
Optimized Distributed Gradient Boosting with
Explainable Artificial Intelligence for Real-Time

Ransomware Detection in Networked
Environments

Zeyad Al-Odat
Department of Computer and Communications Engineering, Faculty of Engineering,

Tafila Technical University, Tafila, Jordan
Email: zeyad.alodat@ttu.edu.jo (Z.A.-O.)

Manuscript received February 22, 2025; revised May 8, 2025; accepted May 21, 2025

Abstract—The severity of ransomware threats is increasing
significantly, posing substantial risks to individuals and
organizations. To address this problem, several techniques
have been suggested; however, they are mostly signature-
based, capable of identifying conventional ransomware but
inadequate in detecting novel variants. This paper introduces
a ransomware detection framework using distributed
gradient boosting and explainable artificial intelligence. The
suggested design utilizes the XGBoost algorithm for
classification and explainable artificial intelligence for
feature importance. The proposed design is deployed and
tested using a dataset of 84 features. Weight-based feature
selection is used to minimize the number of features. The
selected features are used to train the XGBoost classification
algorithm. Furthermore, the significance of the chosen
features is assessed using SHapley Additive exPlantions
(SHAP). The results show better performance in terms of
accuracy, precision, recall, and F1-Score. The suggested
approach outperforms the baseline machine learning
algorithms and comparable results against state-of-the-art
models across all performance criteria used.

Index Terms—ransomware, XGBoost, explainable, machine
learning, security

I. INTRODUCTION

Recently, ransomware has emerged as one of the most
intimidating challenges in cybersecurity. Unlike other
threats (malware, spyware, etc.), ransomware is designed
to pose an immediate threat, causing significant
operational and financial losses [1]. The consecutive
attacks on enterprises and individuals have triggered the
urgent need for countermeasure mechanisms to maintain
sustainability and secure assets. The traditional signature-
based ransomware detection approach is effective against
known ransomware threats, but there is still inadequacy in
detecting modern ransomware. The newly generated
ransomware employs sophisticated and complex
techniques like polymorphism, encryption, and zero-day
attacks [2].

Machine learning algorithms are considered a new
approach in detecting ransomware, which relies on

training and validation of common patterns. These
algorithms provide the ability to detect complex anomaly
patterns that are difficult to detect using traditional
ransomware methods [3]. The selection of the machine
learning method depends on several factors, including
types of datasets, machine learning models, and the ability
to interpret and visualize the model decisions. A closer
look at the datasets used in cybersecurity applications, in
particular ransomware, shows that these datasets contain
imbalanced sample sizes where anomalous samples
represent the minority. This imbalance causes the
employed machine learning algorithms, e.g., KNN, LSTM,
CNN, NN, decision tree, and random forest, to produce a
biased output, resulting in low detection rates for
ransomware [4–6].

Moreover, the decisions made by the machine learning
algorithms are blind, which makes it difficult to understand
the way the algorithms make these decisions. These
difficulties represent a major challenge in cybersecurity,
which in turn makes machine learning employment in
cybersecurity applications limited [7].

The integration of Explainable Artificial Intelligence
(XIA) has emerged as a substantial way to explain machine
learning decisions. The most famous explanation tools are
SHapley Additive exPlantions (SHAP) and Local
Interpretable Model-agnostic Explanations (LIME).
SHAP is considered a global explanation tool, while LIME
is used for local explanations. SHAP is used to explain the
model’s decisions based on the contribution of each
feature to the final decision, additively, and provide a
global explanation. However, LIME is used to explain the
model based on the prediction of each instance of the
output and provides local explanations [8].

This work proposes an enhanced ransomware detection
approach using optimized distributed gradient boosting
and Explainable Artificial Intelligence (XAI). The
XGBoost algorithm provides the ability to manage and
train an imbalanced dataset efficiently with high
performance. XGBoost creates a series of decision trees
sequentially, addressing the errors made by each preceding

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

233doi: 10.18178/ijeetc.14.4.233-242

tree. This sequential process yields a model capable of
accurately capturing ransomware patterns within the data
[9]. Additionally, the performance of the XGBoost model
is improved through the application of the Synthetic
Minority Oversampling Technique (SMOTE) to
effectively manage imbalanced data [10].

Explainable Artificial Intelligence (XAI) serves to
enhance the clarity and compatibility of the decisions
generated by the XGBoost model. XIA is utilized to
enhance the understanding of the decisions made by
XGBoost. In this work, SHapley Additive exPlantions
(SHAP) is utilized to interpret and explain the predictions
made by XGBoost. In SHAP, each feature is assigned a
value that quantifies its contribution to the final decision,
referred to as SHAP feature importance. The provided
explanations enhance stakeholder trust in the incubation of
machine learning algorithms within the field of
cybersecurity, enabling them to restructure their systems
according to the newly defined models [11].

The contributions of this work are
1) Optimized Distributed Gradient Boosting: an

optimized XGBoost model is utilized. The proposed
work achieves high detection accuracy while
minimizing overfitting. The model is fine-tuned
using weight-based feature selection.

2) Explainable Artificial Intelligence: The proposed
design integrates SHAP to provide interpretable
explanations for the model’s predictions.

3) Handling Class Imbalance: The proposed design
addresses the class imbalance problem using
SMOTE, ensuring that the model is effective in
detecting ransomware out of a larger benign dataset.

By the combination of the durability of optimized
XGBoost and the interpretability of SHAP, this work
provides a robust and secure framework for ransomware
detection. The proposed design enhances the detection
accuracy of ransomware and improves the trustworthiness
between stakeholders and ML algorithms in the field of
cybersecurity.

The rest of the paper is organized as follows: Section II
presents a literature review of the state of the art in the field
of ransomware detection using machine learning. Section
III elaborates on the proposed methodology. Section IV
provides detailed discussions about the results we
achieved from the proposed design. Section V concludes
the paper and provides insights into potential future work.

