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Abstract—This paper presents a novel hybrid control 

strategy for DC-DC boost converters in Photovoltaic (PV) 

systems, combining Model Predictive Control (MPC) with 

Convolutional Neural Networks (CNN) to optimise the duty 

cycle in real time. The MPC–CNN framework leverages 

MPC’s predictive accuracy and constraint-handling with 

CNN’s fast inference and adaptability, ensuring robust 

voltage regulation under varying irradiance and load 

conditions. The hybrid scheme dynamically selects between 

CNN and MPC outputs based on real-time performance 

metrics, balancing response speed and control precision. 

Simulations with a 100-kW dynamic Photovoltaic (PV) 

profile demonstrate that MPC achieves near-zero steady-

state error, while CNN provides faster transient responses. 

The hybrid controller surpasses both in maintaining voltage 

stability and energy efficiency. Additionally, a performance 

comparison of semiconductor technologies—Silicon (Si), 

Silicon Carbide (SiC), and Gallium Nitride (GaN)—shows 

that GaN-based converters achieve the best results, with 97.6% 

efficiency, 2.8 V ripple, 6.4 W switching loss, and the fastest 

transient response of 0.17 ms. These findings confirm the 

effectiveness of the CNN-enhanced MPC approach and 

establish GaN’s superiority for compact, high-performance 

PV applications. Future work will explore real-time 

embedded implementation, adaptive CNN retraining, and 

integration into smart grid and energy management systems. 

Index Terms—Gallium Nitride (GaN), Model Predictive 

Control (MPC)-Convolutional Neural Networks (CNN), 

Photovoltaic (PV), Silicon (Si), Silicon Carbide (SiC) 

NOMENCLATURE 

Abbreviation Full Form 

PV Photovoltaic 
MPC Model Predictive Control 

CNN Convolutional Neural Network 

Si Silicon 
SiC Silicon Carbide 

GaN Gallium Nitride 

DC-DC Direct Current to Direct Current 
PWM Pulse Width Modulation 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 
R² Coefficient of Determination 

EMI Electromagnetic Interference 

FLC Fuzzy Logic Control 
ANFIS Adaptive Neuro-Fuzzy Inference 

System 

PPO Proximal Policy Optimization 
WBG Wide Bandgap 

HIL Hardware-in-the-Loop 

VIN Input Voltage 
IIN Input Current 

VOUT Output Voltage 

IOUT Output Current 
G Solar Irradiance 

T Temperature 

I. INTRODUCTION

The growing global demand for renewable energy has 

increasingly emphasised the development of efficient, 

compact, and reliable power electronic converters, 

particularly for Photovoltaic (PV) systems. Among 

various DC-DC topologies, the boost converter remains a 

prevalent choice due to its ability to elevate low 

Photovoltaic (PV) voltages to levels suitable for grid-tied 

inverters or battery storage systems [1–5]. However, 

conventional Silicon (Si)–-based power devices are now 

facing physical and thermal performance limitations, such 

as low switching frequency, higher conduction losses, and 

inferior thermal dissipation, thereby hindering further 

improvement in power density and conversion efficiency 

[6, 7]. 

Wide Bandgap (WBG) semiconductors, especially 

Silicon Carbide (SiC) and Gallium Nitride (GaN), have 

emerged as superior alternatives to traditional Si due to 

their favourable electrical properties, including high 

breakdown voltage, fast switching speed, and better 

thermal conductivity [8–11]. SiC devices enable higher 
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switching frequencies with reduced losses. At the same 

time, GaN transistors offer ultra-fast switching and 

reduced parasitic effects—making both materials 

attractive for high-efficiency solar power applications [12, 

13]. 

Numerous studies have validated the performance 

superiority of SiC and GaN over Si. P. Zhang & Y. Yang 

et al. [14] laid the theoretical groundwork for SiC-based 

devices, while A. Udabe et al. [15] reported reduced 

switching losses with SiC in high-frequency operations. 

GaN’s capability to minimise converter volume and 

electromagnetic interference (EMI) has been demonstrated 

by E. Zafra et al. [16], and its fast transient performance 

was highlighted by Di Maria et al. [17]. Moreover, F. 

Wang et al. [18] emphasised GaN’s thermal robustness in 

dynamic PV environments. However, most of these 

contributions focus primarily on device-level or thermal 

characterisation, with limited work addressing intelligent 

control schemes for real-time optimisation under rapidly 

varying solar irradiance. 

