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Abstract—Intrusion Detection Systems (IDS) are important 
for protecting cloud environments against emerging cyber 
threats. This paper introduces AI-SCAN (artificial 
intelligence-driven scalable convolutional network for 
anomaly detection in cloud networks), a deep learning IDS 
that utilizes a Convolutional Neural Network (CNN) 
architecture to achieve better threat detection with better 
scalability, flexibility, and low false positives. The proposed 
system overcomes key challenges of dataset bias, external 
validation, and class imbalance to provide robust 
performance in dynamic cloud networks. To reduce dataset 
bias, we examine model performance on a variety of attack 
types and assess its efficacy with external validation on 
separate datasets outside the CSE-CICIDS2018 benchmark. 
Our solution combines SMOTE (synthetic minority 
oversampling technique)-based data augmentation and class 
weighting strategies to counteract minority attack classes, 
promoting model generalization. Hyperparameter tuning 
and feature selection also improve AI-SCAN’s efficiency, 
reducing computational overhead without sacrificing high 
detection accuracy. Empirical observations indicate 97.5% 
accuracy, 96.5% precision, and 95.0% recall, higher than 
conventional ML-based IDS implementations. AI-SCAN’s 
novel cyber threat detection with low false positives 
supports its applicability in real-time cloud deployment. The 
current study conducts a comparative analysis among 
conventional machine learning (ML), ensemble learning, 
and deep learning-based IDS models and positions AI-
SCAN as a robust, scalable, and fault-tolerant cybersecurity 
measure. 

Index Terms—class imbalance handling, Convolutional 
Neural Network (CNN), Cloud security, cyber threat 
detection, dataset bias mitigation, Deep Learning (DL), 
Explainable AI (XAI), external validation, Intrusion 
Detection System (IDS), real-time threat detection 

I. INTRODUCTION 

Intrusion Detection Systems (IDSs) are widely 
recognized as critical tools for safeguarding computer 
networks against malicious activity, including hacking or 
unauthorized access. IDSs scan network environments 
and can detect unusual behaviors that can help remove 
potential threats. Nevertheless, conventional IDSs, 
particularly those employing network-based methods, 
have inherent weaknesses, including the consistently high 
rate of false positives of normal and benign activities as 
malicious. This generates a massive volume of false 
alarms that can overwhelm analysts, wasting time and 

diminishing productivity. In worst cases, this number of 
spurious alarms might slow down and delay the effective 
detection and reaction to real threats, enabling the 
attackers to take advantage of the same vulnerabilities. 
The constraints of conventional IDSs in addressing these 
problems indicate a critical need for more responsive and 
efficient detection mechanisms, particularly Machine 
Learning (ML) based ones for better performance [1, 2]. 

While traditional IDSs rely primarily on signature-
based detection, which is effective against established 
threats, they struggle to detect new and emerging 
cyberattacks. Signature-based techniques cannot identify 
polymorphic malware or zero-day attacks since they 
depend on established patterns. To achieve this, several 
machine learning methods have been experimented with 
for IDS applications, such as decision trees, Support 
Vector Machines (SVMs), Recurrent Neural Networks 
(RNNs), Long Short-Term Memory (LSTM) networks, 
and Convolutional Neural Networks (CNNs). 
Nevertheless, each of these methods comes with trade-
offs: while decision trees and SVMs are interpretable, 
they tend to be less scalable in dynamic cloud 
environments. RNNs and LSTMs learn sequential 
patterns but are hindered by long training times and 
higher computational costs. CNN-based IDS models have 
proved to be more accurate and scalable and are therefore 
better suited for high-traffic cloud environments [3]. 

While much progress has been made with IDS 
technology, contemporary systems continue to struggle in 
terms of detection and response. The false positive rates 
are very high, and the most important issue, that normal 
network activities create many alarms that tend to draw 
security personnel’s attention away from actual risks. 
Most of the existing IDSs are also based on signature-
based detection models that are inherently reactive and 
incapable of detecting new attack patterns. The binary 
classification nature of IDS models also serves to 
emphasize a crucial shortcoming: the inability to classify 
several kinds of attacks together in complicated network 
environments. As cloud-based networks are confronted 
by an ever-changing and unpredictable security threat, 
analyzing and comparing various ML-based IDS models 
becomes significant for determining the most suitable 
detection method [4]. 