II. RELATED WORK

Many researchers take responsibility for working with
ransomware detection, which is noticed obviously from
the literature in this area. Generally, the ransomware
analysis and detection methods are classified into two
main categories: signature-based and behavior-based
methods. On the one hand, the signature-based methods
are good and effective in analyzing, detecting, and
predicting the commonly known ransomware. However,
the signature-based method struggles against new variants
of ransomware. On the other hand, the behavior-based
method focuses on the dynamic behaviors of the system
activities. The dynamic behavior provides accurate

detection outcomes for new variants of ransomware.
However, the behavior-based method is time-consuming
and represents a critical issue in preventing payload
delivery in the case of a true positive [12].

The ransomware detection methods confront difficulties
in analyzing new variants of ransomware. These
difficulties include the utilized ransomware with code
obfuscation and encryption. Moreover, some methods fail
to distinguish between benign and malicious activities due
to the false classification of the user and malware-triggered
encryptions. Additionally, these approaches are prone to
deception by code obfuscation, cryptography, and
disassembler protection. In this literature, we provide
reviews of the most used topics in this area and their
corresponding methods.

A. Machine learning and deep learning

Khammas [13] proposed a ransomware detection
approach using the Random Forest machine learning
algorithm. The selection of the Random Forest algorithm
comes from the fact that it is efficient in handling large
datasets. The proposed design employed a feature
selection mechanism called frequent pattern mining and
gain ratio. This method is used to identify the best 1000
features as top candidates for analysis and detection. The
authors claimed that their work outperformed other
classifiers such as AdaBoost and Bagging. The reported
results showed a high accuracy of 97.74% with low false
positive and false negative rates.

Urooj et al. [14] have employed machine learning and
deep learning algorithms to analyze ransomware behavior
during system setup, achieving high detection rates.
Similarly, UNVEIL in [15]. UNVEIL autonomously
creates a simulated user environment and identifies when
ransomware interacts with user data. Specifically, it
monitors alterations to the system’s desktop that signify
ransomware-like activity. However, this work is limited by
its inability to recover encrypted files before detection.
Other approaches, like CryptoDrop, employed a series of
behavioral clues. CryptoDrop may terminate a process that
seems to be manipulating a substantial volume of the
user’s data. Moreover, with the merging of A collection of
indications typical of ransomware allows the system to be
configured for fast detection with few false positives.
Experimental research of CryptoDrop prevents
ransomware execution, resulting in a median loss of just
10 files out of around 5,100 accessible files. Results
indicate that meticulous examination of ransomware
behavior might provide an efficient detection method that
substantially reduces victim data loss [16].

Despite these advancements, there remains a need for a
more robust detection framework that can effectively
identify both known and novel ransomware while
minimizing false positives and enabling file recovery
during attacks. The work in [17] addresses these gaps by
proposing a multilayer detection model that combines
grouped registry key operations, file entropy, and file
signature monitoring, leveraging machine learning to
achieve high detection accuracy and the ability to
differentiate between user-triggered and ransomware-
triggered encryption. Gulmez et al. [18] developed a

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

234

strategy to address the ransomware threats by proposing a
two-layer convolutional neural network enhanced by
Explainable Artificial Intelligence (XAI), termed XRAN.
Their work integrates system call features such as API call
sequences, DLLs, and mutual exclusions. The method
utilizes a dual-layer Convolutional Neural Network (CNN)
to identify correlations among these features, attaining a
True Positive Rate (TPR) of 99.4%. XRan utilizes two
XAI models, namely LIME and SHAP, to provide both
local and global explanations for the model’s choices.
Experimental results show that XRan surpasses leading
approaches, especially in differentiating ransomware from
inoffensive software and other malware categories.

B. Hybrid and Enhanced Techniques

This category focuses on the methods that combine two
or more detection techniques. The resulting hybrid
approaches help in optimizing and enhancing efficiency
and robustness. In hybrid approaches, static and dynamic
analyses broaden detection scope. However, enhanced
approaches cultivate the detection process through new
algorithms.

Shaukat and Ribeiro [19] presents RansomWall, using
both static and dynamic system analysis to provide a
feature set that encapsulates the behavior of ransomware.
RansomWall incorporates an additional abstract layer that
serves as a robust trap for the early detection of
ransomware. The suggested methodology is assessed with
574 ransomware samples, attaining a detection rate of
98.25% with almost zero false positives.

Palša et al. [20] introduce a malware-detecting antivirus
tool using the XGBoost MLMD, which integrates static
and dynamic analysis via the XGBoost algorithm. The
instrument attains an accuracy of 91.92% on static analysis
data and 96.48% on dynamic analysis data. This
methodology facilitates the integration of these techniques
into practical antimalware applications.

Abutu et al. [21] designed a deep learning framework to
address the limitations of previous detection techniques by
decreasing the false positive and false negative rates. This
work concentrates on some important features, such as
internet connection, file accessing, and process structures,
to increase the precision of the detection process. The
proposed work, called DeepCodeLock, improves the
detection process accuracy by limiting the false positive
and the false negative detection rates. Li et al. [22]
suggested a new framework that combines the deep
learning capabilities with the decision-making ability of
Monte Carlo Tree (MCT); merging these together allows
the detection of newer variants of ransomware. The
proposed work is applicable in the business environment
due to the computational efficiency that the new model
achieves. The suggested framework enhances the
detection process compared to traditional machine
learning detection models.

Wasoye et al. [23] proposed work integrates machine
learning models with the Binary Transformation and
Lightweight Signature (BTLS) algorithm to improve the
detection process in terms of efficiency and accuracy. The
suggested approach can extract both static and dynamic
features from the ransomware file, which improves the

classification accuracy. The proposed algorithm enhances
the detection accuracy by reducing the false positive
detection rates.

