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Abstract—Real-time analysis of streaming data is crucial in 

agricultural environmental monitoring to address quickly 

changing conditions like seasonal weather changes. Concept 

drift, where the statistical characteristics of input data 

evolve, poses a significant problem for static machine 

learning models. This research presents a drift-aware 

framework based on a hybrid adaptive windowing method 

combined with an Online Sequential Extreme Learning 

Machine (OS-ELM). The strategy involves a multi-

dimensional extension of Adaptive Windowing (ADWIN) 

that is supplemented by the Kolmogorov–Smirnov statistical 

test and Hoeffding’s bound to identify and respond to real-

time drift. An experimental Internet of Things (IoT) 

platform was constructed to gather environmental 

parameters such as temperature, humidity, soil moisture, 

light, pH, and rainfall. Empirical tests on real and synthetic 

datasets show that the new framework greatly enhances 

predictive performance, from 85.86 percent to 97.29 percent 

when drift handling is activated. The findings emphasize the 

significance of combining adaptive learning with drift 

detection for accurate and dependable prediction in 

precision agriculture. 

Index Terms—adaptive windowing, concept drift, data 

stream mining, drift detection, Extreme Learning Machine 

(ELM), Internet of Things (IoT), sensor data, precision 

agriculture 

I. INTRODUCTION 

Online learning experiences a change in the 

distribution of data while extracting meaningful 

information from data streams. That change in data 

distribution is known as concept drift. The classifier 

classifies incoming instances using past training data. The 

accuracy of the classifier deteriorates because of the 

concept drift. The traditional classifiers are not trained to 

learn the patterns in an evolving distribution of data [1]. 

One such classic example is weather forecasting, 

where models predicting based on seasonal data become 

ineffective in light of changing climatic patterns or 

anomalies. Seasonal shifts, like monsoon and dry seasons, 

can bring in large variations, making previously learned 

patterns ineffective. Existing sensor anomaly detection 

techniques are mostly designed for general purposes and 

may not be suitable for climate sensors, which require 

complex handling of seasonality, spatial relationships, 

and sensor interdependency [2]. Another example 

Intrusion detection system where shifts in statistical 

distributions within data streams pose critical 

cybersecurity threats [3]. 

To counter this, several drift detection methods have 

been suggested, e.g., Adaptive Windowing (ADWIN), 

Drift Detection Method (DDM), and Early Drift 

Detection Method (EDDM), which track performance 

metrics of a classifier and statistical characteristics over 

time [1]. Most of them employ sliding or adaptive 

window mechanisms to monitor changing distributions, 

often improving detection effectiveness when combined 

with statistical tests like the Kolmogorov–Smirnov (K-S) 

test [4] or Cumulative Sum (CUSUM) [5]. Besides, 

ensemble classifiers have proved to be a more robust 

alternative to individual-model methods, providing better 

adaptability and robustness to concept drift. A real-time 

system is implemented to detect malware within large-

scale network traffic streams in the presence of concept 

drift [6]. Various drift detection techniques are applied to 

the Network Security Laboratory-Knowledge Discovery 

in Databases (NSL-KDD) and IoT-23 datasets. K-S test 

can able to identify concept drift correctly. Long Short-

Term Memory (LSTM) learner is used [7] with Page 

History Table (PHT), ADWIN, and K-S test. K-S method 

with LSTM works well as compared to other drift 

detection methods.  

In such a context, this current study presents a new 

framework devised to detect and accommodate drift in 

real-time data streams through the application of a hybrid 

adaptive windowing method. The system utilizes an 

Extreme Learning Machine (ELM) as the underlying 

classifier. Whenever a decline in classifier performance is 

noticed, the system triggers a hybrid ADWIN drift 

detection module. This module utilizes the K-S statistical 

test to detect changes in distributions within the data 

window. When a drift is detected, a new ELM classifier 

is trained on the latest data and is added to an ensemble 

of models, thus maintaining adaptability while enhancing 

predictive performance. 

This model is specifically used for actual field 

agricultural environmental data gathered through an 
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experimental IoT system. The dataset contains variables 

like temperature, humidity, light, gas, pressure, and 

rainfall, which are naturally seasonal. Acknowledging 

that a fixed window size can fail to capture actual drift 

during changing conditions, the system proposed here 

uses an adaptive windowing approach. The smaller 

windows are used when there is rapid change, like 

monsoon periods, and larger windows are used during 

steadier periods to minimize false alarms. 

