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Abstract—The severity of ransomware threats is increasing 
significantly, posing substantial risks to individuals and 
organizations. To address this problem, several techniques 
have been suggested; however, they are mostly signature-
based, capable of identifying conventional ransomware but 
inadequate in detecting novel variants. This paper introduces 
a ransomware detection framework using distributed 
gradient boosting and explainable artificial intelligence. The 
suggested design utilizes the XGBoost algorithm for 
classification and explainable artificial intelligence for 
feature importance. The proposed design is deployed and 
tested using a dataset of 84 features. Weight-based feature 
selection is used to minimize the number of features. The 
selected features are used to train the XGBoost classification 
algorithm. Furthermore, the significance of the chosen 
features is assessed using SHapley Additive exPlantions 
(SHAP). The results show better performance in terms of 
accuracy, precision, recall, and F1-Score. The suggested 
approach outperforms the baseline machine learning 
algorithms and comparable results against state-of-the-art 
models across all performance criteria used. 

Index Terms—ransomware, XGBoost, explainable, machine 
learning, security 

I. INTRODUCTION

Recently, ransomware has emerged as one of the most 
intimidating challenges in cybersecurity. Unlike other 
threats (malware, spyware, etc.), ransomware is designed 
to pose an immediate threat, causing significant 
operational and financial losses [1]. The consecutive 
attacks on enterprises and individuals have triggered the 
urgent need for countermeasure mechanisms to maintain 
sustainability and secure assets. The traditional signature-
based ransomware detection approach is effective against 
known ransomware threats, but there is still inadequacy in 
detecting modern ransomware. The newly generated 
ransomware employs sophisticated and complex 
techniques like polymorphism, encryption, and zero-day 
attacks [2]. 

Machine learning algorithms are considered a new 
approach in detecting ransomware, which relies on 

training and validation of common patterns. These 
algorithms provide the ability to detect complex anomaly 
patterns that are difficult to detect using traditional 
ransomware methods [3]. The selection of the machine 
learning method depends on several factors, including 
types of datasets, machine learning models, and the ability 
to interpret and visualize the model decisions. A closer 
look at the datasets used in cybersecurity applications, in 
particular ransomware, shows that these datasets contain 
imbalanced sample sizes where anomalous samples 
represent the minority. This imbalance causes the 
employed machine learning algorithms, e.g., KNN, LSTM, 
CNN, NN, decision tree, and random forest, to produce a 
biased output, resulting in low detection rates for 
ransomware [4–6]. 

Moreover, the decisions made by the machine learning 
algorithms are blind, which makes it difficult to understand 
the way the algorithms make these decisions. These 
difficulties represent a major challenge in cybersecurity, 
which in turn makes machine learning employment in 
cybersecurity applications limited [7].  

The integration of Explainable Artificial Intelligence 
(XIA) has emerged as a substantial way to explain machine 
learning decisions. The most famous explanation tools are 
SHapley Additive exPlantions (SHAP) and Local 
Interpretable Model-agnostic Explanations (LIME). 
SHAP is considered a global explanation tool, while LIME 
is used for local explanations. SHAP is used to explain the 
model’s decisions based on the contribution of each 
feature to the final decision, additively, and provide a 
global explanation. However, LIME is used to explain the 
model based on the prediction of each instance of the 
output and provides local explanations [8]. 

This work proposes an enhanced ransomware detection 
approach using optimized distributed gradient boosting 
and Explainable Artificial Intelligence (XAI). The 
XGBoost algorithm provides the ability to manage and 
train an imbalanced dataset efficiently with high 
performance. XGBoost creates a series of decision trees 
sequentially, addressing the errors made by each preceding 
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tree. This sequential process yields a model capable of 
accurately capturing ransomware patterns within the data 
[9]. Additionally, the performance of the XGBoost model 
is improved through the application of the Synthetic 
Minority Oversampling Technique (SMOTE) to 
effectively manage imbalanced data [10]. 

Explainable Artificial Intelligence (XAI) serves to 
enhance the clarity and compatibility of the decisions 
generated by the XGBoost model. XIA is utilized to 
enhance the understanding of the decisions made by 
XGBoost. In this work, SHapley Additive exPlantions 
(SHAP) is utilized to interpret and explain the predictions 
made by XGBoost. In SHAP, each feature is assigned a 
value that quantifies its contribution to the final decision, 
referred to as SHAP feature importance. The provided 
explanations enhance stakeholder trust in the incubation of 
machine learning algorithms within the field of 
cybersecurity, enabling them to restructure their systems 
according to the newly defined models [11]. 

The contributions of this work are 
1) Optimized Distributed Gradient Boosting: an 

optimized XGBoost model is utilized. The proposed 
work achieves high detection accuracy while 
minimizing overfitting. The model is fine-tuned 
using weight-based feature selection. 

2) Explainable Artificial Intelligence: The proposed 
design integrates SHAP to provide interpretable 
explanations for the model’s predictions. 

3) Handling Class Imbalance: The proposed design 
addresses the class imbalance problem using 
SMOTE, ensuring that the model is effective in 
detecting ransomware out of a larger benign dataset. 

