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Abstract—The rising prevalence of Myocardial Infarction 

(MI) and limited clinical resources highlight the need for 

accurate, automated diagnostic tools. This study presents a 

Machine Learning (ML) framework for early MI prediction 

using both structured health records and Electrocardiogram 

(ECG) data. Multiple ML algorithms—including ridge 

classifier, radius neighbor classifier, linear SVC, and extra 

trees classifier—are evaluated on two publicly available 

datasets and two clinical datasets collected from hospitals. 

The additional trees classifier achieves the highest training 

accuracy of 1.00, with consistent performance across datasets. 

For ECG-based diagnosis, a deep learning model combining 

Convolutional Neural Networks (CNN) and Recurrent 

Neural Networks (RNN) is developed using the ECG 

Heartbeat Categorization Dataset. It classifies five heartbeat 

types: normal, Fusion of Paced and Normal (FPAN), Fusion 

of Ventricular and Normal (FVAN), Atrial Premature 

Contractions (APC), and Premature Ventricular 

Contractions (PVC). The model achieves a testing accuracy 

of 0.98, supported by strong precision and recall across 

classes. The novelty of this study lies in its integration of 

public and real-world datasets, noise-augmented training to 

improve ECG robustness, and a multi-class CNN–RNN 

framework that enhances generalizability beyond 

conventional binary classifiers. The proposed approach 

contributes to more reliable and interpretable cardiovascular 

diagnostics, with strong potential for clinical deployment and 

improved patient outcomes. 

Index Terms—classification, Convolutional Neural Networks 

(CNN), electrocardiogram, heart disease, machine learning, 

myocardial infarction 

I. INTRODUCTION 

Myocardial Infarction (MI), also recognized as a heart 

attack, is a condition caused by a disturbance in the blood 

supply to a segment of the heart [1]. Diagnosis is essential 

since MI carries a high mortality rate, especially in older 

age groups. The traditional methods of MI diagnosis 

through ECG (Electrocardiogram) signals require trained 

medical practitioners, prone to errors and bias in the 

interpretation process. Recent work has been in the 

direction of automation of MI diagnosis using techniques 

like Machine Learning (ML) and Deep Learning (DL). 

Traditional ML, as well as DL, addresses disease detection 

with their different approaches and benefits in heart 

disease detection [2]. ML is emerging as a revolutionary 

tool in medicine and, specifically, in forecasting, besides 

the analysis of cardiovascular ailments [3]. Through big 

volumes of health data utilizing complex ML algorithms, 

systems unravel relationships and intuitive patterns not 

easily found with traditional diagnostic methods. This, 

therefore, leads to the diseases’ early recognition as well 

as forecast, thereby possibly improving patient results 

while reducing the scourge of illnesses on the world at 

large. The application of ML techniques in medicine 

highlights the promise these approaches carry toward 

solving complex health challenges [4]. For MI, 

specifically, ML enables actionable insights that could 

lead to early and beneficial diagnosis and treatment, which, 

therefore, translates into an added benefit toward 

improving public health. With these benefits, there has 

been a growing urgency to develop ML-based systems 

both on-site and through the Internet of Medical Things 

(IoMT) [5] for improved prediction and diagnosis of MI. 

Coupled with comprehensive medical data, ML-driven 

systems might embed technology and change the way that 

MI is managed to bring about improvements in healthcare 

outcomes. The process of ML algorithms starts with 

manual feature extraction from ECG signals that may be 

biased and labour-intensive and need domain-specific 

knowledge demanding high-dimensional instances, due to 

being linked with human judgment. Moreover, it requires 

substantial computational resources to calculate, manage, 

and assess many features, which makes it difficult for 

large-scale applications. Deep learning [6], however, it 

overcomes most of these challenges by learning how to 

automatically select features directly from raw ECG data, 

with no requirement for handcrafted feature engineering. 

CNNs (Convolutional Neural Networks) and RNNs 

(Recurrent Neural Networks) are some DL models that 

learn relevant features from big datasets through filter 
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weights evolution during training. This reduces the chance 

of human bias, relies less on domain expertise, and 

generally consumes less computational power in 

extracting features. 

Recent studies employed ML approaches to utilize data 

Electronic Health Record (EHR) to predict the risk of acute 

MI and subsequent mortality [7]. These approaches hold 

great promise but have limitations in their adaptation for 

clinical decision-making. Most of the ML models are 

complex to understand, interpret, and validate the model’s 

predictions [8].  

This study advances the existing literature by 

introducing a robust, hybrid CNN-RNN model for ECG 

signal classification, capable of capturing both spatial and 

temporal features of cardiac rhythms. Unlike many 

previous studies, which use only CNN or conventional ML 

models, our architecture leverages the strengths of CNNs 

in feature extraction and RNNs in temporal pattern 

recognition, offering improved classification performance 

across five distinct cardiac categories. 

Furthermore, although the ML models are risk 

predictors, but may not resemble actual probabilities. For 

instance, a model may give a 90% mortality risk, yet the 

actual risk might have been quite different and would 

challenge experts to believe in and apply such a tool in 

clinical practice. Thus, the study aims to compare the 

performance of the ML model and improve the accuracy 

of prediction. The model is validated on different datasets, 

including patient health records. Furthermore, the study 

aims to investigate ECG data for MI prediction with 

improved accuracy.   

The study has a significant contribution to the state-of-

the-art in both ML and cardiovascular diagnostics, with an 

imperative contribution of a noise-augmented approach to 

the processing of ECG data. The study improves signal 

robustness, enhancing classification accuracy on different 

datasets. In addition, the integration of CNN and RNN 

architectures classifies the ECG signal with the temporal 

history of cardiac events generated regarding critical 

features for heart monitoring. Besides that, standard 

metrics with detailed analysis provide validation of the 

efficacy of the proposed model, highlighting its 

application in real clinical environments for constant 

cardiac health monitoring as well as timely diagnosis. 

Unlike many prior studies that rely on a single dataset or 

binary classification, this work advances the field by 

combining multiple structured datasets (both public and 

hospital-collected), applying noise-augmented training to 

enhance robustness, and employing a CNN–RNN hybrid 

architecture for detailed multi-class ECG classification. 

These elements collectively contribute to improving both 

the generalizability and clinical applicability of ML-based 

cardiac diagnosis. 

The objectives of the study are  

• Develop an ML-based model to predict heart disease 

using patient health data (EHR) in addition to a CNN-

based model to categorize ECG signals in five cardiac 

categories.  

