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Abstract—Battery Energy Storage Systems (BESS) provide 
a flexible solution for peak load reductions in industrial 
power management. Industrial facilities face challenges in 
managing peak power demands due to unpredictable load 
variations and the limitations of traditional BESS control 
strategies. To address this, a Hybrid Adaptive Peak Load 
Threshold (HAPLT) controller is introduced, integrating 
day-ahead forecasting with real-time 30-minute updates to 
refine thresholds dynamically. This approach integrates 
advanced predictive modelling techniques to optimize peak 
load reduction, enhance energy savings, and ensure reliable 
operation under real-world conditions. Validation using 
Daikin R&D power network data showed an average 
maximum demand reduction factor (KMDR) of 0.89. Real-
time analysis demonstrated effective power demand 
management and optimal State-of-Charge (SOC) control. 
The system successfully reduced peak loads while 
preventing early battery depletion. The HAPLT controller 
minimizes forecasting errors, optimizes battery utilization, 
and enhances energy savings, proving a robust solution for 
industrial applications. 

Index Terms—battery energy storage system, peak load 
reduction, dynamic threshold adjustment, real-time control 

I. INTRODUCTION

The industrial sector, as depicted in Fig. 1, 
demonstrates steady growth in energy consumption, 
solidifying its position as the dominant consumer. 
Effective energy management in this sector is vital to 
improve efficiency, reduce operational costs, and lower 
carbon emissions while sustaining economic growth. One 
of the major challenges faced by industrial facilities is the 
substantial cost of maximum demand charges, which 
often constitute a significant portion of their electricity 
bills [1, 2]. Utilities impose these charges based on the 
highest power demand during a billing period, 
incentivizing industries to manage their energy 
consumption efficiently [3, 4]. For manufacturing plants 
and large industrial complexes, peak load events can 

escalate operational costs, impacting overall profitability 
[5, 6]. Moreover, with the rising adoption of renewable 
energy and energy storage systems, managing peak loads 
effectively is more critical than ever [7, 8]. 

Fig. 1. The energy usage across various sectors in Malaysia from 1978 
to 2021 adapted from [9]. 

Battery Energy Storage System (BESS) has become a 
key tool for peak demand mitigation, storing excess 
energy during off-peak hours and discharging it during 
high-demand periods. This approach flattens demand 
curves, enhances grid stability, and reduces operational 
costs [10, 11]. Among the types of batteries used for peak 
shaving, Lithium-ion (Li-ion) batteries are the most 
popular due to their high energy density, long cycle life, 
fast charge/discharge capabilities, and efficiency [12]. 
These qualities make them ideal for quickly responding 
to peak demand periods and ensuring grid stability. Lead-
acid batteries, though cheaper upfront, have shorter 
lifespans and lower energy density, making them less 
efficient for modern applications. Sodium-sulfur and flow 
batteries offer long cycle lives but are bulkier, making 
them less suitable for smaller-scale use. Nickel-cadmium 
batteries, while reliable, have environmental concerns 
and are more expensive. Lithium-ion’s high efficiency, 
longer lifespan, scalability, and cost reductions over time 
make it the preferred choice for peak shaving, offering a 
balance of performance, cost-effectiveness, and 
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versatility for residential and large-scale systems [13, 14].  

The integration of smart grid technologies enables 

dynamic adjustments to energy consumption based on 

real-time data, with smart meters playing a vital role in 

peak shaving by providing the necessary information to 

optimize battery usage [15, 16]. During peak demand 

times, when electricity costs are higher and the grid is 

under stress, smart meters enable the Battery 

Management System (BMS) to determine the most 

efficient times to discharge stored energy from batteries 

and reduce reliance on the grid. By continuously 

monitoring energy usage patterns, smart meters help the 

system predict and respond to peak periods, ensuring that 

the battery discharges when it is most cost-effective and 

beneficial for grid stability. Moreover, the smart meter 

data allows for precise control of energy flows, ensuring 

the battery is charged during off-peak times when 

electricity is cheaper and discharged during peak times to 

minimize costs. This integration between smart meters 

and BMS improves overall energy efficiency, supports 

grid reliability, and reduces operational costs. 

Predictive modelling plays a pivotal role in addressing 

the challenges of peak demand management by enabling 

accurate forecasts of power consumption and peak load 

occurrences [17]. Advanced predictive techniques, such 

as machine learning and deep learning models, analyse 

historical energy consumption patterns to provide reliable 

insights into future demand trends [18, 19]. These 

forecasts empower industries to implement strategies, 

such as load shifting, optimal BESS utilization, and 

demand response programs, to mitigate peak demand 

costs [20, 21]. By integrating predictive models into 

energy management systems, industries can enhance 

operational efficiency, improve decision-making, 

maintain system reliability, and better align their energy 

usage with cost-saving objectives [22, 23]. 