The rest of this paper follows the following structure: 

Section II describes background ideas and current 

approaches. Section III details the drift detection 

framework. Section IV provides an overview of the 

datasets employed in this study. Section V explains the 

suggested hybrid architecture and detection procedure. 

Section VI provides an overview of the experimental 

setup and outcomes. Section VII presents the industrial 

implications of real-time drift detection in IoT systems, 

and Section VIII concludes the paper and suggests future 

work. 

II. LITERATURE REVIEW 

Concept drift detection is critical in real-time systems, 

particularly in applications like precision agriculture, 

where data distributions change. Several algorithms have 

been proposed to cope with the problem, and they can be 

classified based on the underlying principles they use. 

The following subtopics critically review major classes of 

drift detection approaches, emphasizing strengths, 

weaknesses, and applicability to dynamic, sensor-based 

applications. 

Similarity and Dissimilarity-Based Methods: These 

methods measure similarity or difference in data 

distributions through time to detect drift [8]. DDM 

applies a binomial distribution model to track the error 

rates of the classifier. While DDM works well for sudden 

drift, it is susceptible to insensitivity towards gradual drift. 

EDDM builds on this by emphasizing the distance 

between classification errors. Exponentially Weighted 

Moving Average (EWMA) [9] places a heavier emphasis 

on the latest values, employing a recursive weighting 

function that enables high-speed reaction times to change. 

The EWMA statistic is calculated recursively using the 

Eq. (1): 

EWMA(𝑡) = l𝑋(𝑡) + (1 − l)EWMA(𝑡)          (1) 

where λ (lambda) determines the weight assigned to the 

current observation. A higher λ gives more importance to 

recent observations, while a lower λ places more 

emphasis on past data. The Reactive Drift Detection 

Method (RDDM) supplements DDM’s lack of 

responsiveness by increasing detection with massive 

concept shifts. However, these approaches tend to be 

limited in multivariate or seasonally changing 

environments because they rely solely on monitoring one-

dimensional errors. 

Sequential Analysis-Based Methods: These techniques 

track data sequentially and produce drift signals when 

user-specified deviations are observed beyond thresholds 

[10]. The Page-Hinkley test, for example, identifies 

changes in the mean of a data stream. Although effective 

in cases with uniform patterns, these techniques can be 

challenged by minor or feature-specific changes in high-

dimensional data. 

Statistical-Based Methods: Statistical methods employ 

hypothesis testing and distribution-based measures on 

past and present data to identify drift. The Cumulative 

Sum (CUSUM) scheme [11] detects long-standing 

differences from a baseline. McDiarmid drift detection 

methods (MDDM-A, MDDM-G, MDDM-E) employ 

McDiarmid’s inequality across a sliding window. These 

versions employ arithmetic, geometric, or Euler-based 

weighting schemes, respectively. While potent, these 

methods operate with binary prediction windows and do 

not fully capture interactions between two or more sensor 

variables. 

Window-Based Approaches: Two sliding windows 

hold past and present data in window-based approaches. 

Drift is identified statistically by comparing the windows. 

CVFDT is a well-known instance that learns alternative 

decision trees on new information and updates poor-

performing models accordingly. ADWIN and its 

enhanced variant, ADWIN2, dynamically scale windows 

and compare means of subwindows to identify changes. 

Although these approaches are adaptive and effective, 

classical ADWIN [12] processes only accept single-

dimensional input. This is a constraint that limits its 

utility in applications with richer, multivariate streams, 

like those encountered in sensor-based monitoring 

networks. 

Block-Based Ensembles: Block-based ensemble 

algorithms build classifiers out of sequential data blocks 

and update model relevance with pruning. Streaming 

Ensemble Algorithm (SEA) rebalances the ensemble by 

removing low-performing models. Accuracy Weighted 

Ensemble (AWE) chooses top-performing classifiers 

based on mean squared error, whereas Accuracy Updated 

Ensemble (AUE) [13] updates model parameters directly. 