• Evaluate the model’s classification performance 

using accuracy, precision, F1 score, and recall metrics.  

• Compare the outcomes of different ML algorithms on 

two different heart disease prediction datasets. 

• Facilitate automation in cardiovascular diagnostics 

by creating a scalable model for enhanced heart 

disease detection. 

II. RELATED WORK 

During the past decade, cardiovascular diseases, 
including heart disease and myocardial infarction, have 
attracted much attention from medical researchers and 
healthcare professionals as their impact on human health 
has grown increasingly greater. Meanwhile, ML 
techniques have been advanced as effective tools for the 
accurate estimation of the incidence of heart disease, 
despite the huge EHR data used. Some studies utilized 
various ML algorithms to predict heart disease with 
varying strengths in terms of accuracy. The research by 
Sudha and Kumar [9] contributed to advancements in 
healthcare by suggesting a hybrid CNN-LSTM (Long 
Short-Term Memory) framework for diagnosing heart 
disease. The method utilized CNN’s robust feature 
extraction capabilities and LSTM’s ability to process 
sequential data, which was key for time-series medical 
records. This combination improved classification 
performance and proved deep learning’s potential in 
medical diagnosis. 

Miah et al. [10] investigated the prediction of 
myocardial sickness, an important challenge for 
cardiovascular medicine. Through comparisons of six 
machine learning algorithms—logistic regression, Support 
Vector Machine (SVM), decision tree, bagging, XGBoost 
(eXtreme gradient boosting), and LightGBM (light 
gradient boosting machine), they sought to determine the 
best predictive method. Of these models, XGBoost’s 
highest accuracy was 92.72%, which underlines its best 
performance. The research focused on highlighting the 
contribution of sophisticated machine learning methods 
towards better early diagnosis and enhancing proactive 
medical approaches to cardiovascular disease. 

In further research [11] authors considered the 
classification of Cardiovascular Disease (CVD) 
employing different supervised machine learning models, 
which were experimented with the Sani Z-Alizadeh dataset 
of the UCI (University of California, Irvine) repository. 
The SMOTE (Synthetic Minority Oversampling 
Technique) was utilized owing to the class imbalance of 
the dataset, along with assessment using ten-fold cross-
validation. The classifiers’ performance was compared for 
Multilayer Perceptron (MLP), SVM, Random Forest (RF), 
Logistic Regression (LR), and Decision Tree (DT), where 
RF was the most accurate among all of the classifiers, 
while MLP had the highest precision for the resampled 
data. The work proved that these models are able to 
support early diagnosis of CVD and aid in better clinical 
decision-making. 

In another study [12], the author added the advanced 
ML methods for the forecast of heart disease, viz., gradient 
boosting, logistic regression, as well as SVM algorithms, 
in addition to a grouping method using a voting classifier 
on the Cleveland heart disease dataset. The authors 
concluded that the ensemble voting classifier model, 
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which utilized chosen critical attributes from the dataset, 
achieved a staggering accuracy of 97.9%. This mixed 
model not only exhibited high accuracy but also performed 
better compared to single algorithms in accuracy and 
precision. 

In a heart disease prediction study [13], authors 
Ogundepo and Yahya used the Cleveland and Statlog 
datasets, where there are multiple ML algorithms, like 
decision tree, logistic regression, and random forest, with 
KNN (K-Nearest Neighbours), ANN (Artificial Neural 
Network), SVM, naive Bayes, extreme gradient tree, linear 
discriminant analysis, and conditional random forests. The 
experiments showed that SVM produced worthy 
predictive results with the highest accuracy of 85%. 
Hybrid models have also shown improvements in 
prediction accuracy. They combine multiple ML 
algorithms into a hybrid model [14], which achieves 
maximum accuracy, but more experimentation is needed 
to understand the generalization of hybrid models across 
different tasks and different datasets. 

Finally, Natarajan et al. [15] analyzed the data for 
recognizing prominent features in the dataset for heart 
disease and improving prediction accuracy using ensemble 
methods. They used stacking and voting approaches on the 
Z-Alizadeh Sani dataset of the UCI machine learning 
repository. The study demonstrated that stacking with the 
features selected by the firefly algorithm yielded the 
highest accuracy of 86.79%. The findings indicate that 
ensemble learning and metaheuristic feature selection can 
enhance heart disease prediction models. 

This comparison underlines the importance of choosing 
an appropriate data mining tool and ML algorithm that is 
apt for the specific purpose of duty at hand. For instance, 
predicting cardiovascular diseases. These studies generally 
illustrate the diversity of the various ML techniques 
applicable to heart disease prediction. Continuous 
improvement of these models presents a great prospect for 
improving early detection and resultant outcomes in 
cardiovascular health. 

Furthermore, the existing studies on ECG-based 
detection show various innovative tactics for the 
identification of cardiac anomalies. Acharya et al. [16] 
have recommended a model using the basis of contourlet 
and shearlet transforms on scalograms for entropy and 
statistical feature extraction using DT (Decision Tree) and 
KNN classifiers. The studies [17, 18] on MI collectively 
contributes towards the establishment of a robust tool to 
recognize several cardiac abnormalities concurrently using 
12-lead ECG data that could be very easily accommodated 
in smart wearables, with energy efficiency [19]. In early 
related research work, authors Raghukumar and Naveen 
[20] achieved 88.79% using a gradient boosting classifier 
with the extracted features from the ECG signal. It 
enhances diagnosis accuracy as well as efficiency in terms 
of heart attack prediction. Lee et al. [21] obtained a 
remarkable 97.8 % accuracy with a CNN-based predictive 
framework using the MITDB dataset, including a 2D BSM 
representation (two-dimensional beat-score-map) from the 
ECG input. Feng et al. [22] have further shown that the DL 
techniques are viable by using a one-dimensional UNet 
model for RR interval segmentation with an accuracy of 
97% and a sensitivity of 95.5%.  

Despite these advancements, several limitations remain. 
Many of the existing approaches focus on binary 
classification or use standard feature extraction methods, 
which can overlook complex spatial and temporal patterns 
in ECG signals. A significant number of studies also rely 
on single, benchmark datasets such as Cleveland or Z-
Alizadeh Sani, limiting their generalizability across 
diverse populations and real-world scenarios. Moreover, 
the black-box nature of many high-performing models 
reduces clinical interpretability, which is critical for 
adoption in healthcare settings. Lastly, relatively few 
models explore robust performance under noisy or 
imbalanced conditions, nor do they adequately address the 
need for multi-class ECG classification that reflects the 
complexity of cardiac abnormalities. 

