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Abstract—A smart grid offers safe, reliable, and useful 
electricity. Phasor measuring units, smart meters, and other 
monitoring and measurement devices in the smart grid keep 
track of statuses at every grid level. As a result, utilities, 
control centers, and customers must exchange and retain an 
enormous amount of data in real time. As a result, data 
storage and communication require efficient data 
compression. To accurately reflect status of the system and 
regenerate nearly flawlessly on receiving side, compression 
should preserve all of the data’s critical information. This 
work uses the discrete wavelet transform to recover 
compressed voltage sag signals. With reduced data, the 
disruptions can be communicated more quickly. Because the 
proposed system uses lesser filters and few decomposition 
layers, it is simpler than the previous design. The results of 
the simulation demonstrate improvement in the 
reconstruction error and compression ratio by minimizing 
their values. This design is time-saving and simple to use. 

Index Terms—compression, decomposition, reconstruction, 
noise, smart grid, wavelet transform 

I. INTRODUCTION 

The current electrical grid has been uncertain, 
susceptible to blackouts and brownouts, giving significant 
transmission losses, low power quality, providing 
insufficient electricity, and discouraging the combination 
of distributed energy sources. Restructuring the power 
delivery system from the ground up was necessary to 
mitigate these problems. A developing combination of 
many technologies, the smart grid, or modernization of the 
electric grid, aimed to significantly alter the electrical 
power grid [1]. To enable widespread observability and 
real-time monitoring, a significant quantity of smart 
devices like meters and monitors were installed across the 
distribution network. In terms of computing knowledge, an 
interaction interface, and the ability to deal with signals 
and share knowledge, it generated new requirements. 
Consequently, there was a significant rise in data storage 
and interchange. Achieving an effective usage of channel 
bandwidth and a decreased requirement for storing 

The smart grid’s unique characteristics included 
improved power security, detailed analysis to support 
system control, monitoring capability with data integration, 
and efficient communication to satisfy power demand. 
Some of the smart grid’s amazing features were low costs 

and efficient energy use. The installation of the smart grid 
necessitated sophisticated communication between the 
devices that generated and consumed power. Choosing and 
using the most advanced digital signal processing 
algorithms had a significant impact on these devices’ 
efficiency [3]. Data produced by the Phasor Measurement 
Unit (PMU) had been compressed using the wavelet 
transform. Two separate wavelets, Coiflet1(coif1) and 
Daubechies2, were used for compression. The results 
showed that db2 compressed PMU-generated signals 
much more effectively than coif1 [4]. It suggested using 
compressed sensing to identify frequencies of harmonics 
that disrupted the fundamental current and voltage signals 
in power networks. By choosing a small number of 
samples at random, generated a measurement matrix, and 
then moved the signal in compressed form from time to 
frequency form using linear transform. The signal was then 
reconstructed using the inverse linear transform on a few 
recorded samples [5].  

It used a compression method for electrical disturbing 
signal with Wavelet Packet Transform (WPT) and, 
Discrete Wavelet Transform (DWT). Minimal Description 
Length (MDL) was a criterion for selecting an appropriate 
wavelet function and ideal quantity of wavelets preserved 
elements for signal reconstruction [6]. A lossy mechanism 
to compress data in smart distribution system was 
presented by Singular Value Decomposition (SVD). The 
proposed technique notably reduced the data quantity 
while accurately recreating the original signal [7].  

It was important to use multiple compression techniques 
for data with diverse characteristics. The research 
suggested a fusion lossy and lossless data compression 
technique based on signal properties to overcome such 
problems [8]. The wavelet packet transform on which it 
was based optimized the data compressing in accordance 
with the intended data loss. A specialized reconstructing 
technique that effectively created images straight from the 
compressed data was further developed [9]. The challenge 
of processing and storing excessive amounts of aging data 
in IGBT failure diagnosis was addressed by an adaptive 
threshold wavelet compression technique [10]. Wavelet 
decomposition was used, followed by range coding and 
quantization appropriate for floating-point data [11]. An 
innovative multivariate data compression approach was 
put forth for Internet of Things smart metering. To 
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electrical data were crucial in that situation [2].
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minimize data dimension, the method took advantage of 

the cross-correlation between several variables that smart 

meters sensed [12]. The matrix having ideal quantity of 

singular values was subjected to the Optimal Singular 

Value Decomposition (OSVD); the remaining values were 

ignored. The ratio of compression and retrieved data 

quality allowed goal achievement [13]. Sub bands or 

wavelet transform decomposition levels were used to 

segment the modified spectrum in the models that were 

suggested to estimate the adaptive spectral envelope [14].  

It used basis, matching, and orthogonal matching 

pursuit as sensing methods to recover signals lost as a 

result of transmission line power failures. The actual data 

represented the real time current and voltage levels. 