These are effective in batch learning, yet they tend to 

need large quantities of labeled data and are inflexible in 

changing data streams. 
Incremental-Based Ensembles: Also called online 

ensembles, these strategies update model weights 
constantly depending on performance. The Dynamic 
Weighted Majority (DWM) [14] algorithm penalizes an 
error in prediction by lowering model weight and 

eliminates models below a tolerance. Learn++ builds 
several classifiers for a data batch, updating weights 
based on error patterns. These schemes are stable in 
dynamic environments, though their performance will be 

lower in noisy or weakly supervised scenarios. 
Rule-Based Methods: Rule-based classifiers make 

predictions based on interpretable rules that can be 
separately tested and adapted [15]. Such models have the 

benefit of transparency and simple modification. But they 
become unreliable in sophisticated or rapidly changing 
contexts, where coarse rules do not adequately reflect 
detailed drift behavior. 

Tree-Based Methods: Tree-based methods like 

CVFDT [10] replace subtrees dynamically if accuracy 
falls. Random Forest classifiers and Vertical Hoeffding 
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Trees (VHT) are some other methods that further extend 
flexibility using ensemble learning and distributed 
processing. Even though these algorithms facilitate 
continuous learning, they are computationally heavy, 

especially for resource-constrained deployments. 

Naive Bayes Methods: Naive Bayes models apply 

Bayes’ theorem to estimate class-conditional probabilities. 

They are efficient in computation but rely on feature 

independence, which is frequently not the case for 

multivariate sensor data. Bayesian networks provide more 

flexibility since they learn inter-feature relations 

dynamically. The Fast-Hoeffding Drift Detection Method 

(FHDDM) [16] monitors classification accuracy over 

time and raises a drift alarm when performance falls 

below a level set by Hoeffding’s inequality. Although 

they are efficient, they might confuse natural noise with 

drift under real-world circumstances. 

Significance Analysis-Based Methods: This category of 

methods relies on statistical hypothesis testing for 

comparison between historical and current data 

distributions [17]. A two-step process is usually followed, 

including distribution comparison followed by 

significance testing, e.g., the Wilcoxon rank sum test. 

These tests are strong and non-parametric but tend to rely 

on the presence of labeled data and can create latency 

owing to dual-window analysis. 

Data Distribution-Based Methods: Distribution-based 

methods emphasize the discovery of changes in the 

statistical properties of input data [1]. In comparing new 

and old data samples’ distributions, these methods can 

spot localized and global drift. Least squares density 

difference and local drift degree-based adaptation are 

some fine-grained analysis-capable techniques. However, 

computational complexity in modeling multivariate 

distributions restricts their applicability in real-time. 

Decision Boundary-Based Methods: These methods 

monitor shifts in classifier decision boundaries and not 

input distributions [1]. A degradation of classification 

performance or boundary certainty usually indicates drift. 

MD3 and Re-DBSCAN, a graph-based algorithm, adapt 

internal models in case of large boundary changes. While 

these approaches are enabled for early detection, they are 

potentially expensive in terms of computation and are 

more effectively applied to offline or periodic analysis. 

Model-Dependent Methods: These approaches train a 

model on a first data subset and then observe shifts in the 

joint probability distribution P (Target∣Input) [1]. 

ExStream and ExStremAttr are tools that are based on 

model interpretability and observe how pairs of feature 

values affect predictions on outputs. These are good for 

explaining drift, but can be challenging in noisy data or 

when the model structure is outdated. 

Machine Learning-Based Methods: Sophisticated 

learning models like restricted Boltzmann machines 

(RBM) and Bayesian nonparametric methods [18] 

provide flexible, data-driven drift detection. RBM (neural 

network) is used for supervised stream classification, and 

the Bayesian nonparametric method is used for 

unsupervised detection, which uses structure-learning 

techniques. But the disadvantage of these methods is that 

they require large training data and hyperparameter 

tuning to work in real-world deployments. 

Active Learning-Based Methods: Active learning 

methods try to increase the efficiency of labeling during 

drifts. RAND++ selects instances for labeling according 

to a pre-defined budget [19], while VAR-UN++ 

dynamically adjusts the uncertainty threshold based on 

the previously observed performance and the severity of 

the drift. Such methods save costs in annotation but 

depend on reliable drift signals and uncertainty estimates 

to work optimally. 

While most of the drift detection methods discussed in 

the review have good drift detection strength, there are 

still some issues. Most of the classical methods are 

tailored for one-dimensional statistics or based on batch-

labeled data. Even the size of the window is important. 

For fixed-size windows fail to capture seasonal or 

periodic variations, which are common in environmental 

monitoring systems. These are the drawbacks that may 

increase false positives or miss the drifts. 