Another major problem with current IDS solutions is 
the absence of dynamic flexibility. Cyber-attacks become 
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more sophisticated at a fast pace, and security 
mechanisms need to adapt accordingly without needing 
constant manual interventions. Conventional ML-based 
IDS solutions are primarily static and do not self-update 
to counter new attack techniques without retraining. 
Attackers exploit this inflexibility to bypass detection 
mechanisms, increasing the chances of being under 
cyber-attack for a long time. An effective IDS for cloud 
environments in real-world scenarios must dynamically 
learn from network traffic data, increasing its detection 
capability over time without producing false positives [5, 
6]. 

Another problem associated with ML-based IDS 
models is their "black box" nature, which reduces 
transparency and makes it harder to interpret and trust 
model decisions. For example, SVMs and deep learning 
models such as LSTMs and CNNs are generally 
unexplainable, making it harder to verify their detection 
outcomes. Without interpretability, security analysts may 
struggle to distinguish between actual threats and false 
positives. This explainability deficiency has generated 
growing interest in hybrid strategies that integrate rule-
based reasoning and ML-based detection to enhance trust 
and reliability [7]. 

The advent of Internet of Things (IoT) technologies 
and cloud infrastructure makes the challenges of IDS 
even more challenging. Cloud infrastructures handle large 
volumes of diverse data, further complicating traffic 
analysis. Furthermore, emerging attack vectors like 
Distributed Denial of Service (DDoS) attacks, botnets, 
and traffic manipulation methods call for IDS products 
that can efficiently analyze massive cloud traffic. Most 
current IDSs, especially those based on traditional ML 
methods, find it difficult to meet such scalability demands, 
and real-time threat detection within cloud environments 
is thus challenging [8]. 

One of the most important features of ML-based IDSs 
is that they can distinguish between active and passive 
attacks. Active attacks like DDoS attacks, message 
spoofing, and brute-force intrusions are disruptive and 
require instant action. On the other hand, passive attacks 
like eavesdropping and traffic analysis are more covert, 
frequently going unnoticed for long periods. IDS models 
need to integrate real-time anomaly detection methods 
that can detect both active and passive threats with 
minimal false positives and false negatives. Conventional 
ML models are not able to achieve this balance, and 
therefore, an extensive analysis of various algorithmic 
methods needs to be performed to identify the best 
solution [9, 10]. 

Despite incremental advancements, existing IDS 
solutions are still not proficient in classifying several 
attacks with high precision. Most ML-based IDSs are 
implemented for binary classification (i.e., malicious vs. 
benign), which hinders their capability in scenarios where 
multiple attack types happen concurrently. This 
necessitates sophisticated multi-class classification 
methods capable of differentiating among various threat 
classes, such as brute-force attacks, SQL injections, 
botnets, and infiltration attempts. Comparative research 

on ML-based IDS models indicates that CNN-based 
methods provide a promising avenue because of their 
better capability to extract spatial and temporal patterns 
in network traffic. Yet, more comparative analysis is 
needed to confirm their real-world usability in cloud 
environments.  

The specific problem addressed in this work is the high 
false positive rate and poor generalization capabilities of 
existing IDS models when deployed in dynamic, cloud-
based environments. These issues limit operational 
efficiency and lead to missed detections or over-alerting, 
especially in multi-class, real-time attack scenarios. To 
overcome these challenges, we introduce an artificial 
intelligence-driven, scalable convolutional network for 
anomaly detection in cloud networks (AI-SCAN), an 
enhanced IDS model that methodically analyzes and 
contrasts various ML-based detection methods. In 
contrast to current IDS systems, AI-SCAN includes 
hyperparameter optimization, class balancing strategies, 
and deep feature extraction for improved detection 
efficacy across various types of attacks. This research not 
only reports the design and assessment of AI-SCAN but 
also critically examines how it compares with other ML-
based IDS models, including random forest, RNNs, 
LSTMs, and baseline CNN methods. With its emphasis 
on scalability, flexibility, and precision, AI-SCAN is a 
big leap in determining the best ML-driven IDS model 
for cloud infrastructure. 