Although it required more samples than orthogonal 

matching pursuit, matching pursuit was the best choice for 

actual electrical fault recovery as it required just a little of 

machine time. Basis and orthogonal matching employed 

fewer random samples, but they required more processing 

time for signal restoration [15]. 

Wavelet Packet Decomposition (WPD) were utilized to 

analyze, denoise and compress smart grid system data. 

WPD provided sufficient redundancy removal and feature 

property retention to enhance noise mitigation, boost 

compression, and control data accuracy degradation [16]. 

It used weight-based entropy to identify the optimum basis 

tree from complete WPT for denoising and signal 

compression. A modified minimum description length 

technique could be used to modify the denoising threshold 

without requiring a noise measurement computation [17]. 

A comprehensive assessment had been done for the 

importance of wavelet transform for different simulated or 

actual data by comparative studies on digital signal 

processing techniques [18]. It worked on a wavelet-based 

method that applied DWT to reduce noise and compress 

smart grid data [19]. This technique tested the 

effectiveness on Phasor Measurement Unit data by using 

wavelet packet transform to break down the signal for one 

to five scale [20]. A wavelet packet transform design for 

level three, data compression and reconstruction was 

represented utilizing lower-order wavelets. It operated on 

the phasor measurement unit current magnitude signals 

and voltage sag signals [21]. In order to obtain excellent 

compression of power quality disturbances, it investigated 

the best wavelet and the ideal number decomposition scale 

[22]. A fuzzy-based data compression method was put 

forth with the goal of lessening the computing load 

associated with data analysis in smart grids [23]. A 

traditional method of evaluating manufacturing quality 

involved reconstructing the shape of manufactured 

workpieces to create a digital version of the physical 

product and assessing the quality further [24]. Surface 

reconstruction techniques were applied to a cloud of data 

points taken from the workpiece using reverse engineering 

techniques. The approach used the bat algorithm, a well-

known metaheuristic technique. For huge ultrasonic data 

compression, it created neural network models based on 

unsupervised learning as well as a novel multilayer 

autoencoder with excellent compression capabilities [25]. 

It explained the Huffman method [26], contrasted it with 

run length encoding and arithmetic coding, and discussed 

how these three algorithms were used in JPEG 

compression. Compression technology was revolutionized 

by the emergence of large artificial intelligence models 

that were trained on enormous volumes of data [27]. The 

computational difficulties utilized the advantages of 

lossless compression in a lossy mode and vice versa for 

data restoring, associated intelligent compressive sensing 

rebuilding, effective domain-independent solutions [28]. It 

also encouraged machine learning in data compression. 

The method was computationally complex. The matrix 

made the compressed sensing approach complicated [15, 

19–22]. By employing level 1 with the wavelet Db3, levels 

2, 3 with the wavelets Db2, and level 4 with Db1, DWT 

was employed to compress and denoise smart grid signal 

[19]. Using wavelet Db3 for level 1, Db2 for 2, 3, 4 levels, 

and level 5 with Db1 using WPT, it reduced and cleaned 

smart grid data [20]. The novel approach integrated level 

1 with Db3, level 2 with Db2, and level 3 with Db1 using 

the wavelet packet transform [21]. It used a Db4 wavelet 

at level 3 to compress the voltage sag signal via wavelet 

transform [22].  

The reconstruction error and compression ratio can be 

improved, and the complexity can be further reduced. 

Consequently, the novel approach proposes integration of 

several minimum-order wavelet functions and a level-

based suitable threshold by employing discrete wavelet 

transform. Achieving excellent compression and 

reconstruction by decomposing at level 3 simplify the 

process. The outcomes will be compared with those of [15, 

20–23]. 

II. METHODS 

A strong mathematical tool for analyzing non-stationary 

signals in terms of time-frequency was Discrete Wavelet 

Transform. For signal analysis, multi-resolution filter 

banks were employed. Time-domain discrete data was 

converted to time-frequency domain using the Discrete 

Wavelet Transform. A signal was sent through a number 

of filters to determine its DWT. A high pass filter, HPF 

and a lower pass filter, LPF were applied to the signals at 

the same time.  Each level of decomposition resulted in the 

branching of the input data into two outputs, one 

corresponding to the input signal’s upper half-band and the 

other to its lower half-band. Half of the input data for each 

branch was used as the sampling rate. The overall sample 

rate stayed the same as a result. Only the lowest half-band 

branch of the DWT has undergone decomposition. For 

many signals, the most crucial details were included in 

lower-frequency part to identify the signal. The contents in 

high-frequency provided signal details. The high-scale or 

low-frequency components were used as an approximation. 