To overcome the above limitations, the author has 

introduced the hybrid adaptive windowing method that 

takes advantage of statistical distribution testing and 

dynamic window adjustment, leveraging ADWIN’s 

functionality to N-dimensional data streams. Through the 

implementation of the K-S test on multiple dimensions of 

sensors and the use of Hoeffding-based sensor deviation 

analysis, this novel technique enhances accuracy in 

detection without compromising on computational 

efficiency. This renders it particularly well-fitted for real-

time agricultural scenarios involving intricate seasonal 

and environmental dynamics. 

III. PROPOSED METHODOLOGY 

This section introduces the novel hybrid adaptive 

windowing approach for real-time concept drift detection 

in multi-dimensional sensor data streams with particular 

emphasis on agricultural environmental monitoring. 

Conventional drift detection algorithms like ADWIN can 

only handle one-dimensional (1D) data, which often 

measures the classification error. In agricultural data 

streams, there are correlated features like temperature, 

humidity, rainfall, soil moisture, pH, and light intensity. 

Processing every feature or attribute with a separate 

window is very expensive and may miss inter-feature 

drift. To address and solve this issue, the suggested 

approach uses N-dimensional K–K-S-based adaptive 

windowing (NDKSWIN) that leverages the K-S 

statistical test in multiple dimensions for efficient drift 

detection. 

The K-S test applies to compare two distributions by 

finding the largest discrepancy between the theoretical 

cumulative distribution function F(x) and the empirical 

cumulative distribution function Fn(x) from the 

windowed data stream: 

𝐷𝑛 =
sup

𝑥
|𝐹(𝑥) − 𝐹𝑛(𝑥)|                     (2) 

Here, sup represents the supremum over all possible 

values of x. If Dn exceeds the critical value Dcritical (α, W), 

where α is the significance level and W is the window 
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size, a drift is flagged. 

The system needs to accommodate seasonal trends like 

monsoon and dry seasons. A fixed window size can lead 

to seasonal changes being mistaken for concept drift. 

Hence, adaptive windowing is used. In times of high 

environmental change (e.g., monsoon), the window is 

dynamically reduced to enhance responsiveness, whereas 

in steady times, it is increased to reduce false positives. 

To determine the origin of drift, Hoeffding’s Bound-

Based HDDM is used. For every sensor si, the deviation 

is measured in terms of Hoeffding’s inequality: 

𝑃(𝜇 − 𝜇̂ > 𝜖) ≤ 2𝑒−2𝑛𝜖2
                      (3) 

The sensor with the maximum deviation is termed the 

source of drift and utilized to cause specific model 

updates. 

A. Algorithmic Workflow 

Fig. 1 summarizes the algorithmic workflow of this 

study. 

Step 1: Initialization 

• Initialize adaptive window W 

• Set significance level α for the K-S test 

• Define threshold Hthresh for Hoeffding’s bound-

based drift detection 

Step 2: Data collection and window update 

• Sensor readings S are continuously collected and 

appended to the adaptive window W. 

Step 3: Drift detection via N-dimensional ADWIN 

(NDKSWIN) 

• If the current window exceeds the minimum size 

threshold, empirical and theoretical cumulative 

distribution functions are computed: 

𝐹𝑛(𝑥) =
1

𝑛
∑ II(𝑋𝑖 ≤ 𝑥)𝑛

𝑖=1                (4) 

• The K-S statistic is evaluated as: 

𝐷𝑛 =
sup

𝑥
|𝐹(𝑥) − 𝐹𝑛(𝑥)|                 (5) 

• If Dn > Dcritical (α, W), drift is detected. 

Step 4: Adaptive window size adjustment 

• The window size is adjusted depending on the 

environmental stability: 

𝑊new = {
𝑊old𝛽  if rapid change detected, 𝛽 < 1
𝑊old𝛾  if stable conditions, 𝛾 > 1          

    (6) 

Step 5: Sensor deviation analysis using HDDM 

Hoeffding’s bound is applied across all sensors to 

identify which sensor contributed most significantly to 

the drift: 

Step 6: Model update and adaptation 

Upon drift detection, the learning model is updated 

using the new data pattern associated with the drifted 

sensor: 

These steps are repeated in a continuous monitoring 

loop, enabling the system to adapt in real-time to 

evolving environmental patterns. 

