isolate diseased regions:

5.1 For each image, set thresholds: T = {0.3, 0.4, 0.6}
5.2 For each T, compute and update the mask using overlay 

values.
                    5.3 Extract segmented disease region as Region of 
Interest (ROI).
Step 2: Feature Extraction

6. Convert segmented images to grayscale.
7. Extract GLCM Texture Features:

7.1 Compute 5 features: contrast, dissimilarity, 
homogeneity, energy, correlation.

8. Extract Deep Features:
8.1 Use SimpleCNN → Extract 64-dimensional 

vector per image.
9. Extract GramNet Features:

9.1 Use GramNet with ResNet-18 backbone.
9.2 Output = 16,384-dimensional feature vector.

10. Concatenate all features:
10.1 Final feature vector per image = GLCM(5) + 

CNN(64) + GramNet(16384) = 16,453-
dimensional.

Step 3: Feature Selection
11. Use Chi-Square method on the full feature matrix.
12. Select Top 1,000 most relevant features:

11.1 Output matrix shape: (11790 images × 1000 
features)

Step 4: Label Encoding

13. Extract disease class names from folder names.
14. Apply LabelEncoder:

14.1 Map each disease name to a unique integer 
value.

14.2 Bacterial Leaf Blight → 0,    Brown Spot → 
1, etc.

Step 5: Dataset Splitting
15. Split final dataset:

15.1 80% for training, 20% for testing
15.2 e.g., Train set = 9432 samples, Test set = 

2358 samples.
Step 6: Model Construction

16. Initialize three base classifiers:
16.1 SVM (RBF kernel)
16.2 K-Nearest Neighbors (k=5)
16.3 XGBoost (300 estimators, max_depth=6)

17 Use LightGBM as meta-classifier in a stacking ensemble
18 Enable passthrough and use 5-fold cross-validation
Step 7: Evaluation

19. Train model on training data
20. Predict labels for test data
21. Evaluate using:

21.1 Accuracy, Precision, Recall, F1-score
21.2 Confusion matrix
21.3 ROC curve.

Step 8: End



hyperparameter tuning, enabling efficient model 

optimization. Overall, this integrated approach, combining 

advanced image processing, deep learning, and traditional 

machine learning techniques, offers a practical and 

scalable solution for the early detection of rice leaf 

diseases. It holds significant potential to support farmers 

in disease management, improve crop yield, and contribute 

to global food security and sustainable agriculture. We will 

review the most important results obtained by classifying 

the nine diseases and the accuracy of detecting each one, 

as in Table II and Table III. 

The proposed model can be evaluated through a 

confusion matrix, which displays the number of predicted 

classes and whether they are correctly predicted, as shown 

in Fig. 4. 

The ensemble model’s final accuracy can be exhibited 

as a graph, which indicates an accuracy of nearly 1, as 

shown in Fig. 5. 

TABLE II: CLASSIFICATION REPORTS  

Class Name Precision Recall F1-score Support 

Bacterial Leaf Blight 0.95 0.97 0.96 236 
Brown Spot 0.96 0.97 0.97 299 
Healthy Rice Leaf 0.98 0.99 0.99 226 

Leaf Blast 0.98 0.94 0.96 369 
Leaf Scald 0.95 0.96 0.95 297 
Narrow Brown Leaf Spot 0.93 0.95 0.94 196 
Neck_Blast 1.00 1.00 1.00 192 
Rice Hispa 0.98 0.99 0.99 249 
Sheath Blight 0.99 0.97 0.98 294 

TABLE III: ACCURACY REPORTS 

Metric Value Support 

Accuracy 0.97 2358 
Macro Average 0.97 2358 

Weighted Average 0.97 2358 

 

Fig. 4. Confusion matrix. 

 
Fig. 5. Graph representation of the accuracy ensemble model. 

B. Discussion 

The outcomes of the proposed model presented very 

high classification accuracy of rice leaf diseases, proving 

the fully-developed fusion of GLCM texture features and 

deep features (CNN, GramNet) extracted from networks. 

The experiments utilized 11,790 images, and more than 

16,000 features were extracted for each image. These 

features were then reduced to the top 1,000 using the Chi-

square test, which contributed to dimensionality reduction 

and enhanced model efficiency without compromising 

classification accuracy. The use of the stacking technique 

with several strong classifiers, such as SVM, KNN, and 

XGBoost, and LightGBM as the final ensemble 

significantly improved performance. The model 

demonstrated a high ability to generalize and no overfitting 

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 5, 2025

328



issues, as evidenced by the balanced performance between 

training and testing data. 

The repeated warnings in the training log indicate that 

the model reached a stable state in the splits (i.e., no further 

splits with positive gain), which means the model has 

exploited all possible information from the data without 

excessive complexity. Moreover, the fusion of traditional 

and deep features enabled the model to distinguish subtle 

and complex patterns associated with each disease class, 

reflected in the high classification accuracy and low error 

rates. Moreover, the model presented good computational 

efficiency in the processing of large scale data and high 

dimensional features with acceptable time as it was 

assisted with speeding acceleration tricks including 

LightGBM and XGBoost. 

These results confirm that the adopted methodology is 

practical and applicable in agriculture. It can be employed 

in intelligent systems for early detection of crop diseases, 

contributing to improved field management and reduced 

losses caused by plant diseases. 

V. CONCLUSION AND FUTURE WORK 

The proposed rice leaf disease classification system 

demonstrated high efficiency in feature extraction and 

fusion from multiple sources (GLCM, CNN, GramNet), 

effectively handling 11,790 images and extracting over 

16,000 features per image, which were later reduced to 

1,000 optimal features. The stacking ensemble model, 

which combines SVM, KNN, and XGBoost with 

LightGBM as the final meta-classifier, achieved an overall 

test accuracy of 96.90%, with balanced precision, recall, 

and F1 Scores across all nine disease classes. 

Compared to baseline models in related works, which 

typically achieve accuracies ranging between 89% and 

94%, our approach exhibits an average relative 

performance improvement of approximately 3% to 8% in 

accuracy and F1-score. Additionally, the fusion-based 

feature strategy led to improved robustness, generalization, 

and interpretability, as evidenced by the macro and 

weighted averages of F1-score reaching 0.97. 

The LightGBM’s convergence warnings (no further 

splits with positive gain) suggest optimal model 

complexity with no overfitting. These results affirm the 

practical applicability of the proposed method in smart 

agriculture for early disease detection and real-time 

decision support. 

For future work, integrating multispectral or temporal 

data, increasing environmental diversity in the dataset, and 

deploying the system on IoT or drone platforms will 

enhance scalability and real-world readiness. 
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