The present study addresses these gaps by evaluating 
ML models on multiple EHR-based datasets and 
introducing a hybrid CNN-RNN architecture for 
classifying ECG signals across five distinct cardiac classes. 
This integrated approach improves generalizability, 
robustness, and diagnostic depth while supporting real-
world applicability in automated cardiovascular 
monitoring systems. 

III. METHODOLOGY 

A. ML-Based Prediction 

The study focuses on utilizing ML algorithms to predict 
heart disease from patient Electronic Health Records (EHR) 
with enhanced performance.  

It uses two datasets to compare different ML algorithms 
like the ridge classifier, radius neighbors classifier, linear 
SVC (Support Vector Classifier), and extra trees classifier. 
The dataset is divided into 70% for training in addition to 
30% for testing, following data pre-processing and feature 
selection. ML algorithms are applied to classify the data, 
indicating the presence or absence of Myocardial 
Infarction (MI). These algorithms are then assessed on the 
test set to assess their prediction performance. Both 
datasets are tested on the proposed ML model, and the 
algorithms’ predictive abilities are compared. In addition, 
we have utilized two datasets collected from the hospitals 
for validation. Fig. 1 displays the design of the anticipated 
ML system.  

1) Data collection 

Two datasets available online are utilized in this study, 

with two datasets collected from the hospitals for 

validation. 

Dataset 1 [23]: The dataset of heart disease prediction 

consists of 324 entries with 14 variables representing both 

medical and demographic details about patients. 

Significant features in the dataset are gender, age, chest 

pain type, cholesterol levels, resting blood pressure, and 

maximum heart rate. Other variables cover fasting blood 

sugar, exercise-induced angina, and thalassemia status, 

among others. The dataset includes the occurrence of heart 

disease, with over half of the entries showing a positive 

diagnosis. 

Dataset 2: This heart disease prediction dataset [24], 

derived from a cardiovascular study conducted in 

Framingham, Massachusetts, containing 4,240 entries and 
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16 attributes covering demographic, behavioural, and 

medical factors. The primary objective is to predict each 

patient’s ten-year risk of CHD (Coronary Heart Disease), 

identifying individuals at a heightened risk. The dataset 

includes a combination of demographic details such as 

gender and age, behavioural factors like smoking status 

and average daily cigarette use, and medical history 

indicators including prior strokes, hypertension, diabetes, 

and blood pressure medication use. Current medical data 

features measurements for total cholesterol, diastolic as 

well and systolic blood pressure, Body Mass Index (BMI), 

glucose levels, and heart rate. The dataset’s target variable 

reflects the presence or absence of CHD risk within a ten-

year timeframe. This comprehensive dataset, accessible on 

Kaggle, provides essential insights into various factors 

contributing to heart disease risk. 

 
Fig. 1. Proposed ML-based MI prediction model. 

 
Dataset 3: This dataset was collected by the authors 

from Bharati Vidyapeeth (Deemed to be University), 
Medical College and Hospital, Sangli – Miraj Road. It 
contains 1,012 rows and 12 columns and approximately 
occupies 95 KB of memory. It includes demographic, 

health, and lifestyle information, mainly on factors 
associated with cardiovascular health. The dataset consists 
of both integer and categorical data types and covers a 
range of attributes that are relevant to the analysis. The 
Age column records the ages of individuals, ranging from 

20 to 79 years, with a mean of 50.58 years and a standard 
deviation of 17.29 years. The rest of the columns are 
categorical, with attributes like gender (male, female), 
diabetes, hypertension, and biomarkers like serum 

creatinine and LDL cholesterol labelled as either 
“Positive/Negative” or “High/Normal”. Lifestyle-related 
variables include BMI, smoking duration, smoking 
frequency, and tobacco use, which capture smoking habits 

and physical health. Moreover, alcohol consumption is 

classified into “None”, “Low”, “Moderate”, and “High” 
levels, while the target column, myocardial infarction, 
shows whether a patient has had a heart attack. One of the 
notable features of this dataset is that some categories are 

imbalanced, such as a preponderance of “Positive” cases 
for diabetes. Most of the categorical features are binary or 
have a small number of unique values, which makes them 
ideal for classification problems. This dataset provides a 

good mix of demographic, medical, and lifestyle features 
to study the risk factors for cardiovascular diseases and 
predict the probability of myocardial infarction. 

Dataset 4: This dataset was collected from Aryan Heart 
Care, Miraj, Maharashtra, under institutional approval. It 

consists of 1,372 rows and 17 columns and uses 
approximately 182 KB of memory. It includes both 
numerical and categorical variables, all of which are 
intended to offer an elaborate view of demographics, 

health conditions, and cardiovascular-related metrics. The 
age column, which is of integer type, ranges between 20 
and 79 years with a mean of 51.15 years and a standard 
deviation of 17.17. Other variables, like gender (male or 

female), diabetes, and hypertension, are binary and 
indicate the presence of conditions. Additional clinical 
indicators include serum creatinine and LDL cholesterol. 
BMI is categorized as “High” or “Normal”, while 
smoking-related features include smoking duration, 

tobacco use, etc. Other cardiovascular indicators include 
resting blood pressure, ECG categories, maximum heart 
rate (ranging from 60 to 200 bpm, average 128.82, SD 
40.24), exercise-induced angina (oldpeak), slope of the ST 

segment, number of major vessels, and thalassemia status. 
The target variable indicates myocardial infarction, with 
balanced classes (“Yes” and “No”). However, some 
features, such as diabetes, are heavily imbalanced (1,313 

out of 1,372 cases are “Positive”). This dataset provides a 
rich mix of health, lifestyle, and clinical features, making 
it suitable for predictive modeling and cardiovascular 
disease analysis. 

2) Data pre-processing and feature selection 

To prepare and optimize datasets for heart disease 

prediction, data pre-processing and feature selection are 

conducted to ensure that the models can learn from the 

most relevant and clean data. This improves the models’ 

ability to classify heart disease risk effectively, focusing 

learning on the most informative features. Descriptive 

statistics are generated to summarize the dataset with 

exploratory data analysis, showing the shape and 

identifying missing values. The distribution of the target 

variable, heart disease presence or absence, is visualized. 