Here is the detailed real-time adaptation and drift 

detection process with the use of NDKSWIN, followed 

by the pseudocode for the same (Algorithm 1). 

 
Fig. 1. Algorithm flow diagram. 

Algorithm 1. Pseudo-code for Hybrid NDKSWIN-

HDDM Drift Detection and Adaptation 

 

Initialize adaptive window W 

Set significance level α for the K-S test 

Set Hoeffding bound threshold H_thresh 

Initialize the base learning model 

2: Data collection and window update 

while True:   # Continuous real-time monitoring 

new_data ← receive_sensor_data(S)    # Get latest 

sensor readings 

W.append(new_data)     # Add to adaptive window 

3: Drift detection via N-dimensional ADWIN 

(NDKSWIN) 

if len(W) > minimum_window_size then 

Fn_x ← compute_empirical_CDF(W)    # 

Empirical CDF 

F_x ←compute_theoretical_CDF(W)  # 

Theoretical/ Reference CDF 

D_n ← max|F_x - Fn_x| # K-S statistic 

if D_n > critical_value(α, W) then 

print(“Concept drift detected!”) 

4: Adaptive window size adjustment 

if rapid_environmental_change_detected(W) 

then 

W ← shrink_window(W)   # Reduce window 

size during fast changes 

else 

W ← expand_window(W)   # Increase 

window size during stable periods 

5: Sensor deviation analysis using HDDM 

drift_sensor ← detect_drift_source(W, H_thresh) 

print(“Drift detected in sensor:”, drift_sensor) 

6: Model update and adaptation 

update_model(drift_sensor)  # Retrain using new data 
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Fig. 2. Proposed hybrid ADWIN-based adaptive monitoring system. 

B. Preprocessing Pipeline

As shown in the architecture Fig. 2, environmental

information is gathered through various sensors such as 

temperature, humidity, light, smoke, pH, soil moisture, 

rainfall, and particulate matter. Preprocessing steps are 

performed to provide clean and uniform data before 

analysis. 

Noise is removed via Gaussian smoothing, timestamp 

synchronization, and missing value handling through 

KNN imputation, mean imputation, or interpolation. Data 

integrity validation is done via Little’s MCAR test and 

the K-S test to verify distributional consistency. 

Outlier detection employs Z-score (|𝑋−𝜇|>3𝜎) and 

Interquartile Range (IQR) methods. Additional anomalies 

are identified using isolation forest and Local Outlier 

Factor (LOF) algorithms. Min-max scaling and Z-score 

Standardization are done to normalize the data as shown 

in equation (7): 

𝑋scaled =
𝑋−𝑋min

𝑋max−𝑋min
, 𝑋standardized =

𝑋−𝜇

𝜎
    (7) 

The selection of features is done using Pearson 

correlation, PCA, mutual information score, and Variance 

Inflation Factor (VIF) to prevent multicollinearity. The 

set is subsequently divided into subsets for training and 

testing purposes under either a 70:30 or an 80:20 

proportion. K-S tests both subsets to ascertain statistical 

similarity. 

For time-series data, rolling and expanding window 

cross-validation methods are employed to ensure stable 

evaluation while training the model. These preprocessing 

strategies are essential for guaranteeing trustworthy and 

accurate real-time drift detection in agricultural 

environments. 

C. Classifier and Adaptation Mechanism

Extreme Learning Machine (ELM) is used as the base

classifier because it has the capability of fast training and 

good generalization performance. When the accuracy of 

the classifier falls below a specified threshold, a drift 

warning is triggered. This is followed by a formal drift 

test with the Hybrid ADWIN detection unit. Once drift is 

confirmed, the system re-trains the classifier from new 

instances, re-tuning the model to rebuild predictive 

performance and adjust to prevailing conditions. 

To further elaborate, Fig. 3 details each step of the 

framework, outlining the sub-processes and their specific 

contributions toward achieving accurate and efficient 

drift detection and adaptation. 

Fig. 3. Detailed process breakdown of the proposed hybrid ADWIN 

framework. 

To ensure real-time responsiveness, the system 

combines lightweight statistical operations (K-S test and 

Hoeffding bound) with the fast-retraining ability of OS-

ELM. This makes it suitable for high-frequency data 

streams, where frequent drift events require low-latency 

adaptation without overburdening computational 

resources. 