Machine learning models are becoming essential for 

optimizing BESS. Their ability to handle non-linear 

relationships and temporal dependencies makes them 

invaluable for real-time peak demand forecasting. 

XGBoost model is highly effective for structured or 

tabular data, with fast training and strong predictive 

performance. As a gradient-boosting algorithm, XGBoost 

excels in capturing complex feature interactions, non-

linear relationships, and handling missing data. These 

attributes make it particularly well-suited for initial 

demand predictions, such as predicting power demand in 

battery energy systems. Several studies have 

demonstrated XGBoost’s ability to accurately predict 

power demand in these systems [24, 25]. Its scalability 

and speed make it especially useful for processing large 

dataset commonly involved in power demand forecasting, 

ensuring timely and actionable predictions [26, 27]. 

However, the predictions and forecasts from these studies 

have not been integrated with BESS to optimize demand 

response and reduce peak loads. 

The Long Short-Term Memory (LSTM) is a deep 

learning model suitable for sequential data with long-term 

dependencies. As a type of Recurrent Neural Network 

(RNN), LSTM is highly effective for modelling temporal 

dependencies and identifying long-term patterns in time-

series data. In the context of battery energy systems, 

LSTM excels at forecasting dynamic load profiles and 

predicting battery State-of-Charge (SOC) and State-of-

Health (SOH) over time [28]. By learning the sequential 

relationships in the data, LSTM can accurately capture 

power fluctuations, leading to improved real-time energy 

management strategies. This capability ensures optimal 

utilization of battery under variable load conditions, 

enabling more efficient energy storage and distribution.  

Convolutional Neural Networks (CNNs), originally 

developed for image recognition, have been successfully 

adapted for time-series analysis, proving especially 

beneficial for energy systems. Unlike traditional fully 

connected neural networks, CNNs apply convolutional 

filters to extract meaningful features, allowing them to 

identify local dependencies and patterns in complex 

datasets. This makes CNNs particularly effective for 

analyzing intricate interactions in battery energy systems, 

such as load demand fluctuations, environmental 

influences, and charge-discharge cycles. Their ability to 

efficiently process high-dimensional data enables 

significant improvements in energy optimization and 

system reliability. When combined with other deep 

learning models, such as LSTM and Gated Recurrent 

Unit (GRU) networks, CNNs contribute to hybrid 

frameworks like CNN-LSTM and CNN-GRU [29, 30]. 

These models leverage CNNs for feature extraction while 

utilizing LSTM and GRU’s ability to capture long-term 

temporal dependencies. This hybrid approach enhances 

forecasting accuracy and provides better adaptability to 

dynamic energy consumption patterns. However, most 

multi-model approaches have primarily focused on 

analyzing the battery’s SOC and SOH, with limited 

research on integrating these models with BESS for real-

time peak load reduction.  

In addition to single-stage controllers, a two-stage 

controller was found to deliver a more consistent peak 

demand reduction percentage compared to other control 

strategies [31]. The controller uses an incremental model 

called DBeSOINNeR for both day-ahead and 1-hour-

ahead load prediction. The controller adjusts the 

threshold for charging and discharging every five min. 

The first stage determines the threshold based on a day-

ahead load forecast, while the second stage refines the 

threshold using a 1-hour-ahead load forecast to prevent 

peak reduction failures. This approach aims to address the 

limitations of conventional controllers that use rigid 

parameters derived from long-term historical data. The 

proposed controller requires only 30 days of historical 

data and can adapt to evolving load patterns. The 

performance of the two-stage controller was evaluated 

against fixed threshold, conventional single-stage, and 

fuzzy controllers, in the context of a commercial building. 

However, these controllers were not deployed in an actual 

BESS implementation, which limits their real-world 

applicability. 

Previous studies often struggle to adapt to rapidly 

changing industrial load patterns and fail to provide a 

comprehensive approach to peak demand management 



within the industrial context. Conventional methods often 
lack the necessary adaptability to handle fluctuating 
power demands, whereas advanced predictive models are 
seldom integrated with BESS for optimizing peak load 
reduction. This study aims to bridge these gaps by 
exploring the use of advanced predictive modelling, 
integrated with BESS and smart grid technologies, to 
optimize demand management and contribute to a more 
sustainable energy system. 