For pre-processing, label encoding converts the target 

variable’s categorical format to numerical values suitable 

for model input. Additionally, an interaction term between 

‘age’ and ‘thalach’ (maximum heart rate achieved) is 

created to capture any combined effect on heart disease 

prediction. The ‘exang’ (exercise-induced angina) column, 

which is deemed less significant, is dropped to reduce 

noise and improve efficiency. In feature selection, cross-

validation is employed to identify and retain the most 

important features for the predictive models. This process 

iteratively removes less significant features while cross-

validating performance, allowing for the selection of the 
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most impactful attributes that will enhance the accuracy of 

classifier models. While no explicit class balancing 

method, such as SMOTE, was applied to the EHR datasets, 

care was taken during model evaluation to monitor metrics 

like recall and F1-score that reflect the model’s ability to 

handle potential class imbalance. Future work may explore 

resampling techniques or cost-sensitive learning to further 

improve classification performance for underrepresented 

classes. 

3) ML algorithms 

To predict heart disease using EHR, several ML 

algorithms are utilized, each bringing unique strengths.  

• Ridge classifier, a linear model with L2 regularization, 
effectively manages high-dimensional data by 
penalizing large coefficients to reduce overfitting, 
which can be beneficial in handling complex medical 
datasets.  

• Radius neighbors classifier is a non-parametric 
technique that assigns class labels according to the 
majority class within a specified radius, helping to 
capture local data patterns that may indicate disease.  

• Linear SVC maximizes the margin between data 
points by identifying the optimal hyperplane, 
providing robust classification for distinguishing heart 
disease risk groups.  

• The extra trees classifier is an ensemble method to 
construct manifold randomized decision trees and 
average their outputs, enhancing prediction accuracy 
and controlling overfitting, making it especially 
suitable for datasets with diverse features in EHRs. 

B. ECG Data Classification 

Furthermore, this study implements a CNN-RNN model 
for classifying ECG signals utilizing the ECG Heartbeat 
Categorization dataset. It is trained on ECG signals 
representing normal heartbeats, as well as signals 
associated with myocardial infarction and arrhythmias. 
These ECG signals are segmented after pre-processing, 
where each segment captures a single heartbeat. Different 
heartbeat types are included in the dataset—Normal, 
Fusion of Paced and Normal (FPAN), Fusion of 
Ventricular and Normal (FVAN), Premature Ventricular 
Contractions (PVC), as well as Atrial Premature 
Contractions (APC). To illustrate the distinctions among 
heartbeat types, the study plots one ECG sample per class, 
highlighting the unique signal characteristics of each. 
Gaussian noise is added to the signals as a data 
augmentation technique, creating augmented ECG signals 
that balance the dataset by dropping the prevalence of the 
majority class (Normal) to counterpart the sample count of 
minority classes.  

The model structure (Fig. 2) combines convolutional 
and recurrent layers, specifically tailored for time-series 
data processing like ECG signals. The proposed CNN-
RNN model uses an Adam optimizer, including definite 
cross-entropy as the loss function. Also, the overfitting is 
bypassed using early stopping and built-in validation loss, 
which saves the top-performing model. Following training 
on the balanced data, the performance is evaluated in terms 
of a confusion matrix and results of classification on test 
data, including F1 scores, recall, and precision for these 
classes. The evaluation framework delivers an ample 

assessment of the model’s accuracy and robustness in 
categorizing different ECG signal types.  

 
Fig. 2. Proposed ECG classification model. 

a) Data collection 
The study applies a dataset that integrates heartbeat 

signals from the widely utilized ECG heartbeat 
categorization dataset [25]. The significant number of 
samples robustly establishes a deep CNN model trained 
over the dataset for the classification of heartbeats with 
potential classification capabilities, as well as the effects 
of employing ECG data. Each signal is the shape of a 
heartbeat in the ECG, capturing both the normal heartbeat 
and those relating to arrhythmias or myocardial infarction. 
It ensures that every segment relates to one heartbeat by 
pre-processing and segmenting the signals. The entire 
dataset is then separated into training and testing sets, 
including 70,043 samples and 17,511 samples, 
respectively. The proposed architecture ensures that 
training and testing of the phases are evenly balanced to 
maximize the generalization ability and accuracy of 
classification for the heartbeat types. 
b) Data pre-processing  

Basic Exploratory Data Analysis (EDA) in this study 
comprises exploring the distribution of heartbeat class 
labels in the training data. The class frequencies reveal an 
imbalance where certain classes have a higher number of 
samples, like the Normal class, than other classes. This 
imbalance can potentially bias the model’s predictions, 
potentially skewing them toward the majority class. Thus, 
pre-processing includes data augmentation and 
downsampling to achieve a balanced dataset and improve 
model performance across all classes. This dual strategy 
ensured that the classifier did not become biased toward 
the overrepresented “Normal” class and was able to learn 
meaningful patterns across all heartbeat types equally, 
leading to improved recall in minority classes. 
c) Data visualization 

Data visualization in this study includes drawing plots 
that show one ECG sample for every class of the database, 
with signal patterns of each heartbeat type. Five different 
plots were made for the classes involved, which are 
Normal, FPAN, PVC, APC, and FVAN. These 
visualizations (Fig. 3) are pretty informative and clearly 
show distinctions between classes in the ECG signal, 
which reflect the intrinsic characteristics of each class; 
they help build models and interpret classification results. 
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d) Data augmentation
Gaussian noise enhances ECG data, in addition to the

robustness of DL models to the dataset. It includes the 
mean as well as standard deviation set to 0 and 0.01, which 
control the intensity of the noise. Gaussian noise is created 
over the original ECG signal data, with values sampled 
from a given Gaussian distribution defined with mean and 
std. Therefore, the same shape for the original data is 
ensured, and added noise may not drastically alter the ECG 

signal. It is essential to train a model for real-world 
perturbations and inaccuracies in the original ECG. The 
model is then trained using the augmented ECG signal, 
including both the original signal and added noise. This 
will help the model learn to recognize patterns even in 
slight signal disturbances and play a key part in data 
augmentation and augmenting the variability of the dataset, 
thus improving the ability of the model to classify unseen 
and new data, as shown in Fig. 4. 