By the combination of the durability of optimized 
XGBoost and the interpretability of SHAP, this work 
provides a robust and secure framework for ransomware 
detection. The proposed design enhances the detection 
accuracy of ransomware and improves the trustworthiness 
between stakeholders and ML algorithms in the field of 
cybersecurity. 

The rest of the paper is organized as follows: Section II 
presents a literature review of the state of the art in the field 
of ransomware detection using machine learning. Section 
III elaborates on the proposed methodology. Section IV 
provides detailed discussions about the results we 
achieved from the proposed design. Section V concludes 
the paper and provides insights into potential future work. 

II. RELATED WORK 

Many researchers take responsibility for working with 
ransomware detection, which is noticed obviously from 
the literature in this area. Generally, the ransomware 
analysis and detection methods are classified into two 
main categories: signature-based and behavior-based 
methods. On the one hand, the signature-based methods 
are good and effective in analyzing, detecting, and 
predicting the commonly known ransomware. However, 
the signature-based method struggles against new variants 
of ransomware. On the other hand, the behavior-based 
method focuses on the dynamic behaviors of the system 
activities. The dynamic behavior provides accurate 

detection outcomes for new variants of ransomware. 
However, the behavior-based method is time-consuming 
and represents a critical issue in preventing payload 
delivery in the case of a true positive [12].  

The ransomware detection methods confront difficulties 
in analyzing new variants of ransomware. These 
difficulties include the utilized ransomware with code 
obfuscation and encryption. Moreover, some methods fail 
to distinguish between benign and malicious activities due 
to the false classification of the user and malware-triggered 
encryptions. Additionally, these approaches are prone to 
deception by code obfuscation, cryptography, and 
disassembler protection. In this literature, we provide 
reviews of the most used topics in this area and their 
corresponding methods. 

A. Machine learning and deep learning 

Khammas [13] proposed a ransomware detection 
approach using the Random Forest machine learning 
algorithm. The selection of the Random Forest algorithm 
comes from the fact that it is efficient in handling large 
datasets. The proposed design employed a feature 
selection mechanism called frequent pattern mining and 
gain ratio. This method is used to identify the best 1000 
features as top candidates for analysis and detection. The 
authors claimed that their work outperformed other 
classifiers such as AdaBoost and Bagging. The reported 
results showed a high accuracy of 97.74% with low false 
positive and false negative rates. 

Urooj et al. [14] have employed machine learning and 
deep learning algorithms to analyze ransomware behavior 
during system setup, achieving high detection rates. 
Similarly, UNVEIL in [15]. UNVEIL autonomously 
creates a simulated user environment and identifies when 
ransomware interacts with user data. Specifically, it 
monitors alterations to the system’s desktop that signify 
ransomware-like activity. However, this work is limited by 
its inability to recover encrypted files before detection. 
Other approaches, like CryptoDrop, employed a series of 
behavioral clues. CryptoDrop may terminate a process that 
seems to be manipulating a substantial volume of the 
user’s data. Moreover, with the merging of A collection of 
indications typical of ransomware allows the system to be 
configured for fast detection with few false positives. 
Experimental research of CryptoDrop prevents 
ransomware execution, resulting in a median loss of just 
10 files out of around 5,100 accessible files. Results 
indicate that meticulous examination of ransomware 
behavior might provide an efficient detection method that 
substantially reduces victim data loss [16].  

Despite these advancements, there remains a need for a 
more robust detection framework that can effectively 
identify both known and novel ransomware while 
minimizing false positives and enabling file recovery 
during attacks. The work in [17] addresses these gaps by 
proposing a multilayer detection model that combines 
grouped registry key operations, file entropy, and file 
signature monitoring, leveraging machine learning to 
achieve high detection accuracy and the ability to 
differentiate between user-triggered and ransomware-
triggered encryption. Gulmez et al. [18] developed a 
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strategy to address the ransomware threats by proposing a 
two-layer convolutional neural network enhanced by 
Explainable Artificial Intelligence (XAI), termed XRAN. 
Their work integrates system call features such as API call 
sequences, DLLs, and mutual exclusions. The method 
utilizes a dual-layer Convolutional Neural Network (CNN) 
to identify correlations among these features, attaining a 
True Positive Rate (TPR) of 99.4%. XRan utilizes two 
XAI models, namely LIME and SHAP, to provide both 
local and global explanations for the model’s choices. 
Experimental results show that XRan surpasses leading 
approaches, especially in differentiating ransomware from 
inoffensive software and other malware categories. 

B. Hybrid and Enhanced Techniques 

This category focuses on the methods that combine two 
or more detection techniques. The resulting hybrid 
approaches help in optimizing and enhancing efficiency 
and robustness. In hybrid approaches, static and dynamic 
analyses broaden detection scope. However, enhanced 
approaches cultivate the detection process through new 
algorithms. 

Shaukat and Ribeiro [19] presents RansomWall, using 
both static and dynamic system analysis to provide a 
feature set that encapsulates the behavior of ransomware. 
RansomWall incorporates an additional abstract layer that 
serves as a robust trap for the early detection of 
ransomware. The suggested methodology is assessed with 
574 ransomware samples, attaining a detection rate of 
98.25% with almost zero false positives.  