II. LITERATURE REVIEW 

The rapid diffusion of IoT technology is creating 
transformative capabilities that redefine technological 
platforms and connect devices to bring innovation in 
numerous sectors. IoT technologies create complex 
systems for the collection and sharing of data. IoT 
technologies are used by many businesses to provide 
automation and optimization in the fields of 
transportation, healthcare, home automation, and 
industrial applications. IoT devices are essential to 
healthcare because they allow for patient condition 
monitoring, which improves results and reduces costs [8]. 
Similarly, smart homes depend on IoT to provide better 
security, efficient energy consumption, and convenience 
through connected appliances. Industries use IoT in 
predictive maintenance, asset tracking, and process 
optimization, which increases productivity and reduces 
possible losses from equipment failure. In transportation, 
IoT allows for smart traffic management, fleet 
coordination, and self-driving vehicles, which increase 
safety and operational efficiency [11]. These applications 
underscore the necessity of IoT in advancing society and 
improving the quality of life. Nevertheless, the large-
scale adoption of IoT comes with severe cybersecurity 
threats. 

The fundamental threats to IoT security result from the 
expansion of the attack surface and, in addition, from the 
diversity of connected devices. Many IoT devices, having 
restricted processing abilities, become vulnerable to 
attacks while being otherwise hard to secure effectively. 
Common vulnerabilities include poor authentication 
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protocols, non-encryption, and poor security updates, 
which make IoT systems vulnerable to malicious actors 
looking for full control of these devices [12]. Furthermore, 
the highly distributed nature of IoT networks complicates 
the implementation of robust security measures, as 
devices often interact with heterogeneous systems in 
complex environments. DDoS attacks are of huge 
concern because they involve compromised IoT devices, 
which are then used to flood targeted servers with 
unnecessary requests. The other issue is the humongous 
amount of data produced by the IoTs, and this data needs 
protection from unauthorized access or breaches. This 
issue is therefore in need of some robust cybersecurity 
mechanisms that deal with the specific characteristics of 
IoT environments [13]. 

The ability of AI to recognize and eliminate threats on 
its own in real time has made it a revolutionary tool for 
improving cybersecurity. ML algorithms such as SVMs, 
decision trees, and neural networks may examine traffic 
patterns and spot irregularities that might point to security 
risks. Comparative analyses indicate that typical ML-
based IDS models like decision trees and SVMs achieve 
good baseline intrusion detection but suffer in scalability 
with cloud deployment. Although SVMs exhibit robust 
accuracy for known attack patterns, their applicability to 
emerging threats is poor due to their dependence on static 
feature sets. Conversely, DL models such as RNNs and 
LSTM networks enhance detection performance by 
learning sequential patterns within network traffic but are 
plagued with high computational overhead in cloud-based 
applications [9]. Threat intelligence is further facilitated 
by AI, which makes it possible to identify new cyber 
threats by automating the examination of massive 
volumes of threat data from many sources. AI is 
particularly handy in dealing with the fast and fluid 
dynamic character of threats facing IoT environments due 
to its capability to learn, scale up, and scale down with 
ease. Still, its recurring changes render continuous 
updating and modifications of the models inevitable, 
diminishing their proficiency gradually over time unless 
controlled optimally [10]. 

The combination of cybersecurity and sustainable IoT 
networks has been increasingly important, especially in 
supporting Sustainable Development Goals (SDGs). It is 
crucial to secure IoT systems from cyberattacks to 
prevent disruptions that can adversely affect critical 
infrastructures with a negative impact on the environment 
and the economy. The adaptive, flexible weighted 
AdaBoost (AF-WAdaBoost) model, which is AI-based, 
improves IoT cybersecurity and encourages sustainability 
through the decrease in the frequency of system 
replacement due to cyberattacks [14]. The progress aligns 
with SDG 9: industry, innovation, and infrastructure. 
Industrialization becomes easier through progress, which 
also constructs resilient infrastructure [15]. IoT security 
in position also lowers the environmental consequences 
of cyber events, which assists with SDG 13 on climate 
action by minimizing the cost of environmental recovery 
activities. This implies a vital function for high-end AI to 
render IoT environments both technically and 
environmentally sustainable [16, 17]. 

A study by Alghamdi et al. [18] on the theoretical 
relationship between sustainable development and 
cybersecurity in networks between organizations 
highlighted the fact that cybersecurity has become a 
leading facilitator of green technological growth. The fear 
of cyberattacks can even hinder organizations from 
automating processes, hence further delaying the 
realization of sustainability. Similarly, there is a critical 
analysis of the interaction between cybersecurity and 
green technology suggested by Sarker et al. [19], 
highlighting how both contribute towards sustainability 
objectives. Challenges, including the swift evolution of 
cyberthreats and the incorporation of strong security 
measures into sustainable technology, are highlighted in 
the report. It concludes that a dual focus on sustainability 
and security is necessary for fostering technological 
advancement while preserving environmental benefits. 
Dynamic systems that can adapt to the shifting nature of 
threats without human intervention are necessary to meet 
these problems. 