Industrial load demand is inherently unpredictable due 
to fluctuations in usage patterns and external factors, 
making it challenging to determine an optimal threshold 
for peak load reduction. This study tackles the issue of 
peak power consumption in industrial settings by utilizing 
both simulation and real-world case studies to evaluate 
the effectiveness of the predictive modelling methods. 
For the real case study, the controller was implemented in 
the real BESS setup in a factory called Daikin R&D in 
Sungai Long. The results from the implementation of the 
HAPLT controller at Daikin R&D from August 2024 to 
December 2024 demonstrate its significant impact on 
peak demand reduction. The predictive control strategy 
achieved a notable 89% average maximum demand 
reduction factor (KMDR), optimizing battery usage and 
preventing premature discharges while ensuring sufficient 
energy for critical periods. By dynamically adjusting 

II. METHODOLOGY 

The research is conducted in a real-world industrial 
environment at Daikin R&D in Sungai Buloh, Malaysia. 
The methodology begins with a comprehensive site 
inspection to analyse the facility’s demand patterns and 
identify key factors influencing power usage. Following 
this, control and monitoring systems for the BESS are 
installed to facilitate real-time management of power 
consumption and energy storage. To collect relevant data, 
power meters and the Battery Management System (BMS) 
are utilized to monitor power consumption of the building 
and monitor the BESS performance. This data is essential 
for evaluating the developed controller, which integrates 
advanced load prediction models to optimize peak load 

reductions. The simulation phase tests the controller 
under controlled conditions to evaluate its functionality 
and refine its performance. The simulation method allows 
for assessing the system’s response to various load 
patterns and operational scenarios. 

The real-world implementation validates the 
controller’s effectiveness in an operational industrial 
environment. This phase ensures that the system can 
handle the complexities and unpredictability of actual 
factory operations, providing valuable insights into its 
practical performance. By combining simulation with 
real-world validation, this dual-phase approach ensures 
that the proposed methodology is robust, adaptable, 
scalable, and capable of addressing the uncertainties 
inherent in factory load demand, ultimately contributing 
to a more efficient energy management and reduced peak 
power consumption. 

A. BESS Configuration 

Fig. 2 shows the external view of the BESS setup, 
housed within a blue cabin. This cabin is strategically 
positioned behind the Daikin Research and Development 
(R&D) building, providing a secure and accessible 
location for the system’s operation.  

Fig. 3 depicts the internal setup of the BESS which 
houses 168 lithium-ion batteries. These batteries are 
connected to the bi-directional power converter, which 
facilitates the integration of the battery system with the 
power distribution board. The Python program and Node-
RED are deployed on a dedicated computer. This 
computer is connected to the Local Area Network (LAN) 
via a Wi-Fi router, enabling remote control and real-time 
monitoring of the system’s performance. 

 
Fig. 2. The external view of the BESS location. 

 
Fig. 3. The internal view of the BESS setup. 

Table I provides the specifications of the lithium-ion 
batteries and power converter. This table presents the key 
specifications for the lithium-ion batteries and the 
associated power converter, detailing their capacities, 
voltage ranges, and ratings essential for the system’s 
performance and energy management.  
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peak thresholds every 30 min, the system effectively 

lowered peak power demand, leading to a total monthly 

savings of RM 2,445.07, combining both demand 

reduction and energy consumption optimization. 

Additionally, the system saved an average of 2342.21 

kWh per month, with a Round-Trip Efficiency (RTE) of 

70%, further validating its ability to reduce electricity 

costs and improve operational efficiency. These findings 

highlight the effectiveness of predictive modelling and 

real-time threshold adjustments in industrial energy 

management, providing a robust framework for future 

peak load reduction strategies.

The structure of this paper is as follows: Section II 

describes the methodology adopted for the study which 

focuses on the development of the BESS, the design of 

the predictive models together with the selection criteria, 

and the development of the control strategy. Section III 

presents the results and discusses the simulation and real-

word case study, whereas Section V concludes the study.



 
Fig. 4. Single-line diagram of the BESS connection. 

Fig. 4 illustrates the single-line diagram of the BESS 
connection. In this setup, the batteries are connected to 
the power converter, which is linked to the factory loads 
through Circuit Breakers (CB). The power converter is 
connected to the main distribution board, which is 
equipped with a power meter for monitoring the energy 
flow. This diagram highlights how the BESS integrates 
with the factory’s electrical infrastructure, enabling 
energy storage, load management, and real-time power 
monitoring. 