Adaptive Progressive Feature Isolation (APFI) is
proposed to enhance the detection of ransomware attacks;
it applies the analysis in separate stages to identify the
patterns, especially the high-risk patterns that should be
isolated first. The suggested approach improves the
accuracy of the detection and reduces the false positive rate.
This approach employed deep learning to decrease
computational demands. The experiments show that APFI
is capable of differentiating ransomware at a highly
accurate rate with low latency, which makes this technique
an advanced automated solution for cybersecurity [24].

Brinkley et al. [25] studied the use of machine learning
techniques in detecting zero-day ransomware attacks; this
work develops and evaluates some machine learning
techniques, such as Random Forst, support vector, and
Neural Networks for identifying unseen ransomware
behaviors. This study shows that machine learning can
adapt to detect the ransomware without using static
signatures. The experimental results illustrate the trade-
offs between the detection capability and computational
efficiency.

Other work presented a comprehensive approach to
malware classification using the XGBoost-Gradient
Boosted Decision Tree (GBDT) algorithm, leveraging a
large, balanced dataset to build an efficient classifier with
low-end computing resources [26]. The authors address
the limitations of traditional signature-based malware
detection methods, which struggle to keep up with the
rapid evolution of polymorphic and metamorphic malware.
They propose a machine learning-based solution that
generalizes new malware variants, emphasizing the
importance of feature selection and hyperparameter tuning
to optimize model performance. In their work, the authors
used a dataset named EMBER. The dataset is balanced and
composed of ransomware and benign samples. In the
reported results, they achieved 98.5% accuracy. The
proposed work is considered robust and efficient due to its
limited computational resources and scalability.

Android malware classification using XGBoost is
proposed in [27]. The authors highlighted the growing
threats of malware and classified them using image-based
visualization. The executable binary files were converted
to images; these images are in grayscale format, which
helps in visualizing the malware and helps in detecting it.
The authors compare the performance of XGBoost with
other machine learning algorithms, such as k-Nearest
Neighbors (k-NN) and Random Forest, and evaluate the
effectiveness of using only the data section of the
classes.dex file versus the full file. The results indicate that
classification using the data section yields better accuracy
(70.37%) compared to the full classes.dex file (68.06%),
though XGBoost takes longer to train and test compared to
other algorithms. The study concludes that while the
proposed method shows promise, further improvements
are needed to enhance accuracy and reduce computational
time, particularly by fine-tuning XGBoost parameters and
incorporating more diverse malware samples in future

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

235

work.
The work in [28] presented an enhanced Extreme

Gradient Boosting (XGBoost) design combined with Chi-
Squared Feature Selection. This work helped in finding a
new way to detect malware instead of the conventional
usage of signature-based methods. The signature-based
approach is weak in detecting emerging malware, making
it a clear challenge. This challenge has led to increased
vulnerabilities in cybersecurity defenses, particularly
against zero-day attacks.

C. Network-Based Detection

Network-based detection approaches may discover
ransomware activities more promptly by examining
communication patterns with Command and Control
(C&C) servers. Almashhadani et al. [29] concentrate on
Locky ransomware, a notable variant recognized for its use
of Domain Generation Algorithms (DGA) and hybrid
encryption methods. A thorough behavioral study of
Locky’s network traffic is performed, collecting 18
significant features from protocols including TCP, HTTP,
DNS, and NBNS. These traits are categorized into
behavioral and non-behavioral, as well as detectable and
non-detectable classifications, establishing a good
prototype for detection. The suggested multi-classifier
intrusion detection system functions at both packet and
flow levels, using machine learning methods to attain high
detection accuracy (97.92% at the packet level and 97.08%
at the flow level) with minimal false positive rates. This
study enhances the domain of network-based ransomware
detection by presenting a dual-level detection
methodology, providing a more efficient solution for the
prompt identification and alleviation of ransomware
threats.

The work in [30] presented an early detection system for
ransomware based on network behavior. The proposed
design analyzed the network behavior pattern by
employing Cerber ransomware as a case study. The
authors addressed the limitations of static network analysis
by designing a testbed that dynamically analyzes the
system pattern. Their work was deployed on virtual
machine environments (VMware and Wireshark). After
processing, they extracted 20 features, which were fed to
the KNN machine learning algorithm. The reported results
show significance in accuracy, achieving 99.5%.

Achieving a balance between computing efficiency and
accuracy, reducing false positives, facilitating real-time
detection, and recovering encrypted information before
detection solve these deficiencies but need more
optimization for scalability and comprehensive threat
coverage. Future research should emphasize adaptive
frameworks that consolidate behavioral, static, and
network information while including explainability to
provide resilient protection against advancing ransomware
threats.

III. PROPOSED METHODOLOGY

This work proposes a ransomware detection mechanism
using XGBoost. The proposed design employs SHAP
explainable artificial intelligence to decide which features
are the most important in detecting ransomware behaviors.
The proposed design architecture is depicted in Fig. 1. The
design is trained on both benign and ransomware datasets.
The datasets are combined to construct the input dataset
for the XGBoost classifier. More about the datasets will be
elaborated on in the results and discussion section IV.

Fig. 1. The proposed design architecture and workflow.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

236

A. XGBoost Classification

To classify the data into benign or ransomware, the
XGBoost classifier is used as an extreme gradient boosting
algorithm to classify the input data. The XGBoost is a
powerful and scalable framework for supervised machine
learning applications. The selection of the XGBoost comes
from the fact that it provides high performance and speed.
The XGBoost’s main principle is gradient boosting, where
the model is built sequentially to fix and correct the errors
from the preceding step. Each step in the XGBoost is
represented as a sequence of trees. The number of trees is
determined in the hyperparameter configuration step for
the classifier. Every step a new tree is added to minimize
the residual error from the previous tree. The final decision
of the XGBoost is the sum of all predictions from all trees,
as depicted in Eq. (1).