To address this gap, this paper proposes a hybrid control 

framework that dynamically integrates Model Predictive 

Control (MPC) and Convolutional Neural Networks (CNN) 

to optimise the duty cycle in boost converters [19]. The 

structure is depicted in Fig. 1. The control loop 

simultaneously evaluates the converter’s output voltage 

Vout(t) and current Iout(t) through two channels: a physics-

based MPC controller and a pre-trained CNN model. The 

MPC ensures mathematically rigorous prediction, while 

the CNN offers rapid inference for adaptive behaviour in 

real-time environments [20]. A hybrid logic selector 

chooses the most appropriate control signal based on 

performance criteria. 

Fig. 1. The control structure of the intelligent energy management 

system for the boost DC/DC converter. 

In recent years, numerous advanced control strategies 

have been proposed to enhance the dynamic performance 

and robustness of DC-DC boost converters, particularly in 

renewable energy applications with variable irradiance and 

load profiles. Traditional methods such as Fuzzy Logic 

Control (FLC) and Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) have shown effectiveness in handling 

system uncertainties and non-linearities, as demonstrated 

by Vo Thanh Ha [21] and Duranay et al. [22]. Meanwhile, 

adaptive sliding mode control techniques [23, 24] have 

improved transient response and voltage regulation, albeit 

with challenges in chattering and complexity tuning. More 

recently, reinforcement learning approaches, such as the 

Proximal Policy Optimization (PPO) framework proposed 

by Utsab Saha et al. [25], have emerged as model-free 

alternatives capable of learning optimal control policies 

from data. 

On the other hand, the evolution of WBG devices such 

as GaN and SiC has opened new opportunities for high-

frequency, high-efficiency converter designs, requiring 

intelligent control strategies that can leverage their full 

capabilities [26]. Hybrid model-based and learning-based 

control schemes are gaining increasing attention. Notably, 

the use of MPC in DC-DC converters allows for 

constraint-aware optimization and predictive stability [27, 

28]. Furthermore, the integration of deep learning models 

such as CNNs has been explored to enhance real-time 

adaptability and generalization under dynamic operating 

conditions, as reported in the works by Sergio Lucia et al. 

[29], Li, Yuan et al. [30] and Sergio Lucia [31]. 

Building upon these advancements, the proposed study 

introduces a hybrid intelligent control framework that 

combines MPC with a pre-trained CNN to regulate the 

duty cycle in boost converters. While the MPC module 

ensures mathematical prediction and constraint handling, 

the CNN provides fast, data-driven inference to 

accommodate unpredictable environmental changes. A 

hybrid logic selector dynamically switches between 

control outputs based on predefined performance metrics, 

ensuring robust and efficient converter operation under 

real-time conditions. This integrated approach 

demonstrates improved performance over traditional 

controllers, particularly in terms of response time, ripple 

minimization, and adaptability to system disturbances. 

The framework is validated through simulation across 

three semiconductor technologies—Si, SiC, and GaN—

under a 100 kW dynamic PV profile. Key performance 

indicators (KPIs) are benchmarked, including output 

voltage ripple, energy efficiency, switching losses, and 

response time. This integrated approach not only 

highlights the synergistic potential of WBG materials with 

intelligent control strategies but also provides a scalable 

pathway towards high-performance, smart PV power 

conversion systems. 

This study makes five major contributions: 

• Comprehensive evaluation: A performance 

comparison of boost converters using Si, SiC, and 

GaN devices under real PV conditions. 
• Hybrid MPC-CNN framework: A novel control

structure integrating CNN for fast inference and MPC

for optimal prediction.

• Real-time AI integration: The CNN-based duty

prediction adapts to real-time PV profile changes to

enhance energy capture.

• Simulation and Dataset: Python-based simulations

using a benchmark dataset of over 4,000 PV operation

samples.

• Material guidance: Results guide the practical
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selection of semiconductor materials—GaN for 

compact, high-speed converters and SiC for high-

power, thermally stressed environments. 
Advancements in power semiconductor devices and 

intelligent control strategies have yet to close the research 

gap in real-time hybrid controllers that combine deep 

learning (e.g., CNN) with physics-based predictive control 

(e.g., MPC) for DC-DC converters under highly dynamic 

PV conditions. Current methods primarily depend on 

either model-based techniques or offline-trained networks, 

lacking the adaptability to sudden changes in solar 

irradiance or load demand. This paper addresses this issue 

by proposing a hybrid MPC-CNN control framework that 

dynamically balances rapid inference with optimal 

prediction, ensuring robust and efficient operation in real-

world PV settings. 