B. Development of Load Profile Prediction Models 

The demand profiles collected from the power meter of 
Daikin R&D building are used to simulate and validate 
the load profile prediction model. Fig. 5 shows the 
predictive modelling and deployment framework for peak 
load reduction. The workflow for peak load reduction 
consists of three main stages: Data Processing, Feature 
Selection, and Deployment. Historical power demand 
data undergoes cleaning and preprocessing to ensure 
quality.  

 
Fig. 5. The HAPLT framework. 

In the Feature Selection stage, datetime and power 
demand features are extracted based on domain 
knowledge, and model input/output configurations are set 
before splitting the dataset for training and testing. A 
two-year dataset from January 2022 to April 2024 is used 
for training and testing purposes. The training and testing 
dataset are split into 80% and 20% respectively. Feature 
selection is applied to optimize model performance. The 
Deployment stage involves training models for initial 
threshold prediction, followed by hyperparameter tuning 
and a 30-minute dynamic threshold prediction to refine 
the peak reduction strategy. The trained model undergoes 
testing before being integrated into the Hybrid Adaptive 
Peak Load Threshold (HAPLT) controller. The validation 
was carried out from August 2024 to December 2024. 

The prediction models and the controller’s 
performance are evaluated based on peak load reduction 
results. The calculated performances are based on the 
statistical metrics summarized in Table II.  

TABLE II: THE PERFORMANCE METRICS 

Performance metrics Description 

true, pred,

1

1
MAE

n

i i

i

y y
n



   
Mean Absolute Error (MAE) 
measures the average absolute 
difference between actual and 
predicted values. 

 2true, pred,

1

1
MSE

n

i i

i

y y
n



   
Mean Squared Error (MSE) 
measures the average squared 
difference between actual and 
predicted values. 

RMSE MSE  
Root Mean Squared Error 
(RMSE) is the square root of 
the MSE, emphasising on 
larger errors. 

true, pred,

true,1

1
MAPE 100

n
i i

ii

y y

n y



   

Mean Absolute Percentage 
Error (MAPE) measures the 
error as a percentage of the 
actual value. 

Variable control is essential for effective peak load 
reduction, especially in systems where load behaviour is 
unpredictable. The preliminary control establishes the 
initial threshold to trigger peak load reduction, whereas 
the next stage ensures the battery’s SOC remains 
sufficient to support discharge throughout the 14-hour 
peak period, from 8 am to 10 pm. If the initial threshold 
is set too high, the BESS might fail to reduce the peak 
load effectively. Conversely, if the initial threshold is too 
low, the battery could be discharged prematurely, leaving 
insufficient energy to manage peak loads later in the day. 
To address this, the model needs to predict the next day’s 
power demand and set the initial threshold for peak load 
reduction. The subsequent stage uses the model to 
forecast the load demand for the next 30-minute interval. 
This forecast allows for dynamic adjustment of the 
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TABLE I: THE BESS SPECIFICATIONS

Specifications Rating

Type of battery LiFePO4

Battery cell capacity 280 Ah

Depth-of-Discharge (DOD) 90%

Capacity of the batteries 155 kWh
Battery usable energy 139.5 kWh

Battery voltage range per cell 2.8 V–3.6 V

Maximum power rating set 50 kW

Size of the power converter 100 kW

Cable power capacity 68 kW

threshold every 30 min, ensuring that the battery is 

neither over-utilized early in the day nor underutilized 

during critical peak periods.

XGBoost, CNN, LSTM and GRU models are 

integrated into developing the HAPLT controller. Table 

III shows the important Hyperparameters used for tuning 

the models. 



TABLE III: SUMMARY OF MODEL HYPERPARAMETERS 

Model Important Hyperparameters 

XGBoost 
n_estimators, max_depth, min_child_weight, 
subsample, colsample_bytree, gamma, lambda, alpha, 
scale_pos_weight, tree_method 

CNN 
num_layers, filters, kernel_size, strides, pool_size, 
activation_function, dropout_rate, early_stopping 

LSTM 
num_layers, units, dropout, recurrent_dropout, 
activation_function, early_stopping 

GRU 
num_layers, units, dropout, recurrent_dropout, 
activation_function, early_stopping 

TABLE IV: SUMMARY OF HYPERPARAMETERS TO IMPROVE MODEL 
PERFORMANCE  

Hyperparameter Settings 
Optimizer learning_rate, batch_size, epochs 
Attention mechanism  attention_size, attention_type 

Loss function  
mean_squared_error, 
mean_absolute_error, quantile_loss 

Regularisation l2_regularisation, l1_regularisation 
Data preprocessing MinMaxScaler, StandardScaler 

Table IV provides an overview of key hyper-
parameters used to optimize the machine learning models. 
The learning rate, batch size, and epochs hyperparameters 
influence how quickly the model learns, how much data 
is processed at once, and how many times the model 
iterates over the dataset. The attention mechanism 
category includes parameters such as attention size and 
attention type, which are crucial for models which 
processes sequential data, enabling the model to focus on 
different parts of the input. Loss Functions, such as mean 
squared error and mean absolute error, measure the 
difference between predicted and actual values, guiding 
the optimization process. Regularization techniques are 
used to prevent over-fitting by penalizing complex 
models. Data preprocessing methods, such as scaling and 
normalization ensure that input features are properly 
standardized, improving model convergence and 
performance.  