Palša et al. [20] introduce a malware-detecting antivirus 
tool using the XGBoost MLMD, which integrates static 
and dynamic analysis via the XGBoost algorithm. The 
instrument attains an accuracy of 91.92% on static analysis 
data and 96.48% on dynamic analysis data. This 
methodology facilitates the integration of these techniques 
into practical antimalware applications.  

Abutu et al. [21] designed a deep learning framework to 
address the limitations of previous detection techniques by 
decreasing the false positive and false negative rates. This 
work concentrates on some important features, such as 
internet connection, file accessing, and process structures, 
to increase the precision of the detection process. The 
proposed work, called DeepCodeLock, improves the 
detection process accuracy by limiting the false positive 
and the false negative detection rates. Li et al. [22] 
suggested a new framework that combines the deep 
learning capabilities with the decision-making ability of 
Monte Carlo Tree (MCT); merging these together allows 
the detection of newer variants of ransomware. The 
proposed work is applicable in the business environment 
due to the computational efficiency that the new model 
achieves. The suggested framework enhances the 
detection process compared to traditional machine 
learning detection models. 

Wasoye et al. [23] proposed work integrates machine 
learning models with the Binary Transformation and 
Lightweight Signature (BTLS) algorithm to improve the 
detection process in terms of efficiency and accuracy. The 
suggested approach can extract both static and dynamic 
features from the ransomware file, which improves the 

classification accuracy. The proposed algorithm enhances 
the detection accuracy by reducing the false positive 
detection rates. 

Adaptive Progressive Feature Isolation (APFI) is 
proposed to enhance the detection of ransomware attacks; 
it applies the analysis in separate stages to identify the 
patterns, especially the high-risk patterns that should be 
isolated first. The suggested approach improves the 
accuracy of the detection and reduces the false positive rate. 
This approach employed deep learning to decrease 
computational demands. The experiments show that APFI 
is capable of differentiating ransomware at a highly 
accurate rate with low latency, which makes this technique 
an advanced automated solution for cybersecurity [24].  

Brinkley et al. [25] studied the use of machine learning 
techniques in detecting zero-day ransomware attacks; this 
work develops and evaluates some machine learning 
techniques, such as Random Forst, support vector, and 
Neural Networks for identifying unseen ransomware 
behaviors. This study shows that machine learning can 
adapt to detect the ransomware without using static 
signatures. The experimental results illustrate the trade-
offs between the detection capability and computational 
efficiency.  

Other work presented a comprehensive approach to 
malware classification using the XGBoost-Gradient 
Boosted Decision Tree (GBDT) algorithm, leveraging a 
large, balanced dataset to build an efficient classifier with 
low-end computing resources [26]. The authors address 
the limitations of traditional signature-based malware 
detection methods, which struggle to keep up with the 
rapid evolution of polymorphic and metamorphic malware. 
They propose a machine learning-based solution that 
generalizes new malware variants, emphasizing the 
importance of feature selection and hyperparameter tuning 
to optimize model performance. In their work, the authors 
used a dataset named EMBER. The dataset is balanced and 
composed of ransomware and benign samples. In the 
reported results, they achieved 98.5% accuracy. The 
proposed work is considered robust and efficient due to its 
limited computational resources and scalability. 

Android malware classification using XGBoost is 
proposed in [27]. The authors highlighted the growing 
threats of malware and classified them using image-based 
visualization. The executable binary files were converted 
to images; these images are in grayscale format, which 
helps in visualizing the malware and helps in detecting it. 
The authors compare the performance of XGBoost with 
other machine learning algorithms, such as k-Nearest 
Neighbors (k-NN) and Random Forest, and evaluate the 
effectiveness of using only the data section of the 
classes.dex file versus the full file. The results indicate that 
classification using the data section yields better accuracy 
(70.37%) compared to the full classes.dex file (68.06%), 
though XGBoost takes longer to train and test compared to 
other algorithms. The study concludes that while the 
proposed method shows promise, further improvements 
are needed to enhance accuracy and reduce computational 
time, particularly by fine-tuning XGBoost parameters and 
incorporating more diverse malware samples in future 
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work. 
The work in [28] presented an enhanced Extreme 

Gradient Boosting (XGBoost) design combined with Chi-
Squared Feature Selection. This work helped in finding a 
new way to detect malware instead of the conventional 
usage of signature-based methods. The signature-based 
approach is weak in detecting emerging malware, making 
it a clear challenge. This challenge has led to increased 
vulnerabilities in cybersecurity defenses, particularly 
against zero-day attacks.  