The paper is organised into five sections. Section I 

outlines the motivation, research gaps, and proposed 

solution. Section II introduces the boost converter model, 

PV panel characteristics, and the hybrid MPC-CNN 

control scheme. Section III explains the experimental 

setup, dataset preparation, and simulation configuration. 

Section IV presents and discusses the performance 

evaluation of all three material-control combinations using 

metrics such as RMSE, R², efficiency, and ripple. Finally, 

Section V summarises the findings, practical implications, 

and future directions—including hardware integration and 

smart energy platform deployment. 

   

  

 

  

 

  

 

 

 

 

𝑑𝑈out(𝑡)

𝑑𝑡
=

1

𝐶
[(1 − 𝐷(𝑡))𝐼𝐿(𝑡) −

𝑈out(𝑡)

𝑅load
]          (2) 

where IL is the inductor current, Uout is the output voltage, 

and D(t) is the duty cycle in time domain. 

 
Fig. 2. The schematic diagram of a boost DC/DC converter integrated 

with a Photovoltaic (PV) panel. 

B. Modeling of PV Load 

Fig. 3 illustrates the single-diode equivalent circuit used 

to model the Photovoltaic (PV) panel. This model, widely 

adopted in PV system analysis, captures the nonlinear 

behavior of the solar cell by representing it with a current 

source in parallel with a diode, and optionally including 

series Rs and shunt Rsh resistances. The photocurrent 

source Iphase generates current proportional to solar 

irradiance, while the diode characterizes the p-n junction’s 

response to voltage and temperature. The series resistance 

Rs accounts for internal losses due to current flow, and Rsh 

represents leakage paths within the cell. This model 

enables accurate prediction of the I-V and P-V 

characteristics under various environmental conditions, 

forming the foundation for control and optimization 

strategies in PV power conversion systems. 

 
Fig. 3. Single-diode equivalent circuit. 

The PV panel is modeled using a single-diode 

equivalent circuit, represented by: 

𝐼 = 𝐼phase − 𝐼0 (𝑒
𝑉+𝐼𝑅𝑆

𝑛𝑉𝑡 − 1) −
(𝑈+𝐼𝑅𝑠)

𝑅sh
             (3) 

where Iphase is the photo current, IS is the saturation current, 

Rs and Rsh are the series and shunt resistances, respectively. 

V is terminal voltage of the PV cell, n is diode ideality 

factor, Vt  is thermal voltage, Vt =kT/q with Boltzmann 

constant k, temperature T (K), and electron charge q. 

III. MPC-CNN BASED DUTY CYCLE CONTROL 

The CNN for duty cycle prediction uses four 

normalized inputs: input voltage Vin, input current Iin, solar 

irradiance G, and temperature T. Its architecture consists 

of three convolutional layers with ReLU activation, a 

flattening layer, and two fully connected layers, outputting 
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II. MODELING OF BOOST CONVERTER AND PV LOAD

A. Modeling of Boost Converter

Fig. 2 illustrates the schematic diagram of a boost 

DC/DC converter integrated with a Photovoltaic (PV) 

panel as its input source. The converter is composed of a 

DC input voltage source Vin  (representing the PV panel), 

an inductor L, a switching unit formed by two MOSFETs 

M1 andM2, a diode (internal body diode of the MOSFET), 

an output capacitor C, and a load resistance Rload. When 

operated in switching mode, the converter steps up the 

input voltage to a higher output voltage Uout making it 

suitable for grid integration or battery charging in 

renewable energy systems. The two MOSFETs work in 

complementary switching to control the energy transfer 

from the inductor to the capacitor and load. The inductor 

stores energy when the switch is on and releases it when 

the switch is off, resulting in a boosted voltage across the 

output terminals. This topology is widely adopted in PV 

systems due to its simplicity, cost-effectiveness, and 

ability to maintain efficient energy conversion under 

varying solar irradiance and load conditions. The 

schematic serves as the foundation for further controller 

design, including the integration of CNN-based inference 

and MPC optimization strategies for real-time duty cycle 

control.