The lower-scale, high-frequency components were the 

details. The coefficients were the values of the converted 

data in the time-frequency. Whereas the coefficients with 

big absolute values conveyed more information about the 

data than noise, the coefficients with lower absolute values 

were dominated by noise. The wavelet coefficients were 

either cancelled out to zero (hard threshold) or reduced 

(soft threshold) in the second phase if they did not cross a 



 
Fig. 1. Proposed approach for compression and reconstruction. 

The signal in Fig. 1 is divided into approximate and 
detail elements using DWT, and after it is reconstructed 
using IDWT. The compressing method uses the 
Daubechies filters Db3, Db2, and Db1 at levels 1 through 
3, and the reconstruction process uses the same filters in 
reverse. When the voltage sag signal is generated in 
SIMULINK in MATLAB 2021a, a waveform including 
357, 379, 412, 501, and 512 samples (data points) is 
produced. There is a voltage sag signal that represents the 
load voltage data. 

Both high and low pass filters are applied to the set of 
input data a0, length N in this procedure. The coefficients 
of each filter are N/2. The coefficients of approximation a1 
at resolution level one, are the outcome of LPF. The detail 
coefficients d1 of the level first resolution are the outcome 
of HPF. For a second pair of wavelets, a1 can be applied as 
the input to generate the coefficients of approximation a2 
and, details d2 at second level resolution. The procedure 
continues up to resolution level 3. At each level, the detail 
coefficients are subjected to hard thresholding. The 
coefficients a22 is produced during reconstruction using the 
detail coefficients after hard thresholding d33 and the pure 
approximation coefficients a3. To retrieve the signal a00, 
the operation will be repeated continually. 

The proposed design is evaluated using the performance 
metrics provided below. It communicates the compressed 
signal as a percentage of the compression ratio (% CR), 
like in (1). The lower the percentage of CR, the better the 
compression. The normalized root mean square error, or 
NRMSE, is employed to calculate the reconstruction 
signal error for the proposed design in accordance with 
“(2)” in [16] and [17]. Reconstruction is better when the 
reconstruction error is lower. In (3), the variable e 
represents the percentage relative error and in (4) it shows 
how the percentage of rebuilding, determines the existing 
design’s effectiveness [5, 15]. 

%CR =
ே

ே
100%                                  (1) 

NRMSE = ට
∑ [()ିೝ()]మಿషభ

సబ      

ேమ
                      (2) 

𝑒(% relative error) =
ห∑ ⌈()ିೝ()⌉ಿషభ

సబ ห

()
100%     (3) 

%Reconstruction = 100 − 𝑒                    (4) 

The initial and regenerated signals are represented by 
X(i) and Xr(i), respectively. N represents number for 
nonzero coefficients by threshold and N is original samples 
number.  

III. RESULTS  

The following waveforms in MATLAB 2021a illustrate 
the outcomes of the suggested design, with the original 
signal or reconstructed signal amplitude in pu (per unit) on 
the y-axis and the number of samples on the x-axis. 

Fig. 2 (a) to Fig. 6 (a) display the voltage sag signals of 
the original samples, while Fig. 2 (b) to Fig. 6 (b) display 
the signals which are regenerated using the recommended 
design. Fig. 2 (b) illustrates the reconstructed signal with 
an NRMSE of 4.1310-4, which is 99.99%, from the 357 
original samples in Fig. 2 (a). For the 379 original samples 
displayed in Fig. 3 (a), 99.99% reconstructed signal with 
NRMSE 4.6410-4 is displayed in Fig. 3 (b). For the 412 
original samples shown in Fig. 4 (a), the 99.99% 
reconstructed signal with NRMSE 3.8010-4 is shown in 
Fig. 4 (b). For the 501 original samples in Fig. 5 (a), the 
99.94% reconstruction signal with NRMSE 3.2910-4 is 
displayed in Fig. 5 (b). For the 512 original samples in Fig. 
6 (a), the 99.98% reconstructed signal with NRMSE 
2.7410-4 is illustrated in Fig. 6 (b). The results are better 
than [15, 20–23]. The signal is more distorted for highly 
compressed signal. The signal is approximately 
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predetermined threshold level. Reconstructing the signal 

from the resulting coefficients utilizing Inverse Discrete 

Wavelet Transform, IDWT was the final step [29].



reconstructed best for 512 voltage sag original samples 
with 99.98% reconstruction and smallest NRMSE 

2.7410-4.  

   
(a)                                                                                                     (b) 

Fig. 2. (a) Original voltage sag of 357 samples and (b) reconstruction 99.99% using DWT-based proposed design. 

   
(a)                                                                                                    (b) 

Fig. 3. (a) Original voltage sag of 379 samples and (b) reconstruction 99.99% using DWT-based proposed design.  

   
(a)                                                                                                    (b) 

Fig. 4. (a) Original Voltage sag of 412 samples and (b) reconstruction 99.99% using DWT-based proposed design.  