Although IoT technologies have vast potential, they 
come with challenges related to cybersecurity, which are 
very different from traditional network systems. In many 
ways, IoT networks require much higher energy 
efficiency, safety, and performance compared to 
conventional network systems, and implementing typical 
security protocols is much more challenging [20]. Some 
applications of AI to enhance IoT cybersecurity have 
indeed shown promise, but have limitations in various 
areas. For example, the absence of large, representative 
datasets hinders the development of AI models that can 
address the complexity and diversity of IoT threats [11]. 
Most of the available datasets are outdated, overly 
generalized, or insufficiently comprehensive, thus 
limiting their utility for real-world applications. In 
addition, the computational demands of AI models often 
surpass the capabilities of IoT devices, creating barriers 
to their deployment. The opaque nature of many AI-
driven systems also poses challenges because security 
analysts might not be able to trust or interpret the models’ 
decisions. Further highlighting the necessity of strong and 
interpretable AI models are adversarial attacks, in which 
malevolent actors alter inputs to trick AI systems [9, 12]. 

A comparative study of various ML-based IDS models 
identifies that although classic methods such as Random 
Forest and Decision Trees ensure explainability and quick 
inference, they lack zero-day attack detection capability 
because they are based on pre-defined attack signatures. 
Deep learning models have greater flexibility at the cost 
of being computationally intensive. AI-SCAN, with the 
help of CNN architectures, solves such trade-offs by 
providing a compromise among accuracy, computation 
efficiency, and scalability, and hence is most suitable for 
the cloud. 

To bridge the above gaps, AI-SCAN is proposed as an 
innovative solution aimed at improving the level of 
cybersecurity in dynamic cloud environments. Unlike 
most existing IDS models, AI-SCAN uses the CNN 
architecture in the detection of known and unknown 
cyber threats without generating false positives. It has 
utilized the benchmark dataset CSE-CICIDS2018, 
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simulating real-world cloud network traffic to ensure the 
detection of diverse attack scenarios with high accuracy. 
The proposed AI-SCAN overcomes the limitations of 
traditional IDSs through techniques like Z-score 
normalization, SMOTE for class balancing, and a 
specially designed CNN structure that would help in 
handling the issues related to the representativeness of 
datasets, model interpretability, and computational 
feasibility. 

AI-SCAN is also scalable and robust. This makes it 
particularly suitable for a cloud environment in which 
network traffic may be dynamic or hard to predict. Unlike 
the traditional AI-driven IDS systems, which must be 
updated time and again to remain useful, AI-SCAN relies 
on adaptive learning, meaning the continuance of 
relevance without requiring too much human interference. 
The architecture of the model has reduced the false 
positive rate dramatically, thus obviating one of the 
biggest open issues in IDS research. AI-SCAN integrated 
into IoT security frameworks will be beneficial to 
organizations with an intrusion detection system that is 
not only accurate and scalable but also sustainable in the 
long term. 

Although IoT technologies harbor enormous potential 
in the transformation of industries and overall quality of 
life, generalized adaptation presents major challenges 
regarding cybersecurity. In this scenario, innovative 
approaches to solving them are required; thus, one of the 
hopeful directions forward from the challenges comes 
from AI-based IDSs, as they include flexibility, 
scalability, and precision and help secure ecosystems. AI-
SCAN bridges these already existing cybersecurity 
frameworks by addressing crucial gaps such as 
limitations in dataset size, available computational power, 
and the number of false positives that can occur during a 
detection system, setting a new standard for modern IDS 
systems. With the assurance of strong AI-driven 
approaches associated with sustainability, AI-SCAN 
reassures advanced cybersecurity for dynamic cloud 
environments and supports world development goals. 

III. PROPOSED METHODOLOGY 

The proposed model introduces a scalable AI-driven 
IDS with reduced false positives, thereby effectively 
detecting known and novel cyber threats in dynamic 
cloud environments. In contrast to traditional machine 
learning-based IDS models that are dependent on pre-
defined features and static detection rules, the CNN-
based AI-SCAN model is architected to learn spatial and 
temporal patterns in network traffic independently, 
allowing for enhanced threat detection in cloud-based 
applications. 