Fig. 3. Sample plot of ECG for each class. 
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Fig. 4. Original and augmented ECG using Gaussian noise for each class. 
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TABLE I: SAMPLES IN EACH CLASS AFTER BALANCING 

Class Samples Downsampling 

Normal 57977 8128 

FPAN 5145 8128 

PVC 4630 8128 

APC 1778 8128 

FVAN 513 8128 

 

Furthermore, down-sampling balances the dataset by 

the majority class (Normal) to equal the quantity of 

samples in the minority classes. The new class distribution 

balances the dataset with an identical amount of 8128 

samples for every class, as shown in Table I below. The 

labels are one-hot encoded again after balancing. 

e) Training and testing 

This model is trained with an augmented ECG signal 

dataset for the prediction of five different classes, where 

CNN is combined with RNN. The training of the model 

uses a sequential pattern to categorize the ECG signals into 

five classes. This is initiated by a one-dimensional 

convolutional layer with a kernel size of 3, 32 filters, and 

an activation function like ReLU (rectified linear units). 

The last layer is the final dense layer using softmax 

activation for creating class predictions. The CNN extracts 

feature maps through several convolutional layers, 

automatically capturing the key characteristics of signals 

by using filters. The obtained feature maps are then entered 

into the RNN layers that model temporal dependencies and 

analyse sequential data to detect any pattern over time, 

from changes in heartbeat. This dual approach effectively 

extracts spatial and temporal information latent within the 

ECG signal with a more accurate prediction of cardiac 

anomalies. The Adam optimizer in the proposed model is 

used with categorical cross-entropy loss to accurately 

classify heart conditions from ECG signals, achieving 

better accuracy and AUC (area under the curve). 

The CNN-RNN model was trained for 25 epochs using 

a batch size of 32 and the Adam optimizer with a learning 

rate of 0.001. Early stopping was applied with a patience 

of 5 epochs by monitoring validation loss to prevent 

overfitting. The ECG dataset was divided into 70,043 

training samples, 17,511 validation samples, and 21,892 

testing samples, each with 188-time steps. The model 

architecture includes a 1D convolutional layer (Conv1D) 

with 64 filters and a kernel size of 3, followed by a dropout 

layer with a rate of 0.5. This is followed by two GRU 

layers with 64 and 32 units, respectively, to capture 

temporal dependencies in heartbeat sequences. The output 

is flattened and passed through a dense layer with 64 units 

using ReLU activation, followed by another dropout layer. 

The final dense layer uses softmax activation to predict one 

of five heartbeat classes: Normal, Atrial Premature, 

Premature Ventricular Contraction (PVC), Fusion of 

Ventricular and Normal, and Fusion of Paced and Normal. 

This architecture enables the model to learn both spatial 

and sequential patterns in ECG signals, improving 

classification accuracy and robustness across multiple 

cardiac conditions. 

f) Evaluation metrics 

The proposed model is gauged utilizing various metrics, 

accounting for correctly predicted positive (TP) and 

negative (TN) classes, as well as incorrect predictions of 

these classes, including false positives and negatives (FP, 

FN). 

Accuracy: The model’s accuracy calculates the number 

of correct results, including true positives and negatives, 

out of the overall cases analyzed. It is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                      (1) 

Precision: The ratio of appropriately predicted positives 

to the total number of positive predictions is referred to as 

precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                              (2) 

Recall: It measures the capability of the model to 

discover all the pertinent cases. The proportion of correct 

positive estimates to the entire actual observations is 

acknowledged as recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (3) 

F-score: It is a single metric that measures the harmonic 

mean of Recall and Precision, balancing them. 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

                    (4) 

IV. RESULTS AND DISCUSSION 

A. Performance of ML Algorithms on Existing Datasets 

Different ML algorithms, including the ridge classifier, 

radius neighbors classifier, linear SVC, and extra trees 

classifier, were applied to Dataset 1 and Dataset 2. The 

Performance assessed during both the training and testing 

phases of the prediction module gives promising results. 

The proposed model demonstrated significant 

performance gains, particularly with the radius neighbors 

classifier and extra trees classifier, achieving the highest 

precision values (P1, P2) of 1.00, identical to the F-score 

(F1, F2) and recall (R1, R2) for both datasets. Meanwhile, 

the ridge classifier slightly outperformed linear SVC, 

showing marginally higher precision and recall on Dataset 

1. Table II indicates evaluation metrics for Dataset 1 (P1, 

R1, F1) and Dataset 2 (P2, R2, F2). 

The results indicate that the training phase for Dataset 1 

yields higher precision (P1) values compared to Dataset 2, 

suggesting that Dataset 1 has fewer false positives. 

Conversely, Dataset 2 performs better in terms of recall (R2) 

and F-score (F2) than Dataset 1, indicating that it captures 

positive instances more effectively and balances precision 

and recall better.  
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TABLE II: COMPARISON OF PERFORMANCE OF TWO DATASETS 

Model 

Training Result Testing Result 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

P1 R1 F1 P2 R2 F2 P1 R1 F1 P2 R2 F2 

Ridge Classifier 0.90 0.93 0.89 0.85 1.00 0.92 0.87 0.91 0.88 0.84 1.00 0.91 

Radius Neighbors Classifier 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04 0.07 1.00 0.04 0.07 

Linear SVC  0.89 0.92 0.89 0.85 1.00 0.92 0.87 0.91 0.88 1.00 1.00 0.91 

Extra Trees Classifier 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.91 0.87 0.85 1.00 0.92 

Fig. 5. Comparing training and testing results. 

The Fig. 5 shows graphical representations of the results 

obtained. 

In contrast, the testing results highlight the performance 

differences among the models on each dataset, where 

classifiers demonstrate strengths in precision, recall, or F-

score on the datasets. The balanced performance of the 

ridge classifier gives relatively high precision and recall 

values on both datasets. On Dataset 2, it attained an R2 of 

1.00 with all the positive instances captured and achieved 

a higher F2. Also, the radius neighbors classifier has an 

extremely high precision of 1.00, meaning it does not give 

many false positives, but has a low recall of 0.04, making 

its F-score very low in both datasets. The linear SVC 

model is equally good as the ridge classifier on Dataset 1. 

For Dataset 2, it achieves P2 and R2 both equal to 1.00 for 

all correctly classified instances. It, therefore, achieves a 

high F2 and makes this classifier an extremely good 

candidate for Dataset 2. The extra trees classifier is well 

consistent on both datasets, and it achieves a high R2 of 

1.00 on Dataset 2, and F2 is quite close to those of the ridge 

classifier and linear SVC, so they are good choices for both 

data sets. 