C. Network-Based Detection 

Network-based detection approaches may discover 
ransomware activities more promptly by examining 
communication patterns with Command and Control 
(C&C) servers. Almashhadani et al. [29] concentrate on 
Locky ransomware, a notable variant recognized for its use 
of Domain Generation Algorithms (DGA) and hybrid 
encryption methods. A thorough behavioral study of 
Locky’s network traffic is performed, collecting 18 
significant features from protocols including TCP, HTTP, 
DNS, and NBNS. These traits are categorized into 
behavioral and non-behavioral, as well as detectable and 
non-detectable classifications, establishing a good 
prototype for detection. The suggested multi-classifier 
intrusion detection system functions at both packet and 
flow levels, using machine learning methods to attain high 
detection accuracy (97.92% at the packet level and 97.08% 
at the flow level) with minimal false positive rates. This 
study enhances the domain of network-based ransomware 
detection by presenting a dual-level detection 
methodology, providing a more efficient solution for the 
prompt identification and alleviation of ransomware 
threats. 

The work in [30] presented an early detection system for 
ransomware based on network behavior. The proposed 
design analyzed the network behavior pattern by 
employing Cerber ransomware as a case study. The 
authors addressed the limitations of static network analysis 
by designing a testbed that dynamically analyzes the 
system pattern. Their work was deployed on virtual 
machine environments (VMware and Wireshark). After 
processing, they extracted 20 features, which were fed to 
the KNN machine learning algorithm. The reported results 
show significance in accuracy, achieving 99.5%.  

Achieving a balance between computing efficiency and 
accuracy, reducing false positives, facilitating real-time 
detection, and recovering encrypted information before 
detection solve these deficiencies but need more 
optimization for scalability and comprehensive threat 
coverage. Future research should emphasize adaptive 
frameworks that consolidate behavioral, static, and 
network information while including explainability to 
provide resilient protection against advancing ransomware 
threats. 

III. PROPOSED METHODOLOGY  

This work proposes a ransomware detection mechanism 
using XGBoost. The proposed design employs SHAP 
explainable artificial intelligence to decide which features 
are the most important in detecting ransomware behaviors. 
The proposed design architecture is depicted in Fig. 1. The 
design is trained on both benign and ransomware datasets. 
The datasets are combined to construct the input dataset 
for the XGBoost classifier. More about the datasets will be 
elaborated on in the results and discussion section IV. 

 
Fig. 1. The proposed design architecture and workflow. 
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A. XGBoost Classification 

To classify the data into benign or ransomware, the 
XGBoost classifier is used as an extreme gradient boosting 
algorithm to classify the input data. The XGBoost is a 
powerful and scalable framework for supervised machine 
learning applications. The selection of the XGBoost comes 
from the fact that it provides high performance and speed. 
The XGBoost’s main principle is gradient boosting, where 
the model is built sequentially to fix and correct the errors 
from the preceding step. Each step in the XGBoost is 
represented as a sequence of trees. The number of trees is 
determined in the hyperparameter configuration step for 
the classifier. Every step a new tree is added to minimize 
the residual error from the previous tree. The final decision 
of the XGBoost is the sum of all predictions from all trees, 
as depicted in Eq. (1). 

𝑦పෝ = ∑ 𝑓௧(𝑥௜)
்
௧ୀଵ                            (1) 

where ft: the prediction of tree i, xi: the input data points, 
and T: total number of trees. 

Each tree belongs to space 𝔽 represented as 

𝔽 = 𝑓(𝑥) = 𝑤_{𝑞(𝑥)} | 𝑞: 𝑅௠ → 𝑁,𝑤 ∈ 𝑅்            (2) 

where q(x): the function that maps the data into the leaf 
index, and w: represents the leaf weight.  

For the proposed design, we used the binary:logistic 
objective function. The selection of this objective function 
is due to the binary nature of the classification task that we 
have (Benign, Ransomware). For a single sample, the 
logistic error is calculated using Eq. (3): 

𝐿(𝑦௜ , 𝑦పഥ) = −[𝑦௜ log(𝑦పഥ) + (1 − 𝑦௜) log(1 − 𝑦పഥ)]     (3) 

The total loss for N samples is calculated by 

𝐿 = −
ଵ

ே
∑ [𝑦௜ log(𝑦పഥ) + (1 − 𝑦௜) log(1 − 𝑦పഥ)]
ே
௜ୀଵ      (4) 

B. Explainable Artificial Intelligence 

Explainable Artificial Intelligence (XAI) is used to 
interpret the machine learning prediction algorithm. This 
interpretation is accomplished by analyzing the input 
dataset and the features that were used by the machine 
learning algorithm. In most cases, the machine learning 
prediction approach is considered a black box, where there 
is no knowledge about the way the algorithm has chosen 
certain output or the most influential features in the dataset. 
XAI is used to provide the user with the most important 
features that affect the system selection.  

We used SHapley Additive exPlanation (SHAP) XIA 
explainable model in our design. SHAP is employed to 
accomplish the task of categorizing the features according 
to their importance and then selecting the most important 
features for training and classification tasks. The SHAP 
equation is formulated as 

SHAP௜ = ∑
|ௌ|!(|ே|ି|ௌ|ିଵ)!

|ே|!ௌ⊆ே∖{௜} [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]  (5) 

where N represents a variable for all features, S is a subset 
of N without i, v(S) represents the model value for the S 
features, and |S|! the factorial of the size of S. 