𝑦పෝ = ∑ 𝑓௧(𝑥௜)
்
௧ୀଵ (1)

where ft: the prediction of tree i, xi: the input data points,
and T: total number of trees.

Each tree belongs to space 𝔽 represented as

𝔽 = 𝑓(𝑥) = 𝑤_{𝑞(𝑥)} | 𝑞: 𝑅௠ → 𝑁,𝑤 ∈ 𝑅் (2)

where q(x): the function that maps the data into the leaf
index, and w: represents the leaf weight.

For the proposed design, we used the binary:logistic
objective function. The selection of this objective function
is due to the binary nature of the classification task that we
have (Benign, Ransomware). For a single sample, the
logistic error is calculated using Eq. (3):

𝐿(𝑦௜ , 𝑦పഥ) = −[𝑦௜ log(𝑦పഥ) + (1 − 𝑦௜) log(1 − 𝑦పഥ)] (3)

The total loss for N samples is calculated by

𝐿 = −
ଵ

ே
∑ [𝑦௜ log(𝑦పഥ) + (1 − 𝑦௜) log(1 − 𝑦పഥ)]
ே
௜ୀଵ (4)

B. Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is used to
interpret the machine learning prediction algorithm. This
interpretation is accomplished by analyzing the input
dataset and the features that were used by the machine
learning algorithm. In most cases, the machine learning
prediction approach is considered a black box, where there
is no knowledge about the way the algorithm has chosen
certain output or the most influential features in the dataset.
XAI is used to provide the user with the most important
features that affect the system selection.

We used SHapley Additive exPlanation (SHAP) XIA
explainable model in our design. SHAP is employed to
accomplish the task of categorizing the features according
to their importance and then selecting the most important
features for training and classification tasks. The SHAP
equation is formulated as

SHAP௜ = ∑
|ௌ|!(|ே|ି|ௌ|ିଵ)!

|ே|!ௌ⊆ே∖{௜} [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (5)

where N represents a variable for all features, S is a subset
of N without i, v(S) represents the model value for the S
features, and |S|! the factorial of the size of S.

C. Performance Metrics

Since the proposed design deals with a binary
classification task, we used the following performance
metrics to assess our design:
1) Accuracy: which represents the ratio of the correctly

classified (Benign or Ransomware) to the total
number of samples. The accuracy is represented by

Accuracy =
்శା்ష

்శା்షାிశାிష
 (6)

2) Precision, which represents the positive predictive
values as depicted in Eq. (7):

Precision =
்శ

்శାிశ
 (7)

3) Recall that represents the correctly predicted positive
to all positive samples, as depicted in Eq. (8):

Recall =
்శ

்శାிష
 (8)

4) F1-score that makes the harmonic balance between
the precision and recall, as depicted in Eq. (9):

F1-Score =
ଶ⋅Precision⋅Recall

PrecisionାRecall
 (9)

D. Feature Importance

To select the most important features in our work, we
employed weight-based feature importance. This selection
reduces the number of features used in the training and
reduces the training time accordingly.

For XGBoost, the weight of the feature is the number of
times that the data across all XGBoost trees were split;
features that are used frequently for splitting are
considered the most important. This calculation is
calculated by Eq. (10).

Importance(𝑓) = 𝑆௙ (10)

where F is the number of features and Sf is the number of
splits in trees for feature f  F.

The higher the value of Sf implies that the feature f is
used more frequently.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The experiments were conducted on a PC with an Intel
Core i7 processor, 32GB of Random Access Memory
(RAM), and an NVIDIA RTX 1070ti Graphical
Processing Unit (GPU). These configurations are set to
make sure that the machine learning computations will be
executed efficiently. The deployment of the software was
built on Python 3 using scikit-learn for the machine
learning algorithm.

In this work, ransomware and benign datasets were used.
These datasets were adopted from Canadian Institute for
Cybersecurity Android Malware 2017 (CICAndMal2017)
[31]. The properties of this dataset are as follows:

1) The dataset contains APK files of malicious and
benign applications collected from various sources.
The malicious application samples are categorized

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

237

into the Adware, Spyware, Ransomware, and
Banking Trojan families.

2) The ransomware family includes 10 types:
LockerPin, Simplocker, Pletor, PornDroid,
RansomBO, SvpengCharger, Jisut, Koler, and
WannaLocker.

3) The total number of samples from the Ransomware
family is 309,084 samples.

4) The total number of samples from the Benign family
is 1,048,575.

5) Each type of dataset contains 84 features. Table I
shows all features included in the dataset and their
corresponding descriptions.

6) For the full details of the dataset, the reader is
advised to follow up with the dataset’s author
through the work presented in [32].

TABLE I: FEATURE DESCRIPTION

Feature Name Description Feature Name Description

Flow ID
A unique ID assigned to each network
flow

Bwd IAT Std
The standard deviation of time intervals
between backward packets

Source IP
The IP address where the flow
originates

Bwd IAT Max
The longest time interval between
backward packets

Source Port
The port number from which the flow
starts

Bwd IAT Min
The shortest time interval between
backward packets

Destination IP
The IP address where the flow is
directed

Fwd PSH Flags
The number of PSH flags in the forward
direction

Destination Port
The port number to which the flow is
sent

Bwd PSH Flags
The number of PSH flags in the backward
direction

Protocol
The protocol used in the flow (e.g.,
TCP, UDP)

Fwd URG Flags
The number of URG flags in the forward
direction

Timestamp
The time at which the flow was
recorded

Bwd URG Flags
The number of URG flags in the backward
direction

Flow Duration The total time duration of the flow Fwd Header Length The size of the header in forward packets