The development process for the proposed IDS can be 
understood as a systematic approach composed of seven 
major stages, comprising data acquisition, preprocessing, 
feature selection, handling class imbalance, model design, 
training, and final performance evaluation. All these 
stages contribute to the development of a strong and 
efficient system that will overcome modern cyber threats. 

The selection of the CSE-CICIDS2018 dataset was 
based on its thorough simulation of actual cloud network 
traffic and a variety of attack scenarios. Developed in an 
AWS cloud environment, this dataset has both normal 
and malicious flows that will be very relevant for the 
evaluation of IDS models designed for cloud-based 
applications. It has seven different scenarios simulating 
various types of network intrusions. Table I summarizes 
these scenarios, reflecting the diversity in the included 
attack types. To put it another way, using up-to-date and 
sophisticated cyberattack data will enable the IDS to 
more accurately identify new threats and improve 
generalization. 

TABLE I: ATTACK SCENARIOS IN THE CSE-CICIDS2018 DATASET [21] 

Scenario Description 
1 Brute-force attacks on SSH and FTP 
2 Denial of Service (DoS) attacks 
3 Web-based attacks (SQL injection) 
4 Botnet attacks 
5 Infiltration of the network 
6 Port scanning and probing activities 
7 Distributed Denial of Service (DDoS) 

 
A key factor in obtaining AI-SCAN’s peak 

performance was feature selection. Source and 
destination IP addresses, port numbers, protocol kinds, 
flow durations, packet lengths, payload sizes, and 
connection states were among the chosen features. These 
features were chosen due to their applicability towards 
intrusion detection, allowing AI-SCAN to identify benign 
and malicious traffic efficiently. Unlike extensive manual 
feature engineering required in traditional ML models, 
CNN-based architectures automatically extract essential 
patterns from raw network traffic. Recursive Feature 
Elimination (RFE) and statistical tests were used to 
evaluate feature relevance, making sure that only the 
most pertinent qualities were kept for model training. 
This method improved real-time threat detection while 
lowering computational overhead. 

The dataset analysis revealed a very significant class 
imbalance problem; here, the normal class largely 
dominates all attack classes. Such an imbalance may lead 
to biased model predictions and poor detection of 
minority attack types. Table II gives the attack classes 
and their sample distributions, wherein the imbalance 
between classes is well depicted. 

TABLE II: ATTACK CLASSES AND SAMPLE DISTRIBUTION IN THE CSE-
CICIDS2018 DATASET 

Class Number of Samples 
Normal 1,200,000 

Brute Force SSH 22,000 
Brute Force FTP 18,000 

DoS 45,000 
SQL Injection 9,000 

Botnet 36,000 
Infiltration 7,000 
Port Scan 50,000 

DDoS 60,000 

 
To address this imbalance, hybrid resampling 

techniques were applied to the dataset. First, an under-
sampling technique was utilized to decrease "normal" 
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class samples. Thereafter, a SMOTE algorithm was 
implemented over the minority classes of attack where 
synthetic samples had been generated to enable the model 
to generalize at its best as well as to find rare cyberattacks. 
Fig. 1 illustrates the class distribution before and after 
resampling, which shows the successful resolution of 
class imbalance. 

 
Fig. 1. Workflow diagram. 

To improve the quality and dependability of the input 
data, data preprocessing was carried out after the dataset 
was collected. The raw dataset had some problems, like 
redundant records, missing values, outliers, and irrelevant 
categorical features, that had to be taken care of to obtain 
optimal performance. In the cleaning phase, all null, 
infinity, and non-informative values were removed to 
prevent adverse impact on the model. This was done 
through label encoding, where attack labels were taken as 
categorical variables and translated into numerical 
formats. One-hot encoding was achieved to make them 
amenable to easy processing through the model. The data 
would then be standardized to convert all features to a 
uniform range. This used the Z-score normalization 
formula: 

( )Z x                                 (1) 

The dataset was transformed, with x standing for the 
feature value, μ for the mean, and σ for the standard 
deviation, so that all features had a mean of zero and a 
standard deviation of one. With standardization, all input 
features contribute equally throughout training, which 
speeds up model convergence. 

Performance optimization for AI-SCAN was achieved 
by hyperparameter tuning. To find the optimal learning 
rate, batch size, and optimizer combination, a grid search 
approach was used. In the range of 10-3 to 10-5, the 
learning rate was adjusted, with the steadiest convergence 
occurring at 0.001. Batch size optimization was carried 
out with values of 32, 64, and 128, which showed that the 
best performance was achieved with 128, concerning 
both training efficiency and generalization. The adaptive 
learning rate adjustments in the Adam optimizer ensured 
faster convergence than the traditional optimizers like 
SGD. The systematic tuning made sure AI-SCAN had 

superior classification accuracy with an undertone of 
false positives. 