C. Performance Metrics 

Since the proposed design deals with a binary 
classification task, we used the following performance 
metrics to assess our design: 
1) Accuracy: which represents the ratio of the correctly 

classified (Benign or Ransomware) to the total 
number of samples. The accuracy is represented by 

Accuracy =
்శା்ష

்శା்షାிశାிష
                    (6) 

2) Precision, which represents the positive predictive 
values as depicted in Eq. (7): 

Precision =
்శ

்శାிశ
                          (7) 

3) Recall that represents the correctly predicted positive 
to all positive samples, as depicted in Eq. (8): 

Recall =
்శ

்శାிష
                             (8) 

4) F1-score that makes the harmonic balance between 
the precision and recall, as depicted in Eq. (9): 

F1-Score =
ଶ⋅Precision⋅Recall

PrecisionାRecall
                      (9) 

D. Feature Importance 

To select the most important features in our work, we 
employed weight-based feature importance. This selection 
reduces the number of features used in the training and 
reduces the training time accordingly. 

For XGBoost, the weight of the feature is the number of 
times that the data across all XGBoost trees were split; 
features that are used frequently for splitting are 
considered the most important. This calculation is 
calculated by Eq. (10). 

Importance(𝑓) = 𝑆௙                        (10) 

where F is the number of features and Sf is the number of 
splits in trees for feature f  F. 

The higher the value of Sf implies that the feature f is 
used more frequently. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

The experiments were conducted on a PC with an Intel 
Core i7 processor, 32GB of Random Access Memory 
(RAM), and an NVIDIA RTX 1070ti Graphical 
Processing Unit (GPU). These configurations are set to 
make sure that the machine learning computations will be 
executed efficiently. The deployment of the software was 
built on Python 3 using scikit-learn for the machine 
learning algorithm. 

In this work, ransomware and benign datasets were used. 
These datasets were adopted from Canadian Institute for 
Cybersecurity Android Malware 2017 (CICAndMal2017) 
[31]. The properties of this dataset are as follows: 

1) The dataset contains APK files of malicious and 
benign applications collected from various sources. 
The malicious application samples are categorized 
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into the Adware, Spyware, Ransomware, and 
Banking Trojan families. 

2) The ransomware family includes 10 types: 
LockerPin, Simplocker, Pletor, PornDroid, 
RansomBO, SvpengCharger, Jisut, Koler, and 
WannaLocker. 

3) The total number of samples from the Ransomware 
family is 309,084 samples. 

4) The total number of samples from the Benign family 
is 1,048,575. 

5) Each type of dataset contains 84 features. Table I 
shows all features included in the dataset and their 
corresponding descriptions. 

6) For the full details of the dataset, the reader is 
advised to follow up with the dataset’s author 
through the work presented in [32]. 

TABLE I: FEATURE DESCRIPTION 

Feature Name Description Feature Name Description 

Flow ID 
A unique ID assigned to each network 
flow 

Bwd IAT Std 
The standard deviation of time intervals 
between backward packets 

Source IP 
The IP address where the flow 
originates 

Bwd IAT Max 
The longest time interval between 
backward packets 

Source Port 
The port number from which the flow 
starts 

Bwd IAT Min 
The shortest time interval between 
backward packets 

Destination IP 
The IP address where the flow is 
directed 

Fwd PSH Flags 
The number of PSH flags in the forward 
direction 

Destination Port 
The port number to which the flow is 
sent 

Bwd PSH Flags 
The number of PSH flags in the backward 
direction 

Protocol 
The protocol used in the flow (e.g., 
TCP, UDP) 

Fwd URG Flags 
The number of URG flags in the forward 
direction 

Timestamp 
The time at which the flow was 
recorded 

Bwd URG Flags 
The number of URG flags in the backward 
direction 

Flow Duration The total time duration of the flow Fwd Header Length The size of the header in forward packets 

Total Pwd Packets 
The total number of packets sent 
forward 

Bwd Header Length 
The size of the header in backward 
packets 

Total Backward Packets 
The total number of packets sent 
backward 

Fwd Packets/s The rate of forward packets per second 

Total Length of Fwd Packets 
The combined size of all forward 
packets 

Bwd Packets/s The rate of backward packets per second 

Total Length of Bwd Packets 
The combined size of all backward 
packets 

Min Packet Length The smallest size among all packets 

Fwd Packet Length Max The largest size of a forward packet Max Packet Length The largest size among all packets 
Fwd Packet Length Min The smallest size of a forward packet Packet Length Mean The average size of all packets 
Fwd Packet Length Mean The average size of forward packets Packet Length Std The standard deviation of packet sizes 

Fwd Packet Length Std 
The standard deviation of forward 
packet sizes 

Packet Length Variance The variance in packet sizes 

Bwd Packet Length Max The largest size of a backward packet FIN Flag Count The total number of FIN flags observed 

Bwd Packet Length Min 
The smallest size of a backward 
packet 

SYN Flag Count The total number of SYN flags observed 

Bwd Packet Length Mean The average size of backward packets RST Flag Count The total number of RST flags observed 