Fig. 4. Experimental setup.
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D. Experimental Setup

Experimental setup consists of a processing board with 

a network of environmental sensors: humidity (2), 

temperature (3), smoke (4), analog pH (5), capacitive soil 

moisture (6), rainfall (7), PM sensor (8), and light sensor 



(9), as shown in Fig. 4. The sensor readings are gathered 

in real-time and communicated to the ThingSpeak cloud 

platform, which uses them for detecting drift and model 

adaptation. 

E. Datasets 

To compare the given method, several real-world and 

synthetic datasets are employed: 

Airlines Dataset [20]: Holds 539,384 instances of 

flight delay information based on airline, airport, and day 

of the week. 

Electricity Dataset [21]: Produced by the Australian 

New South Wales Electricity Market, it is an example of 

price variation due to demand and supply. 

Poker-Hand Dataset [22]: Includes 829,201 examples 

of poker hands with 11 features each, for multi-class 

classification. 

Sensor Stream Dataset [23]: Genuine sensor data 

provided by Intel Berkeley Research Lab in the form of 

temperature, humidity, light, and voltage readings. 

SEA and Hyperplane Datasets: Controlled datasets that 

experience gradual and abrupt concept drifts according to 

drifting decision boundaries.  

Agarwal Dataset: A mixed-attribute dataset having six 

numeric attributes and three categorical attributes, largely 

employed for the assessment of drift detection. 

IV. IMPLEMENTATION AND RESULTS 

To compare the performance of the suggested Hybrid 

ADWIN-based drift detection system, a set of 

experiments was performed using several real-world and 

synthetic datasets. All classifier–drift detection pairs were 

assessed based on common metrics such as accuracy, 

precision, recall, and F1-score. The experimental 

environment was Google Colab as the processing 

platform, and sensor readings like pressure, temperature, 

humidity, rainfall, gas, and soil moisture were obtained 

using an IoT-based sensor system (Fig. 5). 

A. Dataset-Wise Performance Analysis 

SensorStream Dataset: The best performance on this 

dataset was seen with the Online Sequential Extreme 

Learning Machine (OS-ELM) in conjunction with Hybrid 

ADWIN, with an F1-score of 90%. Other high-

performing models were Random Forest with ADWIN 

and ELM with ADWIN, which also provided competitive 

results. This demonstrates the power of ensemble 

classifiers when used with adaptive drift detection 

methods in dynamic sensor environments. 

PokerHand Dataset: Here, too, OS-ELM with Hybrid 

ADWIN performed best, achieving an F1-score of 82.5%. 

The rest of the combinations trailed behind with lower 

F1-scores. Overall performance of all classifiers, though, 

was relatively lower, which is probably due to the class 

imbalance and complexity in the PokerHand dataset. 

ELM-based models, nonetheless, improved over 

conventional models under these difficulties. 

Airlines Dataset: On this dataset, OS-ELM using 

Hybrid ADWIN achieved an F1-score of 87.3%, 

consistent with its top position. The ELM and Decision 

Tree models also fared well when coupled with ADWIN, 

indicating the strength of adaptive drift detection for 

time-sensitive periodic data such as airline delays. 

Electricity Dataset: This dataset yielded the best 

performance metrics overall, with OS-ELM and Hybrid 

ADWIN having a very high F1-score of 92.6%. ELM 

with ADWIN and Decision Tree with ADWIN also 

performed well. The resilience of ELM-based approaches 

under this dataset highlights their flexibility to market-

driven, volatile data streams. 

These results are tabulated in Table I, offering a 

comparative summary of each classifier–drift detection 

pair across all datasets. 

To support the tabulated performance metrics in Table 

I, Fig. 5 presents a comparative visualization of classifier 

performance across four benchmark datasets: Airlines, 

Electricity, PokerHand, and SensorStream. Each subplot 

visualizes the Accuracy, Precision, Recall, and F1-score 

achieved by Decision Tree, ELM, Naive Bayes, OS-ELM, 

Random Forest, and SVM classifiers. 