The ridge classifier and extra trees classifier perform 

strongly and in balance across both datasets. The linear 

SVC performs exceptionally well on Dataset 2, scoring 

perfectly on all of them. Meanwhile, the radius neighbors 

classifier shows a high precision but very poor recall. Thus, 

it is not as useful for this purpose as it captures very few 

positive cases, as reflected in the low F1 scores. This 

analysis suggests that the linear SVC and extra trees 

classifier might be the most reliable options, especially 

when both precision and recall are highly regarded in 

applications. In clinical scenarios such as myocardial 

infarction detection, recall is particularly critical, as it 

reflects the model’s ability to correctly identify true 

positive cases. A low recall, such as that observed with the 

Radius Neighbors Classifier, implies that many actual MI 

cases could be missed. This could lead to underdiagnosis 

and delayed treatment, posing serious risks to patient 

health. Thus, despite its high precision, a model with low 

recall may not be suitable for real-world clinical 

deployment, where missing positive cases can be more 

harmful than false positives. 

Table III shows the highest accuracy of 1 for the extra 

tree classifier in training on both datasets, while linear 

SVC slightly enhanced its performance (0.8661, 0.8533, 

0.866, 0.8427) than the ridge classifier (0.8661, 0.8526, 

0.8557, 0.84) during training as well as testing. On the 

other hand, the radius neighbors classifier is better in 

training performance (0.8661, 0.8526) while lacking in 

testing performance (0.0206) on dataset 1. However, its 

testing performance for dataset 2 is efficient (0.84), as 

ridge classifier (0.84). Overall, the linear SVC shows the 

most consistent performance, indicating reliability without 

significant overfitting and stability across both datasets. It 

may generalize better and is likely the optimal model for 

predicting heart ailments. 

TABLE III: ACCURACY OF PROPOSED MODEL 

Models 
Train Acc. Test Acc. 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

Ridge Classifier 0.8661 0.8526 0.8557 0.84 

Radius Neighbors 
Classifier 

1 0.9993 0.0206 0.84 

Linear SVC 0.8661 0.8533 0.866 0.8427 

Extra Tree Classifier 1 1 0.8454 0.8453 

B. Datasets 3 and 4 (Collected from the Hospitals)

Table IV reports the training and testing performance of

four classifiers, namely the ridge classifier, radius 

neighbors classifier, linear SVC, and extra trees classifier, 

on two datasets. The performance is reported in terms of 

precision (P), recall (R), and F1-score (F), and thus the 

reader gets an idea about the performance of each model 

on both datasets. 

The ridge classifier shows consistent performance on 

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 5, 2025

290



both datasets, with only minor fluctuations in the training 

and testing results. For Dataset 3, P1, R1, and F1 are at 94%, 

96%, and 95% in training, respectively; meanwhile, the 

testing metrics were lower, with precision at 96%, recall at 

92%, and F1-score at 94%. On Dataset 4, the training 

results are similar, having P2 = 96%, R2 = 93%, and F2 = 

94%; the testing results show similar high accuracy with 

P2 = 92%, R2 = 95%, and F2 = 93%. This classifier is both 

stable and reliable, showing similar generalizations across 

different datasets. 

TABLE IV: RESULTS OF THE CLASSIFIER OF THE 2 DATASETS COLLECTED FROM THE HOSPITALS 

Model 

Training Result Testing Result 

Dataset 3 Dataset 4 Dataset 3 Dataset 4 

P1 R1 F1 P2 R2 F2 P1 R1 F1 P2 R2 F2 

Ridge Classifier 0.94 0.96 0.95 0.96 0.93 0.94 0.96 0.92 0.94 0.92 0.95 0.93 

Radius Neighbors Classifier 0.8 0.95 0.87 0.92 1 0.96 0.93 0.71 0.8 1 0.9 0.95 

Linear SVC  0.95 0.95 0.95 0.97 0.96 0.96 0.94 0.94 0.94 0.95 0.96 0.96 

Extra Trees Classifier 0.95 0.94 0.94 0.99 0.98 0.99 0.93 0.95 0.94 0.98 0.99 0.98 

The radius neighbors classifier shows more variability 

between datasets and between the training and testing 

phases. For Dataset 3, the training metrics are very strong: 

P1 = 80%, R1 = 95%, and F1 = 87%, and so are the testing 

metrics: P1 = 93%, R1 = 71%, F1 = 80%. For Dataset 4, the 

training results are significantly improved (P2 = 92%, R2 = 

100%, F2 = 96%), indicating that it can fully fit the data. 

Testing results for Dataset 4 are still high (P2 = 100%, R2 

= 90%, F2 = 95%), but there is a significant drop in recall 

from the training phase, indicating some overfitting. 

The linear SVC has a balanced performance with 

minimal variation between the training and testing results 

on both datasets. For Dataset 3, the training metrics are P1 

= 95%, R1 = 95%, and F1 = 95%, whereas the testing 

metrics are P1 = 94%, R1 = 94%, and F1 = 94%. On Dataset 

4, training precision, recall, and F1-score (P2 = 97%, R2 = 

96%, F2 = 96%) are similar to the testing metrics (P2 = 

95%, R2 = 96%, F2 = 96%). This suggests that linear SVC 

generalizes well and does not overfit compared to other 

models. 

The extra trees classifier achieves the highest metrics 

across both datasets, particularly for Dataset 4, where 

training metrics are near-perfect (P2 = 99%, R2 = 98%, F2 

= 99%). For Dataset 3, the training results are also 

impressive (P1 = 95%, R1 = 94%, F1 = 94%), with strong 

testing performance (P1 = 93%, R1 = 95%, F1 = 94%). The 

testing results on Dataset 4 are exceptional (P2 = 98%, R2 

= 99%, F2 = 98%), reflecting the classifier’s ability to 

effectively generalize across datasets while maintaining 

high accuracy and reliability. 

Fig. 6 illustrates the training and testing performance 

comparison of the classifiers. Here, the stability and strong 

performance of the extra trees classifier and linear SVC are 

visible, as well as variability in the recall of the radius 

neighbors classifier. The results of the ridge classifier 

remain stable and hence are reliable for applications 

requiring balanced metrics. This analysis underlines the 

need for classifiers that classify well during training and 

generalize as well as possible to unseen testing data across 

a range of datasets. 