Total Pwd Packets
The total number of packets sent
forward

Bwd Header Length
The size of the header in backward
packets

Total Backward Packets
The total number of packets sent
backward

Fwd Packets/s The rate of forward packets per second

Total Length of Fwd Packets
The combined size of all forward
packets

Bwd Packets/s The rate of backward packets per second

Total Length of Bwd Packets
The combined size of all backward
packets

Min Packet Length The smallest size among all packets

Fwd Packet Length Max The largest size of a forward packet Max Packet Length The largest size among all packets
Fwd Packet Length Min The smallest size of a forward packet Packet Length Mean The average size of all packets
Fwd Packet Length Mean The average size of forward packets Packet Length Std The standard deviation of packet sizes

Fwd Packet Length Std
The standard deviation of forward
packet sizes

Packet Length Variance The variance in packet sizes

Bwd Packet Length Max The largest size of a backward packet FIN Flag Count The total number of FIN flags observed

Bwd Packet Length Min
The smallest size of a backward
packet

SYN Flag Count The total number of SYN flags observed

Bwd Packet Length Mean The average size of backward packets RST Flag Count The total number of RST flags observed

Bwd Packet Length Std
The standard deviation of backward
packet sizes

PSH Flag Count The total number of PSH flags observed

Flow Bytes/s
The rate of bytes transferred per
second

ACK Flag Count The total number of ACK flags observed

Flow Packets/s
The rate of packets transferred per
second

URG Flag Count The total number of URG flags observed

Flow IAT Mean
The average time between packets in
the flow

CWE Flag Count The total number of CWE flags observed

Flow IAT Std
The standard deviation of time
intervals between packets

ECE Flag Count The total number of ECE flags observed

Flow IAT Max
The longest time interval between
packets

DownUp Ratio
The ratio of downtime traffic to upload
traffic

Flow IAT Min
The shortest time interval between
packets

Average Packet Size The mean size of all packets

Fwd IAT Total
The total time intervals between
forward packets

Avg Fwd Segment Size The average size of forward segments

Fwd IAT Mean
The average time interval between
forward packets

Avg Bwd Segment Size The average size of backward segments

Fwd IAT Std
The standard deviation of time
intervals between forward packets

Fwd Header Length_1
An alternative measure of forward header
size

Fwd IAT Max
The longest time interval between
forward packets

Fwd Avg Bytes/Bulk
The average bytes per bulk in the forward
direction

Fwd IAT Min
The shortest time interval between
forward packets

Fwd Avg Packets/Bulk
The average packets per bulk in the
forward direction

Bwd IAT Total
The total time intervals between
backward packets

Fwd Avg Bulk Rate
The average bulk rate in the forward
direction

Bwd IAT Mean
The average time interval between
backward packets

Bwd Avg Bytes/Bulk
The average bytes per bulk in the
backward direction

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

238

In our work, we selected the Benign and Ransomware
datasets to conduct the experiments. The proposed design
was trained on a combined dataset generated by combining
the Benign and Ransomware datasets. The dataset
comprises 84 features, which increase the complexity and
computation time to train and validate the dataset. This
work uses weight-based feature selection to train the
network on the top 20 features based on their weight. This
weight represents the frequency of the features in splitting
the XGBoost trees. The top 20 features after this step are
depicted in Table II.

TABLE II: TOP 20 FEATURES

Destination Port Flow Duration Source Port
Fwd Packet Length

Max
Flow IAT Mean Flow IAT Std

Flow Packets/s
Bwd Packet
Length Min

Bwd Packet Length Mean

Total Fwd Packets Flow Bytes/s
Total Length of Fwd

Packets
Total Backward

Packets
Fwd Packet

Length Mean
Bwd Packet Length Max

Bwd Packet Length
Std

Total Length of
Bwd Packets

Fwd Packet Length Std

Fwd Packet Length
Min

Protocol

The features ‘Flow ID’, ‘Timestamp’, ‘Source IP’, and

‘Destination IP’ are dropped from training because they
lack predictive power, affect overfitting to the system, and
are non-informative.

B. Performance Evaluation

The proposed design is evaluated using the XGBoost
training on the combined dataset. After training, the top
twenty features of the dataset were selected. These features
were fed to the XGBoost for the second round of training.
The training and validation loss performance is depicted in
Fig. 2. The training loss started high and then decreased
rapidly, implying that it is learning effectively from the
training dataset. Moreover, as the number of boosting
rounds increases, the training loss decreases, approaching
zero, deducing the training data well. On the other hand,
the validation loss started high and decreased at the early
stages of the boosting rounds, which implies that the model
generalizes well to the unseen data. However, after rounds

30 to 40, the validation loss begins to stabilize, which
shows an indication of data overfitting. To solve this issue,
we employed the Synthetic Minority Oversampling
Technique (SMOTE), which addresses the class imbalance.

To mitigate overfitting, we incorporated multiple
regularization techniques into the XGBoost model. Table
III summarizes the regularization techniques that are used
in the XGBoost model. The regularization techniques
improve generalization by constraining the model
complexity. The L1 and L2 regularization techniques were
used with reg_alpha (0.5–1.0) and reg_lambda (2.0–3.0),
respectively. L1 helps in shrinking the less important
feature values to zero, while L2 is used to discourage the
large weights. The tree complexity controls the maximum
depth that child trees will split, limiting the depth of the
tree.

TABLE III: REGULARIZATION TECHNIQUES USED IN XGBOOST MODEL

Technique Parameter Value Role
L2 Regularization reg_lambda 2.0–3.0 Penalizes large weights.

L1 Regularization reg_alpha 0.5–1.0
shrinking less important

features to zero.
Tree Complexity max_depth - Limits tree depth

The proposed design is compared with the baseline
machine learning algorithms. The results of this
comparison are depicted in Table IV.

Fig. 2. Training and validation loss.