TABLE I: CLASSIFIER PERFORMANCE ACROSS DATASETS 

Dataset Classifier Drift Detection Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SensorStream 

SVM DDM 84.5 83.2 81.7 82.4 

Random Forest ADWIN 88.1 87.9 86.5 87.2 

Naive Bayes PH Test 80.3 78.6 77.2 77.9 

Decision Tree CUSUM 85 84.1 82.4 83.2 

ELM ADWIN 86.7 85.5 84 84.7 

OS ELM Hybrid ADWIN 91.2 90.7 89.4 90 

PokerHand 

SVM DDM 74.5 72 70.1 71 

Random Forest CUSUM 76.4 75.3 74 74.6 

Naive Bayes PH Test 70.2 69.4 67.8 68.6 

Decision Tree ADWIN 78.6 77.5 76 76.7 

ELM ADWIN 79.1 78.2 76.4 77.3 

OS ELM Hybrid ADWIN 83.8 83.1 81.9 82.5 

Airlines 

SVM PH Test 81 80.4 78.7 79.5 

Random Forest DDM 83.7 82.8 81.3 82 

Naive Bayes CUSUM 77.5 76 74.3 75.1 

Decision Tree ADWIN 82.1 81.2 79.8 80.5 

ELM ADWIN 84 83.1 81.5 82.3 

OS ELM Hybrid ADWIN 88.6 88 86.7 87.3 

Electricity 

SVM CUSUM 85.3 84.1 83.2 83.6 

Random Forest PH Test 87.4 86.2 85 85.6 

Naive Bayes DDM 83.2 82.5 81 81.7 
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Decision Tree ADWIN 89.1 88.2 87.1 87.6 

ELM ADWIN 89.8 88.9 87.9 88.4 

OS ELM Hybrid ADWIN 93.5 93.1 92.2 92.6 

Fig. 5. Visual comparison across datasets and classifiers. 
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Notably, OS-ELM consistently outperforms other 

classifiers across most metrics, especially on the Airlines 

and Electricity datasets. Random Forest and SVM also 

maintain competitive performance on the SensorStream 

dataset. These results reinforce the robustness of the 

Hybrid ADWIN-based concept drift detection approach 

when paired with adaptive classifiers like OS-ELM. 

Overall, the trends observed validate the superiority of 

online sequential learning models in dynamic streaming 

environments. 

B. Classifier Comparisons and Observations 

Overall, OS-ELM with Hybrid ADWIN was the top-
performing setup on all four datasets. It had performance 
levels above 88% on all measures, reflecting high 

stability and responsiveness to sudden and gradual 
concept drifts. This attests to its fitness for use in 
dynamic environments like sensor-driven monitoring 
systems, online transaction streams, and real-time 

analytics. 
ELM with ADWIN also did very well, typically being 

the second-best model. Random Forest with either 
ADWIN or DDM produced good results on most datasets, 

providing a good trade-off between performance and 
interpretability. Decision Tree models with ADWIN were 
consistent but performed slightly worse than ELM-based 
approaches. 

Conversely, Naive Bayes classifiers, especially when 

used with the PH test, performed persistently poorly on 
datasets, confirming their poor ability to deal with 

shifting distributions. SVMs also performed poorly, 
especially on more complicated datasets like PokerHand, 
where data imbalance and class diversity may have 
impeded their learning capacity. 

C. Dataset-Specific Insights 

Among all the datasets, the Electricity dataset recorded 

the best performance results, especially under the OS-
ELM + Hybrid ADWIN model (93.5% accuracy), 
proving its appropriateness for real-time predictive 
analytics. The PokerHand dataset presented the most 
challenging scenario, as all classifiers had relatively 

lower marks. This can be explained by the high-class 
imbalance and complicated feature relationships in the 
dataset. The SensorStream and Airlines datasets had mid-
to-high scores, with patterns similar to those in the 

Electricity dataset, thereby confirming the system’s 
generalizability. 

D. Experimental Setup and Sensor Readings 

All experiments were performed using the Google 
Colab environment. The real-time data used in this study 
was collected through an IoT-based experimental setup 
comprising sensors for pressure, temperature, humidity, 

rainfall, gas, and soil moisture. These readings were 
continuously streamed and visualized, and served as the 
primary source for testing the proposed hybrid drift 
detection framework. 

 
Fig. 6. OSELM without drift detection module.