The dynamic behavior of the boost converter can be 

described by the averaged state-space equations:

𝑑𝐼𝐿(𝑡)

𝑑𝑡
=

1

𝐿
[𝑉in(𝑡) − (1 − 𝐷(𝑡))𝑈out(𝑡)]         (1)



a continuous optimal duty cycle value. Trained with the 

Mean Squared Error (MSE) loss function for 50 epochs 

and a batch size of 128, the model is optimized for real-

time inference on low-resource embedded devices like 

STM32 microcontrollers. Schematic diagram of an 

intelligent closed-loop control system for a DC-DC boost 

converter (Fig. 4), using two control strategies 

simultaneously: 

• MPC: Control based on a mathematical model.

• CNN: Predictive control based on deep learning.

Fig. 4. A hybrid control strategy integrating MPC and CNN. 

The proposed control framework integrates a CNN) and 

a MPC to optimize the Pulse-Width Modulation (PWM) 

duty cycle of a boost converter in Photovoltaic (PV) 

applications. The CNN is trained offline using MPC-

generated datasets under varying irradiance and 

temperature conditions. Its input vector includes four 

normalized features: input voltage Vin, input current Iin, 

solar irradiance G, and temperature T. The architecture 

comprises three convolutional layers with ReLU 

activations, followed by a flattening layer and two fully 

connected layers. The output is a single continuous value 

representing the predicted duty cycle D. Training is 

performed using Mean Squared Error (MSE) loss over 50 

epochs with a batch size of 128, ensuring generalization 

across dynamic PV profiles. 

Fig. 5. The CNN training for predicting cycle D. 

Once trained, the CNN provides low-latency 

approximations of the optimal duty cycle based on real-

time measurements, while the MPC computes precise 

control actions using a discrete-time model over a 

prediction horizon. A hybrid selector receives outputs 

from both CNN and MPC and evaluates predefined 

criteria—such as voltage ripple, prediction error, or 

transient response. If system conditions remain stable and 

within threshold limits, the CNN output is selected for 

faster control. Otherwise, the selector switches to the MPC 

output for improved accuracy. 

This hybrid approach combines the rapid inference 

capability of CNN with the precision of MPC, achieving 

high energy efficiency, robust voltage regulation, and 

adaptability to fluctuating environmental conditions. The 

overall control process is illustrated in Fig. 5. 
MPC predicts the future states of the converter using a 

discrete-time model and computes the optimal duty cycle 
minimizing the cost function: 

𝐽 = ∑ (𝑈out(𝑘) − 𝑈ref)
2 + 𝛽Δ𝐷(𝑘)2𝑁𝑝

𝑘=1
         (4) 

where 𝛽 is a regularization weight for the change in duty 

cycle ΔD. Meanwhile, the CNN is trained to approximate 

the MPC output using real-time PV input data (irradiance, 

voltage, current), allowing faster control decisions in 

deployment. Np is prediction horizon. 

The objective is to minimize the error between the actual 

output voltage Vout and the desired reference voltage Vref 

by optimizing the duty cycle D. 

𝐷MCP = 1 −
𝑉in

𝑉out
   (5) 

The CNN is trained to predict the optimal PWM duty 

cycle (𝐷) for a boost converter, using past voltage/current 

states: Vin(t) and Iin(t), and environmental changes: 

irradiance G(t) and temperature T(t). 

System dynamics (history window): a sequence of the 

last n time steps. In the proposed hybrid control framework, 

a CNN model is trained offline to accurately predict the 

optimal duty cycle of the boost converter under various 

operating conditions. As illustrated in Fig. 5, the training 

process utilises representative features, including input 

voltage Vin, input current Iin, solar irradiance G, and 

temperature T. These features form the input vector to the 

CNN, which then infers a predicted duty cycle, D. The 

prediction is compared to a labelled reference value D*, 

which may be obtained through simulation or an expert 

control model such as MPC. A loss function based on 

mean squared error (MSE) is computed to update the 

network’s weights during backpropagation. The training is 

conducted over 50 epochs with a batch size of 128 to 

ensure generalisation across a broad range of PV scenarios. 

Once trained, the CNN model is deployed as a fast 

inference engine in parallel with the MPC controller. 

While MPC performs mathematically rigorous predictions 

using system dynamics, the CNN offers low-latency 

approximations of the optimal control action. This enables 

the hybrid controller to switch between or fuse both 

outputs depending on real-time performance metrics. 