TABLE IV: COMPARISON OF BASELINE METHODS WITH THE PROPOSED DESIGN

Detection Method Precision Accuracy Recall (TPR) F1-Score FPR TNR FNR TPR
Decision Tree 0.901 0.887 0.909 0.893 0.123 0.877 0.091 0.909

Random Forest 0.937 0.928 0.944 0.931 0.081 0.919 0.056 0.944
Naive Bayes 0.575 0.611 0.556 0.596 0.358 0.642 0.444 0.556
KNN (k=5) 0.849 0.786 0.89 0.811 0.255 0.745 0.11 0.89

LSTM 0.964 0.952 0.981 0.955 0.07 0.93 0.019 0.981
CNN 0.962 0.955 0.977 0.958 0.061 0.939 0.023 0.977

Proposed Design 0.993 0.983 0.999 0.999 0.00615 0.99385 0.001 0.999

TABLE V: COMPARISON BETWEEN THE PROPOSED DESIGN AND THE STATE OF THE ART WORKS

Work Accuracy Recall F1-Score Precision TPR FPR TNR FNR
[13] 0.9774 0.998 0.978 N.A 0.998 0.043 0.957 0.002
[18] 0.99 0.994 0.992 0.992 0.994 0.01 0.99 0.006
[17] 0.987 0.995 0.996 0.999 0.991 0.036 0.0039 0.009
[19] N.A 0.99 0.99 0.987 0.9825 0.056 0.944 0.017
[20] 0.964 N.A 0.977 N.A N.A N.A N.A N.A

Proposed Design 0.993 0.983 0.999 0.999 0.99385 0.00615 0.001 0.999

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

239

Table IV shows that the proposed design outperformed
the baseline machine learning algorithms regarding
accuracy, precision, F1-score, and recall. The results show
that the detection rate of our proposal achieved 99.3\%
with higher accuracy. The metrics of the deep learning
algorithms (CNN, LSTM) show better results than the
traditional machine learning algorithms. This difference
comes from the conventional ML algorithms that
individually evaluate systems’ features.

A comparison between the proposed design and the
state-of-the-art methods is depicted in Table V. The
comparison shows that the proposed method achieves
better results compared with the same techniques. Some
works reported only a portion of the metrics we used;
therefore, we used the equations mentioned earlier in
Section III to calculate the corresponding values.

The proposed design achieves 99.3% accuracy, which
reflects alongside precision (99.9%) the effectiveness of
the proposed design in detecting ransomware behaviors.
Some works didn’t report all the values used in the
performance metrics; therefore, we measured their
corresponding values using the scientific equations
concerning each value. However, the work in [20] reported
only the accuracy value, which is inadequate in measuring
the remaining performance value. Moreover, the work in
[18] measured the metrics values concerning different
scenarios; the corresponding result for this work is
calculated by averaging them.

However, the low false positive rate (FPR) can have
great consequences in real-world deployments. This will
dramatically affect different aspects including alert fatigue,
operational distribution, user trust and economic cost. The
real impact of FPR basically depends on traffic volume.
For instance, a daily traffic of million requests achieves
6150 false positive reading per day. In contrast, 6150 false
alerts overwhelm the system troubleshooting and
maintenance tasks.

C. Feature Selection Sensitivity Analysis

A sensitivity analysis for feature selection was
performed to identify the most significant features. Table
VI illustrates the outcomes of the sensitivity analysis. The
research extended through features, starting with the top 5
and extending to the top 50. Metrics of Accuracy,
Precision, Recall, and F1-Score were employed to evaluate
the performance of the features. The measured findings
indicate that the performance metrics stabilized at 20
features. In our proposal, we selected the top 20 elements
as a key benchmark in design.

TABLE VI: FEATURE SELECTION SENSITIVITY ANALYSIS

No. Features Accuracy Precision Recall F1-Score
5 0.94 0.94 0.94 0.94

10 0.96 0.96 0.96 0.96
15 0.97 0.97 0.96 0.96
20 0.99 0.99 0.98 0.99
25 0.99 0.98 0.98 0.98
30 0.99 0.99 0.98 0.98
40 0.99 0.99 0.99 0.99
50 0.99 0.99 0.98 0.99

Fig 3 illustrates the correlation between the chosen
performance indicators and the quantity of top features.

Commencing with the top 20 features, the performance
measures start to stabilize. The selection of the top 20
features in our methodology is predicated on the
observation that augmenting the number of features
requires more resources and computing time.
Consequently, the proposed architecture preserves the
minimum number of features to guarantee optimal
performance and minimal resource requirements.

Fig. 3. Feature selection sensitivity analysis.

Fig. 4. SHAP features importance for the top 20 features.

D. Feature Explanation

In the list of selected twenty features, SHAP was used
to distinguish between them according to importance. Fig.
4 shows the importance of the feature in detecting
ransomware. The importance of feature analysis is
summarized as follows:
 Flow Duration, Flow IAT Mean, and Flow Packets\/s

describe the temporal behavior of the traffic.
 Total Fwd Packets, Total Length of Fwd Packets, and

Flow Bytes/s quantify the amount of data being
transferred.

 Fwd Packet Length Max, Bwd Packet Length Mean,
and Fwd Packet Length Std describe the size and

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

240

variability of packets.
 Protocol, Destination Port, and Source Port provide

context about the type of traffic and services being
used.

The SHAP summary plot, as depicted in Fig. 5, shows
the SHAP importance values for the top 20 features. These
features represent the most influential network traffic
feature in detecting potential threats. To better understand
the figure, follow the following points:

1) The features are ranked from top to bottom according
to their importance.

2) The x-axis represents the SHAP value. Positive
values push the prediction toward malicious
classification. Negative values push the prediction
toward benign classification.

3) The color of the dots represents the actual value of
the feature in the data. Red dots represent high values,
and blue dots represent low values.

4) Features with horizontal spread imply greater impact
on prediction. While the vertical spread for features
with overlapping dots have less impact on
predictions.

Fig. 5. SHAP summary plot for the top 20 features.