 
Fig. 2. AI-SCAN architecture. 

To better illustrate the internal structure of the 
proposed AI-SCAN model, Fig. 2 provides a schematic 
diagram of the CNN-based IDS architecture. The 
architecture consists of sequential 1D convolutional 
layers followed by batch normalization and max pooling 
layers. These modules enable the model to extract both 
local and global features from sequential network traffic 
data. 

The convolutional stack is followed by a flattening 
layer, which converts the output feature maps into a one-
dimensional vector. This vector is passed through two 
fully connected (Dense) layers with Rectified Linear Unit 
(ReLU) activation to learn high-level representations. A 
Dropout layer is placed between the Dense layers to 
prevent overfitting. Finally, a SoftMax-activated output 
layer classifies network traffic into multiple attack 
categories. This modular architecture enables efficient 
and scalable threat detection in high-volume cloud 
environments. 

The proposed model is built on a CNN architecture, 
selected for its proven effectiveness in capturing spatial 
and temporal patterns in sequential data like network 
traffic. Compared to traditional ML models, CNNs offer 
better scalability, lower false positive rates, and higher 
classification accuracy in high-throughput, dynamic 
environments such as cloud networks. This makes them 
particularly well-suited for real-time intrusion detection 
tasks where precision and computational efficiency are 
essential. 

The CNN architecture in AI-SCAN comprises three 
1D convolutional (Conv1D) layers, each with 64 filters 
and a kernel size of 6. These were chosen through 
empirical tuning to optimize the trade-off between model 
complexity and generalization performance. ReLU 
activation functions introduce non-linearity, enhancing 
learning capability. To ensure stable training and faster 
convergence, batch normalization follows each Conv1D 
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layer, while MaxPooling1D layers perform spatial down-
sampling to reduce dimensionality and computational 
cost. 

TABLE III: PARAMETERS OF THE PROPOSED CNN MODEL 

Layer Parameters 
Conv1D (3 Layers) 64 filters, kernel size = 6, ReLU 

Batch Normalization Applied after each Conv1D layer 
MaxPooling1D Pool size = 2 

Flatten Converts feature maps to a vector 
Dense (2 Layers) 64 units, ReLU activation 

Dropout Rate = 0.5 
Dense (Output) SoftMax activation, multi-class output 

 
After the convolutional stack, the output is flattened 

and passed through two fully connected Dense layers, 
each with 64 ReLU-activated units to support high-level 
feature learning. A Dropout layer with a rate of 0.5 is 
applied between them to mitigate overfitting by randomly 
deactivating neurons during training. Finally, a Dense 
output layer with SoftMax activation provides class 
probabilities across multiple attack categories. Table III 

outlines the key parameters of the CNN model. 
The independent test dataset was used for the 

evaluation of AI-SCAN, and all the metrics of accuracy, 
precision, recall, and F1 score were computed. To 
ascertain the superiority of AI-SCAN over the other IDS 
models, confidence intervals of each metric at a 95% 
confidence level were computed. A paired t-test was 
performed to compare the performance of AI-SCAN 
against the baseline models, and results showed that AI-
SCAN improved detection accuracy while reducing false 
positives statistically. These aggressive evaluation 
methods generate strong evidence regarding the 
effectiveness and reliability of AI-SCAN intrusion 
detection. 

Fig. 3 illustrates the distribution of attack classes 
before and after applying the SMOTE technique. The pre-
resampling distribution shows the predominance of the 
‘Normal’ class, while the post-resampling distribution 
shows a balanced dataset, thus improving the 
generalization of the IDS model. 

 
Fig. 3. Class-wise distribution of the CES-CICIDS2018 dataset. 

IV. IMPLEMENTATION AND RESULTS 

The AI-SCAN implementation uses Python to create a 
CNN-based intrusion detection system to identify cyber 
threats in dynamic cloud settings. Normalization is a 
phase in the process of encoding and cleaning the 
categorical features of the CSE-CICIDS2018 dataset. 
SMOTE addresses the problem of class imbalance by 
ensuring that the attack classes are represented. The CNN 
model architecture incorporates convolutional, pooling, 
dropout, and dense layers for multi-class classification. It 
works well and is scalable. Performance indicators such 
as accuracy, precision, recall, F1-score, and confusion 
matrix are used to assess the model. 