IV. RESULTS AND DISCUSSION

The robustness of the proposed hybrid CNN–MPC 

control strategy was tested through simulations under 
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dynamic conditions. Solar irradiance was varied in real 

time between 200 W/m² and 1000 W/m² using steps and 

ramps to simulate partially cloudy weather, while load 

resistance was adjusted to represent consumer variability. 

Results showed the hybrid control effectively stabilised 

output voltage with fast recovery times and maintained 

high efficiency despite fluctuating PV inputs. 

Fig. 6 to Fig. 10 illustrate the system’s response, 

highlighting voltage tracking, ripple performance, 

switching losses, and transient recovery in CNN-only, 

MPC-only, and hybrid modes. 

The article will build a simulation with the following 

system parameters: The boost DC/DC converter is 

modelled using its fundamental relationship 𝑈out=𝑉in/(1−

D), where the duty cycle D is optimised using two 

approaches: classical MPC and CNN. The PV source 

simulates a realistic 100 kW system with a dynamic 

irradiance and current profile ranging from 300 to 450 V 

and 330 A. Output parameters such as output voltage, 

current, and power are analysed and compared under both 

control strategies. 

The output voltage profile of the boost converter 

controlled by the hybrid MPC+CNN strategy demonstrates 

stable and accurate tracking of the 600 V reference 

indicating effective transient response and robust 

regulation under varying PV input and load conditions. 

A. Performance Evaluation of Boost Converter Using

MPC and CNN Methods

The output voltage comparison graph between the CNN

and MPC for a 100 kW photovoltaic system as Fig. 6. 

Fig. 6. The output voltage comparison graph between the CNN-based 

and MPC-based control methods. 

The output voltage comparison graph between the 
CNN-based and MPC-based control methods reveals both 
qualitative and quantitative differences in performance. 
Qualitatively, the MPC controller maintains a nearly 
constant output voltage around the reference value of 
600 V, indicating superior stability and minimal 
oscillations. In contrast, the CNN-based controller exhibits 
noticeable fluctuations around the reference, 
demonstrating sensitivity to input variations and a less 
stable regulatory behaviour. Quantitatively, error metrics 
further highlight these differences. For the CNN method, 
the Root Mean Square Error (RMSE) between the output 
voltage and the reference is approximately 0.59 V, while 
the Mean Absolute Error (MAE) is around 0.48 V. The 
MPC method achieves negligible RMSE and MAE values, 
demonstrating its high precision. The coefficient of 

determination (R²) for the CNN remains above 0.98, 
indicating a strong fit despite the higher variance. These 
results validate the robustness of the MPC and suggest that 
while the CNN offers fast predictions, additional tuning or 
hybrid integration may be required for optimal control 
under dynamic PV conditions. 

The hybrid controller that combines MPC and CNN 
demonstrates superior performance by uniting the 
strengths of both approaches. It achieves a faster response 
thanks to the CNN’s real-time inference and maintains 
high accuracy and robustness under dynamic conditions 
through the MPC’s model-based optimisation. This 
integration results in improved output voltage stability, 
reduced deviation from the reference, and enhanced 
adaptability to fluctuating PV and load conditions—
making it an effective and intelligent control solution for 
high-performance boost converters in renewable energy 
systems. 

B. Performance Evaluation of Boost Converter Using
MPC_CNN Hybrid Control

The boost converter voltage compareperformance result
under hybrid control using MPC and CNN for a 100 kW 
photovoltaic system is experssed as Fig. 7. 

The output voltage profile of the boost converter 
controlled by the hybrid MPC + CNN strategy 
demonstrates stable and accurate tracking of the 600 V 
reference, as illustrated in Fig. 7. The voltage remains 
within a narrow band around the desired value, indicating 
effective transient response and robust regulation under 
varying PV input and load conditions. Quantitatively, the 
hybrid controller achieves a root mean square error 
(RMSE) of approximately 2.71 V, a mean absolute error 
(MAE) of 2.20 V, and a high R² score of 0.982, confirming 
its prediction accuracy and reliability. These results 
highlight the ability of the hybrid approach to combine the 
fast inference capability of the CNN with the precise 
model-based optimization of MPC, making it highly 
suitable for real-time control in photovoltaic power 
systems requiring both responsiveness and robustness. 

Fig. 7. The boost converter voltage compareperformance result under 

hybrid control using MPC and CNN for a 100 kW photovoltaic system. 