This summary is used to elucidate the influence of each
attribute on the model’s predictions. The y-axis illustrates
the top 20 characteristics ranked in decreasing order of
significance, with each feature shown by a horizontal line.
The x-axis denotes the SHAP value, indicating the
influence of the characteristics on the model’s output.
SHAP values may be either positive or negative; positive
values augment the model’s output, while negative values
diminish it. Each characteristic’s value is shown by red and
blue dots, with red indicating high feature value and blue
indicating low feature value. The chart indicates that the
Destination Port exerts the most influence, whilst the
Protocol feature demonstrates the least effect among the
top 20 in the prediction model.

The data shown by Fig. 5 is essential for
comprehending the model’s behavior and facilitating
educated decision-making based on its predictions. For
example, Destination Port, Flow Duration, and Source Port
exhibit a broad spectrum of SHAP values (ranging from
negative to positive), substantially influencing the
forecasts. Nonetheless, Protocol exhibits a reduced range
of SHAP values, indicating a diminished impact on the
predictions. Furthermore, the Fwd Packet Length Max (red
dots) indicates that greater packet sizes correlate with a
certain class (Ransomware/Benign). Furthermore,
elevated SHAP values for certain destination ports suggest
that traffic to these ports is associated with malicious
behavior, whilst the substantial packet size of the ‘Fwd
Packet Length Max’ characteristic indicates that the traffic
is malicious.

The proposed design can be integrated into security
infrastructure as a supplemental detection layer. The
deployment comprises the following applications:

1) The deployment as a plugin to analyze network logs.
This is achieved by flagging suspicious traffic
patterns.

2) Embed as a decision support model in firewalls,
intrusion detection systems and intrusion prevention
systems. Consequently, blocking traffic is classified
as malicious.

3) Can be used as a trigger for automated workflows in
platforms as an API endpoint. Consequently,
automatic quarantine of exposed devices.

4) Used in Endpoint Detection and Response (EDR)
solutions. Sharing threat scores with software
defenders to achieve correlation between them. This
will help in identifying Advance Persistent Threats
(APT).

V. CONCLUSION

This work presented an explainable and optimized
ransomware detection approach using extreme gradient
boosting algorithm (XGBoost) and Explainable Artificial
Intelligence (XIA). The proposed design is optimized
using a Synthetic Minority Oversampling Technique
(SMOTE) and weight-based feature selection. SMOTE is
used to address the data imbalance of the dataset, while
weight-based is used to select the most important feature
to train the XGBoost classifier. According to the result, the
proposed design outperformed other state-of-the-art in
terms of accuracy, precision, F1-Score, and recall,
achieving 99.3%, 99.9%, 99.9%, and 98.3%, respectively.
The selected features were explained according to their
importance in making the system decision. This
explanation is performed using the global explanation
algorithm SHAP, which helped in understanding the
system decisions and which features affected the most in
the decisions. The key limitations that confront the
proposed design are comprised as technical constraints,
operational challenges and generalization gaps. The
technical constraints represent a focal point regarding the
labeled data dependency which is expensive to acquire
attack patterns, consequently, inference computational
overhead and resource managements. The operational

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

241

challenges are represented by the integration of the system
with legacy systems, that require middleware
infrastructure. The generalization gaps limit the ability to
interpret and analyze modern networks that use TLS/SSL
encryption.

In the future, more experiments will be conducted on
different datasets of different sizes. Moreover, applying
the same algorithm to identify the type of ransomware,
which represents a challenging task. An adaptive learning
framework is a potential which can be deployed online to
add new traffic patterns. Furthermore, build the
explainable model with trust frameworks by extending the
SHAP interpretation with natural language explanations.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] M. Conti, S. Khandhar, and P. Vinod, “A few-shot malware
classification approach for unknown family recognition using
malware feature visualization,” Comput. \& Secur., vol. 122,
102887, 2022.

[2] A. Kapoor, A. Gupta, R. Gupta, et al., “Ransomware detection,
avoidance, and mitigation scheme: A review and future directions,”
Sustainability, vol. 14, no. 1, p. 8, 2021.

[3] J. F. Abukhait and M. S. Saleh, “An adaptive confidentiality
security service enhancement protocol using image-based key
generator for multi-agent ethernet packet switched networks,” Int.
J. Electr. Electron. Eng. \& Telecommun., vol. 12, no. 2, pp. 112–
123, 2023.

[4] R. Brewer, “Ransomware attacks: detection, prevention and cure,”
Netw. Secur., vol. 2016, no. 9, pp. 5–9, 2016.

[5] P. O’Kane, S. Sezer, and D. Carlin, “Evolution of ransomware,” Iet
Networks, vol. 7, no. 5, pp. 321–327, 2018.

[6] H. Oz, A. Aris, A. Levi et al., “A Survey on Ransomware:
Evolution, Taxonomy, and Defense Solutions,” arXiv e-prints, p.
arXiv--2102, 2021.

[7] H. Oz, A. Aris, A. Levi et al., “A survey on ransomware: Evolution,
taxonomy, and defense solutions,” ACM Comput. Surv., vol. 54, no.
11s, pp. 1–37, 2022.

[8] D. Minh, H. X. Wang, Y. F. Li et al., “Explainable artificial
intelligence: a comprehensive review,” Artif. Intell. Rev., pp. 1–66,
2022.

[9] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in Proc. the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York,
NY, USA: Association for Computing Machinery, 2016, pp. 785–
794. doi: 10.1145/2939672.2939785

[10] L. Camacho, G. Douzas, and F. Bacao, “Geometric SMOTE for
regression,” Expert Syst. Appl., vol. 193, 116387, 2022.

[11] V. Vimbi, N. Shaffi, and M. Mahmud, “Interpreting artificial
intelligence models: a systematic review on the application of
LIME and SHAP in Alzheimer’s disease detection,” Brain
Informatics, vol. 11, no. 1, p. 10, 2024.