Table V is a comparison of the performance of four 

different classifiers: Ridge classifier, radius neighbors 

classifier, linear SVC, and Extra Trees classifier, on two 

different datasets. Key metrics include training accuracy, 

testing accuracy, training time, and memory usage for each 

model. 

Fig. 6. Training and testing results of classifiers. 

TABLE V: COMPARISON OF ACCURACY OF DATASETS 3 AND 4 

Model 

Dataset 3 Dataset 4 

Train 
Accuracy 

Test 
Accuracy 

Train 
Accuracy 

Test 
Accuracy 

Ridge Classifier 0.9456 0.9458 0.9389 0.9382 
Radius Neighbors 0.9852 0.8424 1 0.9527 
Linear SVC 0.9666 0.9409 0.9517 0.96 
Extra Trees  0.9975 0.9409 1 0.9855 

The ridge classifier performed well across the two data 

sets. It had training accuracies of 94.56% on Dataset 3 and 

93.89% on Dataset 4. Its testing accuracy was also stable, 

performing at 94.58% on Dataset 3 and 93.82% on Dataset 

4. Training times were relatively low, being at 0.0198

seconds on Dataset 3 and 0.0266 seconds on Dataset 4. The

memory usage did increase for Dataset 4, showing how the

complexity of the data somewhat affects the amount of

resources needed.

The radius neighbors classifier exhibits considerable 

performance differences between the datasets. Here, in 

Dataset 3, the training accuracy is exceptional at 98.52% 

but drops to 84.24% during testing, pointing to a 

possibility of overfitting. On the contrary, for Dataset 4, 

both training and testing accuracies are perfect: 100% and 

95.27%, respectively; thus, it indicates improved 

generalization capability. But, on the other hand, training 

time is much higher for Dataset 4 (0.8813 seconds) than 

for Dataset 3 (0.0079 seconds), and also increases memory 

usage. 
The linear SVC performs well and equally well for both 

datasets. For Dataset 3, it shows that training accuracy is 
96.66% and testing accuracy is 94.09% whereas for 
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Dataset 4, a training accuracy of 95.17% is found to be 
accompanied by a testing accuracy of 96%. Training times 
are very small, 0.0149 seconds for Dataset 3 and 0.0210 
seconds for Dataset 4. Memory usage is reasonable 

compared to other models to show its computational 
efficiency. 

The extra trees classifier shows the best training 
accuracy among all the classifiers at 99.75% for Dataset 3 

and a perfect 100% for Dataset 4. The testing accuracies 
are equally good at 94.09% for Dataset 3 and 98.55% for 
Dataset 4. However, the training time and memory usage 
are very high as compared to other classifiers, at 2.8888 
seconds for Dataset 3 and 3.0607 seconds for Dataset 4. 

The memory usage is quite high, especially for Dataset 4, 
at 1,562,172 bytes. 

Fig. 7 illustrates that the radius neighbors classifier and 
the extra trees classifier achieve much higher accuracy, 

while the ridge classifier and the linear SVC have balanced 
performance with very low computational costs. 

Fig. 7. Comparison of accuracy.  

The choice of a classifier depends on the given 
requirements of the task, that is, computational resources, 
accuracy needs, or dataset complexity.  

A comparison of model performance across Datasets 1–
4 reveals important insights into generalizability. The 
classifiers generally achieved higher training and testing 
accuracy on Datasets 3 and 4, which were collected from 
real-world hospital settings, compared to the publicly 
available Datasets 1 and 2. For example, the Extra Trees 
classifier achieved nearly perfect training accuracy and 
over 98% testing accuracy on Dataset 4, outperforming its 
performance on Datasets 1 and 2. This suggests that the 
model may adapt well to real-world, clinically diverse data, 
likely due to more informative features and realistic 
variance. However, it also highlights that real-world 
datasets, when well-prepared and curated, can support 
high-performing ML models that generalize well to unseen 
clinical scenarios.  

The trends observed across datasets also highlight the 
reliability and generalization behavior of the classifiers. 
For instance, models like Linear SVC and Extra Trees 
consistently maintained high precision and recall across 
both controlled (Datasets 1 and 2) and real-world clinical 
datasets (Datasets 3 and 4), indicating their robustness in 
varied data environments. In contrast, classifiers such as 
Radius Neighbors showed significant performance 
fluctuations, suggesting lower reliability in generalizing 
beyond the training data. These findings emphasize the 
importance of evaluating models on real-world data, not 
just benchmark datasets, to ensure their clinical 

applicability and deployment readiness. 

C. ECG Dataset Results

The CNN-RNN model is trained to predict different
classes of ECG abnormalities and is validated using a 
validation dataset. Throughout the training, the model 
achieves a validation accuracy that closely matches the 
training accuracy. It indicates well well-generalized model 
without significant overfitting. In addition, the testing 
accuracy is high with low loss. The proposed system 
generates predictions on the test data, presenting results 
through a confusion matrix and metrics like F1-score, 
recall, and precision for each class. The best performance 
of the system is in the normal class, and the lowest ECG 
classification performance is in the FVAN class (Table VI). 
Both the classes, atrial premature and premature 
ventricular contraction, show similar performance, but less 
than that of the normal class. The FPAN class also 
represents notable performance.  

TABLE VI: PERFORMANCE OF PROPOSED MODEL 

Classes Precision Recall F1 score 
Normal 0.99 1.00 0.99 
APC 0.98 0.97 0.98 
PVC 0.98 0.97 0.98 
FVAN 0.91 0.89 0.90 
FPAN 0.97 0.95 0.96 

The results of the proposed model depict a precision of 
0.99 for the normal class, slightly lower for atrial 
premature, and premature ventricular contraction at 0.98, 
with a recall of 0.97, besides an F1 score of 0.98. For the 
FPAN class, precision is slightly lower at 0.97, but the 
recall and F1 scores are reduced to 0.95 and 0.96, 
respectively. The lowest precision achieved is 0.91, with a 
recall of 0.89 and a 0.90 F1 score, for forecasting the ECG 
class as FVAN. The overall results indicate high 
performance, with a comparison of performance for all 
classes (Fig. 8 (a)). Furthermore, the projected model 
attained a significantly higher testing accuracy of 0.989 
(Fig. 8 (b)). Thus, a very low loss (0.045) is observed, 
indicating strong performance of the model. 