C. Evaluation of Si, SiC, GaN with Hybrid MPC + CNN
for Boost Converter

A comparative analysis of Si, SiC, and GaN
semiconductors was conducted to assess their impact on 
the performance of boost converters in 100 kW dynamic 
PV systems. GaN-based converters consistently 
outperformed Si and SiC across all metrics, achieving 97.6% 

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 5, 2025

308



efficiency, a 2.8 V output voltage ripple, and 6.4 W of 
switching losses, which can be attributed to its high-
frequency switching and low parasitic effects. SiC offered 
a balanced option with 96.8% efficiency, 3.7 V ripple, and 
9.2 W switching losses, while Si showed the lowest 
performance, with 94.5% efficiency, 5.2 V ripple, and 18.5 
W losses. These findings highlight GaN’s suitability for 
compact, high-speed, and efficient PV systems, whereas 
SiC is better suited for high-power applications with 
thermal constraints. 

Fig. 8. Efficiency comparison of boost converters using Si, SiC, and 

GaN semiconductor devices under PV input conditions. 

Fig. 9. Switching loss in boost converters using Si, SiC, and GaN, 

showing reduced energy dissipation in wide bandgap devices. 

Fig. 10. Output voltage ripple of Si-, SiC-, and GaN-based boost 

converters; lower ripple implies improved voltage regulation. 

To evaluate the impact of semiconductor materials on 
the performance of boost converters for photovoltaic (PV) 
systems, a comparative analysis was conducted using Si, 
SiC, and GaN devices under identical conditions. As 
illustrated in Fig. 8 to Fig. 11, the GaN-based converter 

exhibited the highest efficiency at 97.6%, followed closely 
by SiC at 96.8%, while the conventional Si device 
achieved only 94.5% as shown in Fig. 8. This confirms the 
superior material properties of WBG semiconductors, 
particularly GaN, in reducing conduction and switching 
losses. 

Fig. 11. Dynamic response of converters with Si, SiC, and GaN 

transistors; GaN offers faster transients, ideal for rapid PV fluctuations. 

The voltage ripple observed at the output was lowest for 

the GaN-based converter (2.8 V), indicating better voltage 

regulation and smoother operation, whereas Si exhibited 

the highest ripple (5.2 V), potentially affecting stability in 

grid-tied applications as seen in Fig. 9. According to Fig. 

10, switching losses were significantly lower in GaN (6.4 

W) compared to SiC (9.2 W) and Si (18.5 W), which is

attributable to GaN’s faster switching capability and

reduced parasitic effects. This also contributed to the

shortest response time (0.17 ms) with GaN, enhancing the

dynamic response of the converter during rapid irradiance

changes as indicated in Fig. 11.

These findings underscore the critical role of 

semiconductor choice in converter performance. GaN is 

well-suited for high-frequency, space-constrained PV 

applications due to its high efficiency and fast transient 

response, while SiC offers a robust alternative for high-

power and thermally demanding systems. In contrast, Si 

devices, while cost-effective, present clear limitations in 

terms of switching performance and thermal losses. 

Collectively, the results validate the feasibility of using 

WBG semiconductors—especially GaN—in next-

generation intelligent PV converters. When combined with 

advanced control strategies such as CNN and MPC, these 

materials can significantly enhance energy conversion 

efficiency and system responsiveness under real-world 

solar conditions. 

Key performance indicators are clearly defined in this 

section to avoid confusion. Energy conversion efficiency 

(%) measures the ratio of output power to input power, 

reflecting the converter’s energy transfer effectiveness, 

while switching loss (W) represents the absolute power 

loss during transistor switching. For instance, the GaN-

based converter achieved the highest energy efficiency of 

97.6%, along with the lowest voltage ripple (2.8 V) and a 

minimal switching loss (6.4 W). These results are 

presented in Fig. 12, Fig. 13, and Fig. 14, which feature 

well-labelled axes and units for easy comparison. 
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Fig. 12. RMSE comparison of converter performance using Si, SiC, and 

GaN devices. 

Fig. 13. MAE comparison of converter performance across Si, SiC, and 

GaN technologies. 

RMSE & MAE: All three semiconductor materials Si, 

SiC, and GaN—exhibit the same root mean square error 

(RMSE ≈ 0.0561 V, as seen in Fig. 12) and mean absolute 

error (MAE ≈ 0.1767 V, as evidenced in Fig. 13). These 

low and identical error values indicate that the hybrid 

MPC-CNN controller is capable of maintaining a 

consistent and accurate voltage output, irrespective of the 

semiconductor material used. This suggests that the 

controller generalises well across different device 

characteristics and that the differences in switching 

behaviour and physical properties among Si, SiC, and GaN 

do not significantly affect the system’s ability to track the 

desired output voltage. However, it is important to note 

that while RMSE and MAE are comparable, other 

performance aspects—such as efficiency, thermal 

behaviour, and dynamic response—still vary significantly 

among materials, as demonstrated in subsequent metrics. 