[12] C. C. Moreira, D. C. Moreira, and C. de S. de Sales Jr, “Improving
ransomware detection based on portable executable header using
xception convolutional neural network,” Comput. \& Secur., vol.
130, 103265, 2023.

[13] B. M. Khammas, “Ransomware detection using random forest
technique,” ICT Express, vol. 6, no. 4, pp. 325–331, 2020.

[14] U. Urooj, B. A. S. Al-rimy, A. Zainal et al., “Ransomware detection
using the dynamic analysis and machine learning: A survey and
research directions,” Appl. Sci., vol. 12, no. 1, p. 172, 2021.

[15] A. Kharaz, S. Arshad, C. Mulliner et al., “UNVEIL: A large-scale,
automated approach to detecting ransomware,” in Proc. 25th
USENIX security symposium (USENIX Security 16), 2016, pp. 757–
772.

[16] N. Scaife, H. Carter, P. Traynor et al., “CryptoLock (and drop it):
Stopping ransomware attacks on user data,” in Proc. 2016 IEEE
36th International Conference on Distributed Computing Systems

(ICDCS), 2016, pp. 303–312. doi: 10.1109/ICDCS.2016.46
[17] B. Jethva, I. Traoré, A. Ghaleb et al., “Multilayer ransomware

detection using grouped registry key operations, file entropy and
file signature monitoring,” J. Comput. Secur., vol. 28, no. 3, pp.
337–373, 2020.

[18] S. Gulmez, A. G. Kakisim, and I. Sogukpinar, “XRan: Explainable
deep learning-based ransomware detection using dynamic analysis,”
Comput. \& Secur., vol. 139, 103703, 2024.

[19] S. K. Shaukat and V. J. Ribeiro, “RansomWall: A layered defense
system against cryptographic ransomware attacks using machine
learning,” in Proc. 2018 10th International Conference on
Communication Systems \& Networks (COMSNETS), 2018, pp.
356–363. doi: 10.1109/COMSNETS.2018.8328219

[20] J. Palša, N. Ádám, J. Hurtuk et al., “MLMD—A malware-detecting
antivirus tool based on the XGBoost machine learning algorithm,”
Appl. Sci., vol. 12, no. 13, 2022. doi: 10.3390/app12136672

[21] G. Abutu, D. Weissman, P. Hoffmann et al., “Deepcodelock: A
novel deep learning-based approach for automated ransomware
detection using behavioral signatures,” Authorea Prepr., 2024.

[22] G. Li, S. Wang, Y. Chen et al., A Hybrid Framework for
Ransomware Detection Using Deep Learning and Monte Carlo
Tree Search, 2024. doi: 10.31219/osf.io/cjyvb

[23] S. Wasoye, M. Stevens, C. Morgan et al., Ransomware
Classification Using Btls Algorithm and Machine Learning
Approaches, 2024.

[24] P. Sladkova, S. Berger, Z. Skoglund et al., Adaptive Deep Learning-
Based Framework for Ransomware Detection through Progressive
Feature Isolation, 2024. doi: 10.31219/osf.io/7bxg2

[25] Y. Brinkley, D. Thompson, and N. Simmons, Machine Learning-
Based Intrusion Detection for Zero-Day Ransomware in Unseen
Data, 2024. doi: 10.22541/au.172685266.62026194/v1

[26] R. Kumar and G. S, “Malware classification using XGboost-
Gradient Boosted Decision Tree,” Adv. Sci. Technol. Eng. Syst. J.,
vol. 5, pp. 536–549, 2020.

[27] F. M. Darus, N. A. Ahmad, and A. F. M. Ariffin, “Android malware
classification using XGBoost on data image pattern,” in Proc. 2019
IEEE International Conference on Internet of Things and
Intelligence System (IoTaIS), 2019, pp. 118–122.

[28] S. Rosyada, F. A. Rafrastara, A. Ramadhani et al., “Enhancing
XGBoost performance in malware detection through chi-squared
feature selection,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 13,
no. 3, pp. 396–402, 2024.

[29] A. O. Almashhadani, M. Kaiiali, S. Sezer, et al., “A multi-classifier
network-based crypto ransomware detection system: A case study
of locky ransomware,” IEEE access, vol. 7, pp. 47053–47067, 2019.

[30] H. Abu-Helo and H. Ashqar, “Early Ransomware Detection System
Based on Network Behavior,” in Proc. International Conference on
Advanced Information Networking and Applications, 2024, pp.
447–458.

[31] Android Adware 2017 Datasets Research Canadian Institute for
Cybersecurity UNB. (Feb. 2024). [Online]. Available:
https://www.unb.ca/cic/datasets/android-adware.html

[32] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, et al., “Towards a
Network-Based Framework for Android Malware Detection and
Characterization,” in Proc. 2017 15th Annual Conference on
Privacy, Security and Trust (PST), 2017, pp. 233–23309. doi:
10.1109/PST.2017.00035

Copyright © 2025 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY
4.0), which permits use, distribution and reproduction in any medium,
provided that the article is properly cited, the use is non-commercial and
no modifications or adaptations are made.

Zeyad A. Al-Odat was born in 1986 in Jordan.
He received his B.Sc. degree in computer
engineering from Mutah University, Karak,
Jordan in 2009, the M.Sc. degree in computer
engineering from Yarmouth University, Irbid,
Jordan in 2013, and the Ph.D. degree in
computer engineering from North Dakota
State University, Fargo, USA in 2020. His

work experience includes cryptography, cybersecurity, IoT, big data, and
high-performance computing. Currently he works as an assistant
professor in the Department of Computer and Communications
Engineering at Tafila Technical University, Tafila, Jordan.

International Journal of Electrical and Electronic Engineering and Telecommunications Vol. 14, No. 4, 2025

242

	IJEETC-V14N4-233