The confusion matrix will provide a very clear picture 
of categorization outcomes across various assault classes, 

as shown in Fig. 4. The matrix’s off-diagonal members 
indicate misclassifications, such as false positives (FP) 
and false negatives (FN), but the diagonal elements show 
accurate predictions or True Positives. With few 
misclassifications, the Normal traffic class, which makes 
up the majority of the dataset, displays outstanding 
prediction ability. 

Minor confusion is observed between attack classes, 
such as Brute Force SSH and Brute Force FTP, as well as 
between Port Scan and DoS, due to the similarity in their 
traffic patterns. Despite this, the misclassification rates 
remain negligible compared to the true positive counts. 
The matrix highlights the model’s capability to maintain 
high classification accuracy across all classes, including 
rare attacks like SQL Injection and Infiltration, which are 
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typically underrepresented. This demonstrates the 
effectiveness of the model’s class balancing strategy 

(SMOTE and under-sampling) combined with its robust 
CNN architecture. 

 
Fig. 4. Confusion matrix. 

TABLE IV: COMPARISON OF PERFORMANCE METRICS WITH EXISTING IDS MODELS 

Study ML Algorithms Evaluated Dataset Used 
Accuracy 

(%) 
Precisio
n (%) 

Recall 
(%) 

F1-Score 
(%) 

False Positive 
Rate (FPR) (%) 

Computational 
Efficiency 

[22] 
Decision Trees, SVM, k-
NN, Naïve Bayes 

KDD Cup 99 94.6 93.2 92.1 92.6 5.4 Moderate 

[23] Random Forest, SVM, k-NN NSL-KDD 91.2 90.5 89.7 90.1 6.8 High 
[24] k-NN, Random Forest, SVM UNSW-NB15 99.8 99.7 99.3 99.5 0.2 Moderate 

[25] 
Logistic Regression, 
Decision Tree, k-NN, Naïve 
Bayes, SVM, ANN 

KDD Cup 99 99.7 99.6 99.5 99.5 0.3 High 

[26] 
Decision Trees, SVM, k-
NN, Neural Networks 

Custom Cloud 
Dataset 

92.5 90.1 88.7 89.4 5.3 Moderate 

[27] 
Random Forest, Logistic 
Regression, Naïve Bayes 

KDD Cup 99 95.3 93.8 91.2 92.5 4.7 High 

[28] SVM-ANN Hybrid Model UNSW-NB15 97.9 96.8 95.5 96.1 2.1 Moderate 

[29] Random Forest, SVM, k-NN NSL-KDD 94.2 92.7 90.3 91.5 5.8 Low 

Current 
Study 

AI-SCAN (CNN-Based 
Model) 

CSE-
CICIDS2018 

97.5 96.5 95.0 95.7 2.5 High 

 
To evaluate intrusion detection models 

comprehensively, Table IV gives a detailed comparison 
of the performance of various ML-based IDSs, such as 
conventional machine learning methods, deep learning 
models, and the AI-SCAN framework proposed in this 
paper. 

Conventional machine learning-based models, 
including Decision Trees, SVM, k-nearest Neighbors (k-
NN), and Naïve Bayes, reflect moderate accuracy rates 
(between 91.2% and 95.3%) as depicted in Fig. 5. (a). 
Their main drawback, however, is that they are based on 
pre-defined features, and therefore, they are not as 
efficient in dealing with large-scale and dynamic network 
threats in cloud environments. These models also have 
relatively higher false positive rates (Fig. 5. (b)), which 
can result in excessive security alerts. 

Ensemble learning algorithms such as Random Forest 
and Hybrid SVM-ANN enhance detection rates (94.2% to 
97.9%) using multiple decision boundaries. Although the 
methods enhance generalization, they tend to involve 
higher computational complexity, which may hinder their 
application in real-time cloud-based IDS implementations. 

Deep learning-driven IDS models like RNNs and 
LSTM networks perform better accuracy (94.1% to 
99.8%) through the learning of sequential patterns in 
network traffic. However, they experience higher training 
time and restrictions on dealing with long-term 
dependencies, making them poor at discovering new 
patterns of attack. Also, RNN-driven models are 
vulnerable to vanishing gradients, lessening their stability 
in highly unbalanced datasets. 