Bwd Packet Length Std 
The standard deviation of backward 
packet sizes 

PSH Flag Count The total number of PSH flags observed 

Flow Bytes/s 
The rate of bytes transferred per 
second 

ACK Flag Count The total number of ACK flags observed 

Flow Packets/s 
The rate of packets transferred per 
second 

URG Flag Count The total number of URG flags observed 

Flow IAT Mean 
The average time between packets in 
the flow 

CWE Flag Count The total number of CWE flags observed 

Flow IAT Std 
The standard deviation of time 
intervals between packets 

ECE Flag Count The total number of ECE flags observed 

Flow IAT Max 
The longest time interval between 
packets 

DownUp Ratio 
The ratio of downtime traffic to upload 
traffic 

Flow IAT Min 
The shortest time interval between 
packets 

Average Packet Size The mean size of all packets 

Fwd IAT Total 
The total time intervals between 
forward packets 

Avg Fwd Segment Size The average size of forward segments 

Fwd IAT Mean 
The average time interval between 
forward packets 

Avg Bwd Segment Size The average size of backward segments 

Fwd IAT Std 
The standard deviation of time 
intervals between forward packets 

Fwd Header Length_1 
An alternative measure of forward header 
size 

Fwd IAT Max 
The longest time interval between 
forward packets 

Fwd Avg Bytes/Bulk 
The average bytes per bulk in the forward 
direction 

Fwd IAT Min 
The shortest time interval between 
forward packets 

Fwd Avg Packets/Bulk 
The average packets per bulk in the 
forward direction 

Bwd IAT Total 
The total time intervals between 
backward packets 

Fwd Avg Bulk Rate 
The average bulk rate in the forward 
direction 

Bwd IAT Mean 
The average time interval between 
backward packets 

Bwd Avg Bytes/Bulk 
The average bytes per bulk in the 
backward direction 
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In our work, we selected the Benign and Ransomware 
datasets to conduct the experiments. The proposed design 
was trained on a combined dataset generated by combining 
the Benign and Ransomware datasets. The dataset 
comprises 84 features, which increase the complexity and 
computation time to train and validate the dataset. This 
work uses weight-based feature selection to train the 
network on the top 20 features based on their weight. This 
weight represents the frequency of the features in splitting 
the XGBoost trees. The top 20 features after this step are 
depicted in Table II. 

TABLE II: TOP 20 FEATURES 

Destination Port Flow Duration Source Port 
Fwd Packet Length 

Max 
Flow IAT Mean Flow IAT Std 

Flow Packets/s 
Bwd Packet 
Length Min 

Bwd Packet Length Mean 

Total Fwd Packets Flow Bytes/s 
Total Length of Fwd 

Packets 
Total Backward 

Packets 
Fwd Packet 

Length Mean 
Bwd Packet Length Max 

Bwd Packet Length 
Std 

Total Length of 
Bwd Packets 

Fwd Packet Length Std 

Fwd Packet Length 
Min 

Protocol  

 
The features ‘Flow ID’, ‘Timestamp’, ‘Source IP’, and 

‘Destination IP’ are dropped from training because they 
lack predictive power, affect overfitting to the system, and 
are non-informative. 

B. Performance Evaluation 

The proposed design is evaluated using the XGBoost 
training on the combined dataset. After training, the top 
twenty features of the dataset were selected. These features 
were fed to the XGBoost for the second round of training. 
The training and validation loss performance is depicted in 
Fig. 2. The training loss started high and then decreased 
rapidly, implying that it is learning effectively from the 
training dataset. Moreover, as the number of boosting 
rounds increases, the training loss decreases, approaching 
zero, deducing the training data well. On the other hand, 
the validation loss started high and decreased at the early 
stages of the boosting rounds, which implies that the model 
generalizes well to the unseen data. However, after rounds 

30 to 40, the validation loss begins to stabilize, which 
shows an indication of data overfitting. To solve this issue, 
we employed the Synthetic Minority Oversampling 
Technique (SMOTE), which addresses the class imbalance. 

To mitigate overfitting, we incorporated multiple 
regularization techniques into the XGBoost model. Table 
III summarizes the regularization techniques that are used 
in the XGBoost model. The regularization techniques 
improve generalization by constraining the model 
complexity. The L1 and L2 regularization techniques were 
used with reg_alpha (0.5–1.0) and reg_lambda (2.0–3.0), 
respectively. L1 helps in shrinking the less important 
feature values to zero, while L2 is used to discourage the 
large weights. The tree complexity controls the maximum 
depth that child trees will split, limiting the depth of the 
tree.  

TABLE III: REGULARIZATION TECHNIQUES USED IN XGBOOST MODEL 

Technique Parameter Value Role 
L2 Regularization reg_lambda 2.0–3.0 Penalizes large weights. 

L1 Regularization reg_alpha 0.5–1.0 
shrinking less important 

features to zero. 
Tree Complexity max_depth - Limits tree depth 

The proposed design is compared with the baseline 
machine learning algorithms. The results of this 
comparison are depicted in Table IV. 

 
Fig. 2. Training and validation loss. 