E. Performance with and without Drift Handling Module 

Fig. 6 shows the performance of the OS-ELM 
classifier without the inclusion of the drift detection 

module. Even though the model works well up to batch 3, 
between batch 3 and batch 4, an observable accuracy 
deterioration occurs because the concept drift has not 
been caught. The training accuracy, precision, recall, and 

F1-score are all on average at 85.86%, 94.74%, 15.52%, 
and 26.67%, respectively. The classifier’s accuracy 
significantly drops in testing to 36.30%, showing the 
classifier’s high sensitivity to drift when no adaptation 

mechanisms are employed. 
Contrarily, Fig. 7 illustrates the improved performance 

of OS-ELM coupled with the Hybrid ADWIN module. 
The classifier accurately identifies drift at various 
intervals (e.g., batches 1, 2, 4, 5, and 6), facilitating 
timely model updating. Consequently, the average 
training metrics are improved to 97.29% accuracy, 94.10% 

precision, 72.82% recall, and 75.58% F1-score. 
Corresponding test scores also significantly improve to 
93.60% accuracy, 78.45% precision, 60.41% recall, and 
61.03% F1-score. 

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 5, 2025

320



 
Fig. 7. OELM with drift detection module.

Table II and Table III show the performance measure 

of the classifier during the training and testing period, and 

it is observed that the system can identify the drift with 

the help of an external drift detection module and 

attempts to maintain the accuracy at 97.29%.  

TABLE II: PERFORMANCE MEASURE DURING TRAINING 

Drift Handling Strategy Accuracy Precision Recall F1-Score 

Without the drift module 0.8586 0.9474 0.1552 0.2667 

With the drift module 0.9729 0.9410 0.7282 0.7558 

TABLE III: PERFORMANCE MEASURE DURING TESTING 

Drift Handling Strategy 
Test 

Accuracy 

Test 

Precision 

Test 

Recall 

Test F1 

Score 

Without the drift module 0.3630 0.1097 0.6384 0.1489 

With the drift module 0.9360 0.7845 0.6041 0.6103 

 

The robust and persistent performance of the proposed 

OS-ELM with the Hybrid ADWIN framework illustrates 

its practicality in many real-time scenarios. Its capacity to 

sense and adjust to both sudden and gradual concept drift 

makes it especially apt for dynamic settings like 

streaming sensor data, finance, cybersecurity, and 

telecom. For example, in intrusion detection systems, 

emerging patterns of cyberattacks like phishing or DDoS 

attacks can be identified in advance with the help of 

adaptive drift-aware models. Likewise, industrial 

monitoring systems, where there are multiple sensors, 

appreciate early detection of sensor failure or signal 

degradation. 

In weather forecasting, under which conditions in the 

environment may change immediately due to natural or 

human reasons, the suggested system guarantees model 

stability over time. News recommendation systems, spam 

filtering systems, and navigation systems are some other 

applications, all of which are required to learn and evolve 

continuously based on user actions or from the outside 

world. Experimental evidence consistently validates the 

system’s scalability and flexibility and makes it a stable 

solution for intelligent decision-making under high-

frequency, changing data settings. 

V. CONCLUSION 

Real-time crop monitoring systems generate 

continuous streams of sensor observations that are 

extremely dynamic and affected by seasonal and 

environmental fluctuations. Static machine learning 

models tend to be incapable of preserving accuracy in 

such scenarios because of their inflexibility to adapt to 

concept drift. After a systematic review of existing 

methodologies, this work presents a hybrid ADWIN-

based drift detection approach integrated with OS-ELM, 

which is an effective remedy to such constraints. The 

suggested system employs a multidimensional K-S test 

and Hoeffding’s bound-based deviation analysis for 

identifying and responding to concept drift by dynamic 

window adjustment and model retraining. 

Experimental verification on several benchmark 

datasets verifies the better performance of the proposed 

method. The OS-ELM classifier integrated with Hybrid 

ADWIN outperformed all other classifiers and drift 

detection combinations consistently, achieving a 

remarkable improvement in classification accuracy from 

85.86 percent to 97.29 percent. These findings bring out 

the importance of incorporating drift-aware mechanisms 

in streaming data applications. 

Besides agricultural monitoring, the proposed 

framework is useful to a wide variety of application 

domains, such as cybersecurity (Intrusion Detection 

System), weather prediction, telecommunications, and 

industrial process monitoring. Moreover, the system’s 

lightweight and modular architecture enables practical 

deployment within real-world environments. It can be 

implemented efficiently on edge devices or cloud 

platforms (e.g., AWS Greengrass, Azure IoT Hub) using 

Docker containers or Python-based microservices, 

thereby supporting scalable integration into existing 

agricultural monitoring infrastructures. Future research 

could investigate the integration of deep learning models 

and online active learning approaches to further improve 
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adaptability in more challenging and high-dimensional 

data streams. 
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