   
(a)                                                                                                     (b) 

Fig. 5. (a) Original Voltage sag of 501 samples and (b) reconstruction 99.94% using DWT-based proposed design.  

   
(a)                                                                                                     (b) 

Table I shows that the proposed approach achieves CR 
19.05% and 99.99 % reconstruction with reconstruction 
error, NRMSE 4.1310-4 for 357 original samples. For the 

379 original samples, it gets CR 18.73% and 99.99% 
reconstruction with NRMSE 4.6410-4. For the 412 
original samples, it obtains CR 18.45% and 99.99% 
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Fig. 6. (a) Original Voltage sag of 512 samples and (b) reconstruction 99.98% using DWT-based proposed design.



reconstruction with NRMSE 3.8010-4. For the 501 
original samples, it gets CR 17.96% and 99.94% 
reconstruction with NRMSE 3.2910-4. It achieves CR 
19.34% and 99.98 % reconstruction with NRMSE 

2.7410-4 for 512 samples of original signal. It achieves 
better results than those in [15, 20–23]. Compared to [15, 
20–23], the signal is more compressed, maximum 
reconstructed, and has a lower reconstruction error. 

TABLE I: RESULTS FOR DIFFERENT SAMPLES OF VOLTAGE SAG SIGNAL 

References Method/ Level Sample Data Points CR% Reconstructed 
% 

Error 
NRMSE 

Proposed 
Design DWT/ Three 357 19.05 99.99 4.1310-4 

[15] CS-OMP 357 - 90.19 - 
[20] WPT/Five 357 19.33 99.91 6.2510-4 
[21] WPT/ Three 357 19.33 99.97 5.2010-4 
[22] DWT/ Three - 27.10 - 7.2510-3 
[23] Fuzzy Transform - 31.00 - 18.0110-2 

Proposed 
Design DWT/ Three 379 18.73 99.99 4.6410-4 

[15] CS-OMP 379 - 97.46 - 
[20] WPT/ Five 379 19.00 99.79 6.0610-4 

[21] WPT/ Three 379 
19.00 

 99.98 4.9810-4 

Proposed 
Design DWT/ Three 412 18.45 99.99 3.8010-4 

[15] CS-MP 412 - 90.89 - 
[20] WPT/ Five 412 19.66 99.91 5.8110-4 
[21] WPT/ Three 412 19.66 99.97 4.6910-4 

Proposed 
Design DWT/ Three 501 17.96 99.94 3.2910-4 

[15] CS-BP 501 - 97.57 - 
[20] WPT/ Five 501 18.76 99.33 5.3110-4 
[21] WPT/Three 501 18.76 99.90 3.6910-4 

Proposed 
Design DWT/ Three 512 19.34 99.98 2.7410-4 

[15] CS-BP 512 - 98.20 - 
[20] WPT/Five 512 19.53 99.67 4.7810-4 
[21] WPT/ Three 512 19.53 99.89 2.8610-4 

 
The DWT-based proposed technique is significantly 

simpler, as shown in Table II, as fewer lower order filters 
Db3, Db2, Db1 are needed to lower only the 
approximation coefficients from decomposition level 1 to 
level 3. To further breakdown the coefficients for 
approximation & detail using WPT, filters are used at 
levels three with Db3, Db2, and Db1 wavelets in [21] and 
levels five with Db3, Db2, Db2, Db2, and Db1 wavelets in 
[20]. At level three, it uses the higher order filter Db4 in 
[22]. Because the designs in [20–22] break down both 
approximation and detail coefficients, they require more 
filters than the suggested method, making them more 
computationally demanding. 

TABLE II: COMPLEXITY OF PROPOSED APPROACH 

References 
Proposed 
Approach 

[22] [21] [20] 

Method DWT DWT WPT WPT 
Level Three Three Three Five 

Wavelets 
Db3, Db2, 

Db1 
Db4 

Db3, Db2, 
Db1 

Db3, Db2, Db2, 
Db2, Db1 

Complexity Low High High High 

IV. CONCLUSION 

This paper’s goal is to compress and recreate smart grid 
voltage sag signals from different samples using proposed 
technique with discrete wavelet transform. Level 3 
decomposes the signal in the suggested configuration. The 
suggested solution uses fewer lower order wavelet filters, 
which decreases complexity even though it produces more 

data compression than previous results. The suggested 
design attains CR 19.05% and NRMSE 4.1310-4 with 
99.99% reconstruction for 357 original voltage sag 
samples. With an NRMSE of 2.7410-4 and a 99.98% 
reconstruction, it achieves CR 19.34% for 512 original 
voltage sag samples. Data compression, reconstruction 
error, and percentage reconstruction have all improved 
considerably compared to previous studies.  
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