TABLE IV: COMPARISON OF BASELINE METHODS WITH THE PROPOSED DESIGN 

Detection Method Precision Accuracy Recall (TPR) F1-Score FPR TNR FNR TPR 
Decision Tree 0.901 0.887 0.909 0.893 0.123 0.877 0.091 0.909 

Random Forest 0.937 0.928 0.944 0.931 0.081 0.919 0.056 0.944 
Naive Bayes 0.575 0.611 0.556 0.596 0.358 0.642 0.444 0.556 
KNN (k=5) 0.849 0.786 0.89 0.811 0.255 0.745 0.11 0.89 

LSTM 0.964 0.952 0.981 0.955 0.07 0.93 0.019 0.981 
CNN 0.962 0.955 0.977 0.958 0.061 0.939 0.023 0.977 

Proposed Design 0.993 0.983 0.999 0.999 0.00615 0.99385 0.001 0.999 

TABLE V: COMPARISON BETWEEN THE PROPOSED DESIGN AND THE STATE OF THE ART WORKS 

Work Accuracy Recall F1-Score Precision TPR FPR TNR FNR 
[13] 0.9774 0.998 0.978 N.A 0.998 0.043 0.957 0.002 
[18] 0.99 0.994 0.992 0.992 0.994 0.01 0.99 0.006 
[17] 0.987 0.995 0.996 0.999 0.991 0.036 0.0039 0.009 
[19] N.A 0.99 0.99 0.987 0.9825 0.056 0.944 0.017 
[20] 0.964 N.A 0.977 N.A N.A N.A N.A N.A 

Proposed Design 0.993 0.983 0.999 0.999 0.99385 0.00615 0.001 0.999 
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Table IV shows that the proposed design outperformed 
the baseline machine learning algorithms regarding 
accuracy, precision, F1-score, and recall. The results show 
that the detection rate of our proposal achieved 99.3\% 
with higher accuracy. The metrics of the deep learning 
algorithms (CNN, LSTM) show better results than the 
traditional machine learning algorithms. This difference 
comes from the conventional ML algorithms that 
individually evaluate systems’ features. 

A comparison between the proposed design and the 
state-of-the-art methods is depicted in Table V. The 
comparison shows that the proposed method achieves 
better results compared with the same techniques. Some 
works reported only a portion of the metrics we used; 
therefore, we used the equations mentioned earlier in 
Section III to calculate the corresponding values. 

The proposed design achieves 99.3% accuracy, which 
reflects alongside precision (99.9%) the effectiveness of 
the proposed design in detecting ransomware behaviors.  
Some works didn’t report all the values used in the 
performance metrics; therefore, we measured their 
corresponding values using the scientific equations 
concerning each value. However, the work in [20] reported 
only the accuracy value, which is inadequate in measuring 
the remaining performance value. Moreover, the work in 
[18] measured the metrics values concerning different 
scenarios; the corresponding result for this work is 
calculated by averaging them.  

However, the low false positive rate (FPR) can have 
great consequences in real-world deployments. This will 
dramatically affect different aspects including alert fatigue, 
operational distribution, user trust and economic cost. The 
real impact of FPR basically depends on traffic volume. 
For instance, a daily traffic of million requests achieves 
6150 false positive reading per day. In contrast, 6150 false 
alerts overwhelm the system troubleshooting and 
maintenance tasks.  

C. Feature Selection Sensitivity Analysis 

A sensitivity analysis for feature selection was 
performed to identify the most significant features. Table 
VI illustrates the outcomes of the sensitivity analysis. The 
research extended through features, starting with the top 5 
and extending to the top 50. Metrics of Accuracy, 
Precision, Recall, and F1-Score were employed to evaluate 
the performance of the features. The measured findings 
indicate that the performance metrics stabilized at 20 
features. In our proposal, we selected the top 20 elements 
as a key benchmark in design.  

TABLE VI: FEATURE SELECTION SENSITIVITY ANALYSIS 

No. Features Accuracy Precision Recall F1-Score 
5 0.94 0.94 0.94 0.94 

10 0.96 0.96 0.96 0.96 
15 0.97 0.97 0.96 0.96 
20 0.99 0.99 0.98 0.99 
25 0.99 0.98 0.98 0.98 
30 0.99 0.99 0.98 0.98 
40 0.99 0.99 0.99 0.99 
50 0.99 0.99 0.98 0.99 

Fig 3 illustrates the correlation between the chosen 
performance indicators and the quantity of top features. 

Commencing with the top 20 features, the performance 
measures start to stabilize. The selection of the top 20 
features in our methodology is predicated on the 
observation that augmenting the number of features 
requires more resources and computing time. 
Consequently, the proposed architecture preserves the 
minimum number of features to guarantee optimal 
performance and minimal resource requirements.  

 
Fig. 3. Feature selection sensitivity analysis. 

 
Fig. 4. SHAP features importance for the top 20 features. 