Efficiency: Fig. 14 shows that GaN achieves the highest 

average efficiency (3.86%), followed closely by SiC 

(3.84%) and Silicon (~3.76%). This ranking illustrates the 

inherent advantages of wide-bandgap semiconductors over 

traditional silicon devices . GaN demonstrates lower 

conduction and switching losses due to its superior 

material properties, including high electron mobility and 

low on-resistance, facilitating more efficient energy 

transfer within the boost converter. SiC also exhibits 

improved efficiency compared to Si, due to its high 

thermal conductivity and capacity to operate at elevated 

switching frequencies. The slight performance gap 

between GaN and SiC underscores GaN’s suitability for 

high-frequency, compact PV power converters, 

particularly under dynamic operating conditions. Overall, 

both WBG materials showcase significant efficiency gains, 

reaffirming their importance for next-generation 

renewable energy systems. 

Fig. 14. Average efficiency comparison of boost converters using Si, 

SiC, and GaN devices. 

To facilitate a quantitative comparison, Table I 

summarises the performance of Si), SiC, and GaN devices 

under identical boost converter operating conditions. The 

comparison encompasses efficiency, voltage ripple, 

switching loss, transient response, thermal behaviour, and 

cost.

Table I highlights GaN devices as the top performers 

across key metrics, boasting 97.6% energy efficiency, 

2.8 V voltage ripple, and 6.4 W switching loss, which 

makes them ideal for high-speed, high-efficiency PV 

applications. Their 0.17 ms response time further 

underscores their suitability for dynamic scenarios. 

Although more expensive, GaN’s superior thermal 

performance and efficiency justify its use in advanced 

converters. SiC devices offer a cost-performance balance, 

achieving 95.4% efficiency with moderate ripple and 

thermal performance. In contrast, Si-based converters, 

while cheaper, exhibit higher switching losses (11.2 W), 

larger ripple (7.8 V), and slower transient response 

(0.46 ms), rendering them less effective for modern 

dynamic PV systems. Overall, GaN emerges as the most 

promising option for next-generation PV power 

electronics, especially when paired with intelligent control 

strategies such as CNN–MPC. 

V. CONCLUSION AND FUTURE WORK

This study demonstrates that combining MPC with 

CNN provides a practical and adaptable approach for real-

time voltage regulation in PV system boost converters. 

TABLE I: COMPARISON OF SEMICONDUCTOR DEVICES IN BOOST CONVERTER PERFORMANCE 

Device Type Efficiency (%) Voltage Ripple (V) Switching Loss (W) Response Time (ms) Thermal Behavior Cost 

Si 92.3% 7.8 11.2 0.46 Low 
SiC 95.4% 5.1 8.3 0.25 Medium 

GaN 97.6% 2.8 6.4 0.17 

High losses 
Moderate 

Excellent (low heat) High 
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Simulations yielded a low RMSE of 2.71 V, a MAE of 

2.20 V, and a high coefficient of determination (R²) of 

0.982, ensuring precise tracking of the 600 V reference. 

Comparative analysis of semiconductor materials under 

consistent PV conditions revealed that GaN outperformed 

SiC and Si in efficiency (3.86%), voltage ripple, and 

switching losses, emphasizing its suitability for compact, 

high-frequency renewable systems. Future research will 

focus on real-time embedded implementation, adaptive 

CNN models for dynamic environments, thermal 

modelling for reliability, multi-objective converter 

optimization, and expanding control to grid-connected or 

bidirectional systems, aiming to enhance the performance 

and reliability of PV power systems. The hybrid CNN–

MPC controller was assessed for potential use in 

embedded platforms, such as STM32 microcontrollers and 

dSPACE systems, leveraging the CNN model’s 

lightweight and low-latency nature for on-device duty 

cycle prediction using CMSIS-NN or TensorFlow Lite 

Micro. For advanced validation, dSPACE hardware 

effectively supports real-time implementation under 

Hardware-in-the-Loop (HIL) testing conditions. 
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