Fig. 8. Performance: (a) Comparison of all classes and (b) test 

performance. 
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Overall, the results show the highest performance in 

ECG-based prediction of myocardial infarction and heart 

diseases. When the proposed model of ECG-based 

prediction is further compared to existing methods, it 

exhibits enhanced performance as revealed in Table VII 

below. The proposed system attained an enhanced 

accuracy of 0.987 as compared to the model proposed by 

Moghadam and Asl [26] (0.965). While Cao et al. [27] 

illustrate the lowest performance (0.908) among all models. 

Alkurdi and Abdulazeez [28] also achieved better accuracy 

(0.960), but precision is low, 0.93, with slightly reduced 

recall (0.95). Although Riek et al. [29] performed well 

with an accuracy of 0.947, the recall is considerably low 

(0.88) among all models. Moreover, the proposed model 

achieves higher precision as well as recall at 0.98 and 0.97, 

respectively, as compared to Moghadam and Asl [26] 

which achieved at 0.96 and 0.97. 

TABLE VII: COMPARING EXISTING MODELS WITH PROPOSED MODEL 

Existing Methods Accuracy Precision Recall 

Riek et al. [29] 0.947 0.96 0.88 
Cao et al. [27] 0.908 0.95 0.95 

Alkurdi and Abdulazeez [28] 0.960 0.93 0.95 

Moghadam and Asl [26] 0.965 0.96 0.97 
Proposed method  0.987 0.98 0.97 

Fig. 9 represents the performance of all the above 

models, indicating a significant increase in evaluation 

parameters for the proposed model as compared to the 

existing model. 

Fig. 9. Comparing the proposed model with existing models. 

The strength of the proposed framework lies not in 
architectural novelty alone, but in its integration of both 
public and real-world clinical datasets for validation, the 
use of noise-augmented training to improve robustness, 
and the successful implementation of a multi-class ECG 
classification model using a hybrid CNN-RNN approach. 
This combination enhances the model’s generalizability 
and relevance across varied clinical conditions. 
Furthermore, to improve clinical interpretability, future 
work may explore the integration of explainable AI 
techniques such as Grad-CAM or attention-based 
mechanisms, which would help clinicians better 
understand and trust the model’s decisions. From the 
results, even though noise is added in the Gaussian form to 
augment the ECG signals, the overall achieved accuracy is 
quite high, at 0.987. Most classes have scores greater than 
0.95, which indicates the robust performance of the model. 
However, the class “Fusion of Ventricular and Normal” 

shows lower performance to some extent. The result offers 
evidence of how the integration of the CNN and RNN 
outcomes leads to increased accuracy in the prediction of 
ECG models that can distinguish between MI and other 
conditions. In addition, the performance in achieving 
optimal scores of accuracies and loss at the time of testing 
shows that training and validation accuracy have been 
around 0.95, with a maximum accuracy of 0.98, meaning 
the model is effective in classifying the heart conditions 
using ECG signals. Further validation of the proposed 
method is attained through the comparison with existing 
studies. It is observed that the model performs well on all 
evaluation metrics. As a result, this study outshines 
previous methods by applying an integrated ML technique 
for predicting myocardial infarction (MI) using different 
datasets, which shows the great impact of ML in heart 
disease classification and MI diagnosis. 

The proposed prediction model is a new advancement 
to diagnose myocardial infarction (MI) to improve 
classification accuracy. The model captures meritoriously 
both spatial as well as temporal features of ECG signals 
with notable improvements in performance metrics such as 
an accuracy value of 0.987 and very high precision and 
recall for most classes. This research therefore also 
highlights the successful integration of architectures 
comprising CNN and RNN while contributing to the 
production of robust and accurate early-detecting 
diagnostic tools, further contributing to saving thousands 
of lives through diagnosis based on medical signals that 
the current conventional methods often could not provide 
signals that the current conventional methods often could 
not provide. While the reported improvements in accuracy 
and recall may appear marginal in numerical terms, even 
small performance gains can be clinically significant, 
especially in early MI detection, where timely diagnosis 
can reduce mortality risk. In practical deployment, this 
model could be integrated into ECG monitoring systems in 
emergency departments or primary care clinics to assist 
physicians in the early identification of myocardial 
infarction. Additionally, its robustness across both 
standard and hospital datasets suggests potential for real-
world use in diverse clinical settings, though further testing 
on broader external datasets is essential. Future 
deployment could also involve integration into wearable 
devices or cloud-based diagnostic platforms under the 
Internet of Medical Things (IoMT) framework. 

V. CONCLUSION

Heart diseases, particularly Myocardial Infarction (MI), 
remain a major public health concern, where early and 
accurate diagnosis is critical to improving patient 
outcomes. Machine Learning (ML) has transformed the 
ability to analyze complex patient data rapidly and reliably, 
facilitating earlier detection and intervention. This study 
presents an ML-based approach for heart disease 
prediction using both EHR and ECG data. A comparative 
analysis across four datasets—two public and two real-
world hospital datasets—demonstrated consistent and 
robust performance, with linear SVC showing the most 
stable results and the Extra Trees classifier achieving the 
highest accuracy in training. 
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The proposed CNN-RNN-based ECG classification 

model achieved 98.7% accuracy in identifying five 

heartbeat classes, confirming its potential in clinical 

applications. The application of Gaussian noise 

augmentation contributed to improved robustness and 

generalizability, especially for minority classes. 

Comparisons with existing studies further validate the 

strength of the proposed model in outperforming several 

established methods across multiple metrics. 

Importantly, improved MI prediction using such 

automated models could directly benefit patient care by 

enabling faster diagnosis in emergency settings, 

supporting clinical decision-making, and reducing the 

likelihood of missed or delayed treatment. In real-world 

deployment, this could lead to earlier interventions, 

reduced hospitalization time, and ultimately, better 

survival rates. 

Despite strong results, certain heartbeat classes—such 

as “Fusion of Ventricular and Normal”—show relatively 

lower performance, indicating areas for further model 

refinement. Future research should explore the use of 

larger and more demographically diverse datasets to 

enhance generalizability across populations. In addition, 

integrating techniques such as transfer learning, attention 

mechanisms, or hybrid ensemble models could improve 

performance for rare or complex ECG patterns. 

Incorporating explainable AI components (e.g., Grad-

CAM or SHAP) would also enhance model transparency, 

which is essential for clinical acceptance. Finally, 

deployment in real-time monitoring systems and wearable 

devices under the Internet of Medical Things (IoMT) 

framework could further expand the practical utility of the 

proposed model in remote and continuous cardiac health 

monitoring. 
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