D. Feature Explanation 

In the list of selected twenty features, SHAP was used 
to distinguish between them according to importance. Fig. 
4 shows the importance of the feature in detecting 
ransomware. The importance of feature analysis is 
summarized as follows: 
 Flow Duration, Flow IAT Mean, and Flow Packets\/s 

describe the temporal behavior of the traffic. 
 Total Fwd Packets, Total Length of Fwd Packets, and 

Flow Bytes/s quantify the amount of data being 
transferred. 

 Fwd Packet Length Max, Bwd Packet Length Mean, 
and Fwd Packet Length Std describe the size and 
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variability of packets. 
 Protocol, Destination Port, and Source Port provide 

context about the type of traffic and services being 
used.  

The SHAP summary plot, as depicted in Fig. 5, shows 
the SHAP importance values for the top 20 features. These 
features represent the most influential network traffic 
feature in detecting potential threats. To better understand 
the figure, follow the following points: 

1) The features are ranked from top to bottom according 
to their importance. 

2) The x-axis represents the SHAP value. Positive 
values push the prediction toward malicious 
classification. Negative values push the prediction 
toward benign classification. 

3) The color of the dots represents the actual value of 
the feature in the data. Red dots represent high values, 
and blue dots represent low values.  

4) Features with horizontal spread imply greater impact 
on prediction. While the vertical spread for features 
with overlapping dots have less impact on 
predictions.  

 
Fig. 5. SHAP summary plot for the top 20 features. 

This summary is used to elucidate the influence of each 
attribute on the model’s predictions. The y-axis illustrates 
the top 20 characteristics ranked in decreasing order of 
significance, with each feature shown by a horizontal line. 
The x-axis denotes the SHAP value, indicating the 
influence of the characteristics on the model’s output. 
SHAP values may be either positive or negative; positive 
values augment the model’s output, while negative values 
diminish it. Each characteristic’s value is shown by red and 
blue dots, with red indicating high feature value and blue 
indicating low feature value. The chart indicates that the 
Destination Port exerts the most influence, whilst the 
Protocol feature demonstrates the least effect among the 
top 20 in the prediction model.  

The data shown by Fig. 5 is essential for 
comprehending the model’s behavior and facilitating 
educated decision-making based on its predictions. For 
example, Destination Port, Flow Duration, and Source Port 
exhibit a broad spectrum of SHAP values (ranging from 
negative to positive), substantially influencing the 
forecasts. Nonetheless, Protocol exhibits a reduced range 
of SHAP values, indicating a diminished impact on the 
predictions. Furthermore, the Fwd Packet Length Max (red 
dots) indicates that greater packet sizes correlate with a 
certain class (Ransomware/Benign). Furthermore, 
elevated SHAP values for certain destination ports suggest 
that traffic to these ports is associated with malicious 
behavior, whilst the substantial packet size of the ‘Fwd 
Packet Length Max’ characteristic indicates that the traffic 
is malicious. 

The proposed design can be integrated into security 
infrastructure as a supplemental detection layer. The 
deployment comprises the following applications: 

1) The deployment as a plugin to analyze network logs. 
This is achieved by flagging suspicious traffic 
patterns. 

2) Embed as a decision support model in firewalls, 
intrusion detection systems and intrusion prevention 
systems. Consequently, blocking traffic is classified 
as malicious.  

3) Can be used as a trigger for automated workflows in 
platforms as an API endpoint. Consequently, 
automatic quarantine of exposed devices. 

4) Used in Endpoint Detection and Response (EDR) 
solutions. Sharing threat scores with software 
defenders to achieve correlation between them. This 
will help in identifying Advance Persistent Threats 
(APT).  

V. CONCLUSION 

This work presented an explainable and optimized 
ransomware detection approach using extreme gradient 
boosting algorithm (XGBoost) and Explainable Artificial 
Intelligence (XIA). The proposed design is optimized 
using a Synthetic Minority Oversampling Technique 
(SMOTE) and weight-based feature selection. SMOTE is 
used to address the data imbalance of the dataset, while 
weight-based is used to select the most important feature 
to train the XGBoost classifier. According to the result, the 
proposed design outperformed other state-of-the-art in 
terms of accuracy, precision, F1-Score, and recall, 
achieving 99.3%, 99.9%, 99.9%, and 98.3%, respectively. 
The selected features were explained according to their 
importance in making the system decision. This 
explanation is performed using the global explanation 
algorithm SHAP, which helped in understanding the 
system decisions and which features affected the most in 
the decisions. The key limitations that confront the 
proposed design are comprised as technical constraints, 
operational challenges and generalization gaps. The 
technical constraints represent a focal point regarding the 
labeled data dependency which is expensive to acquire 
attack patterns, consequently, inference computational 
overhead and resource managements. The operational 
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challenges are represented by the integration of the system 
with legacy systems, that require middleware 
infrastructure. The generalization gaps limit the ability to 
interpret and analyze modern networks that use TLS/SSL 
encryption.  

In the future, more experiments will be conducted on 
different datasets of different sizes. Moreover, applying 
the same algorithm to identify the type of ransomware, 
which represents a challenging task. An adaptive learning 
framework is a potential which can be deployed online to 
add new traffic patterns. Furthermore, build the 
explainable model with trust frameworks by extending the 
SHAP interpretation with natural language explanations.  
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