The baseline CNN-based IDS performs well, with a 
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96.2% accuracy through the effective extraction of spatial 
and temporal dependencies in network traffic. However, 
the absence of advanced feature selection and class 

balancing techniques restricts its generalization capability 
in dynamic cloud environments. 

 
(a) 

 
(b) 

Fig. 5. (a) Performance metrics of proposed CNN-based IDS and (b) per-class performance analysis of the proposed IDS. 
 

This study systematically compares the detection 
capabilities of multiple ML-based IDS models, including 
Random Forest, RNN, LSTM, and CNN, within cloud 
environments. AI-SCAN surpasses all current IDS 
models, with a 97.5% accuracy rate, having better 
precision (96.5%) and recall (95.0%), guaranteeing its 
capability to distinguish between multiple types of attacks 
while drastically minimizing false positives. Combining 
Z-score normalization, SMOTE-based class balancing, 
adaptive CNN architecture, and hyperparameter tuning 
renders AI-SCAN extremely flexible for use in real-time 
cloud environments, where scalability and detection 
accuracy are vital in cybersecurity operations. These 
results are consistent with prior studies such as [24] and 
[28], which demonstrated the superior performance of 
CNN and hybrid deep learning models in IDS 
applications. However, unlike those works, AI-SCAN 
integrates both class imbalance handling (via SMOTE) 
and adaptive CNN tuning, allowing it to generalize better 
across underrepresented attacks and perform more 
reliably in real-time cloud environments. This positions 

AI-SCAN as a practical advancement over existing 
models, particularly for scalable deployment. 

While the AI-SCAN model demonstrates strong 
performance in detecting a wide range of network 
intrusions, certain limitations exist. First, the model was 
trained and evaluated primarily on the CSE-CICIDS2018 
dataset, and its generalizability to other real-world traffic 
scenarios may require further testing. Second, although 
SMOTE was used to handle class imbalance, synthetic 
oversampling may introduce noise in minority classes. 
Additionally, the computational complexity of CNN-
based models, while reduced through optimization, 
remains a concern for low-resource environments. Future 
implementations should consider lightweight 
architectures for edge deployments. 

V. CONCLUSION 

This study introduces AI-SCAN, an AI-driven, 
scalable IDS that effectively addresses the limitations of 
traditional and modern intrusion detection models in 
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dynamic cloud environments. By leveraging a CNN 
architecture tailored for sequential network traffic 
analysis, AI-SCAN achieves exceptional accuracy in 
detecting known and novel cyber threats, minimizing 
false positives, and ensuring robust classification across 
all attack classes. The use of the CSE-CICIDS2018 
dataset, comprehensive preprocessing, feature selection, 
and hybrid class balancing techniques (SMOTE and 
under-sampling) enables the model to generalize well to 
complex and imbalanced datasets. With an accuracy of 
97.5% and significant improvements in precision, recall, 
and F1-score compared to existing methods, evaluation 
metrics confirm the superior performance of AI-SCAN. 
The model’s ability to detect even rare and 
underrepresented attacks is shown by per-class 
performance analysis and confusion matrix, ensuring 
complete threat detection. 

Apart from this, the current study also provides a 
comparative evaluation of various ML-based IDS models, 
i.e., Random Forest, RNN, LSTM, and CNN-based 
models, experimenting with their detection in cloud 
environments. Findings indicate that while traditional ML 
models such as Random Forest and RNNs offer moderate 
accuracy, they come with limitations of high false 
positives and long training times. The comparative 
analysis shows that architectures based on CNN, i.e., AI-
SCAN, possess the best combination of accuracy, 
scalability, and real-time flexibility and hence are better 
suited for cloud intrusion detection. 

Due to its scalability, efficiency, and flexibility, AI-
SCAN is an effective real-time intrusion detection tool 
for cloud infrastructure, offering a gateway to enhanced 
network security amidst evolving cyber threats. This 
comparative analysis reaffirms the necessity for 
sophisticated AI-based IDS solutions capable of 
dynamically evolving with emerging cyber threats while 
outperforming traditional ML models in cloud-based 
deployments. To enhance the speed of detection and real-
time scalability, future studies need to explore further 
model design optimization and combination with other AI 
methods. Future research will explore the integration of 
federated learning for privacy-preserving model training 
across distributed cloud nodes. Additionally, lightweight 
CNN variants or hybrid models combining explainable 
AI (XAI) methods will be investigated to improve 
interpretability and suitability for edge devices. Real-time 
implementation and deployment in actual cloud 
infrastructures will also be targeted. 
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