C. Development of the BESS Control Strategy  

Python is used to compute the peak load predictions 
for the threshold adjustment, this information is then 
passed to Node-RED for the peak load reduction 
operation. The data processing involves establishing a 
connection to the PostgreSQL server as shown in Fig. 6. 
Configuration details, such as the server address, login 

credentials, and database selection, are specified within 
the Node-RED program. The system retrieves data from 
the PostgreSQL server, which may include timestamped 
records and the state of the battery stored in the database. 
This data is then passed through subsequent stages of 
processing. 

 
Fig. 6. Communication framework for the BESS. 

The filtered dataset is directed to a data logging 
module, where essential information is stored for 
analytical purposes. This logging process makes use of 
dedicated nodes within Node-RED. The processed data is 
sent to the Node-RED dashboard for real-time monitoring 
and visualization.  

Fig. 7 to Fig. 9 illustrate the Graphical User Interfaces 
(GUIs) developed for monitoring and controlling the 
BESS. These interfaces provide real-time insights into the 
performance and status of key system components. Fig. 7 
displays the battery monitoring interface, which shows 
detailed information on individual battery cells, including 
their voltages, temperatures, and state of charge. This 
allows for effective health tracking and balancing of the 
cells, essential for maintaining battery efficiency and 
longevity. Fig. 8 presents the interface for the power 
converter, monitoring the operational parameters such as 
phase voltage, frequency, battery voltage and current, and 
the output active power. It also includes manual and 
automatic control options for managing power flow 
between the battery system and the grid. Fig. 9 shows the 
power meter interface, which tracks total power demand 
and accumulated energy consumption over time. This 
information is crucial for load profiling, energy auditing, 
and peak demand management. Collectively, these user 
interfaces form an integrated monitoring and control 
platform that enhances the reliability, safety, and 
operational efficiency of the BESS for real-time 
application. 

 
Fig. 7. User interface for the batteries (showing cell no. 1 to cell no. 64 out of the total 168 cells). 
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Fig. 8. User interface for the power converter. 

Fig. 9. User interface for the power meter. 

Fig. 10. Flow chart of the peak load reduction control strategy. 

Fig. 10 shows the flow chart for the control system of 
the BESS. The system starts by initiating the initial 
threshold prediction and setting the threshold value by the 
HAPLT controller as shown in (1). 

HAPLT pred _ int pred _ 30 min( ) ( )(1 ) ( ) ( )P t P t P t P t        (1)

where Ppred_int is 
the initial predicted peak power demand 

in kW,  is the prediction error factor between 0 and 1, 
Ppred_30min is the predicted peak power demand in kW for 
the next 30 minutes,  is the smoothing factor between 0 
and 1 that controls the rate at which the threshold adjusts 
toward the predicted value, and  is the weight applied to 
the real-time adjustment factor, which responds to 
instantaneous changes, P in the load.  

The peak load reduction process begins by setting the 
initial threshold, after which the system checks whether 

the current time falls within the peak period of 8 am to 10 
pm. If it is within the peak period, the system initiates the 
30-minute load prediction and calculates the change in
load, P. The checking of load change is implemented to
overcome the problem of sudden power surges, which are
often unpredictable and common in industrial loads. If the
new prediction exceeds the previous threshold or if P >
50 kW, the threshold is updated. This ensures the BESS
can respond effectively to fluctuations in load demand.

The BESS starts managing peak load by discharging if 
the power demand exceeds the predicted threshold. 

The load power is found from the following condition: 

grid discharge load Th
oad

grid load Th

( ) ( ),  if ( ) ( )
( )

( ),   if ( ) ( )l

P t P t P t P t
P t

P t P t P t

   
(2)
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where Pload is the power demand in kW, Pdischarge is the 
power discharging from the battery in kW, and Pgrid is the 
grid power measured at the power meter in kW. 

The system throttles the BESS output based on the 
battery capacity and predicted demand, ensuring the 
battery operates efficiently and conserves energy for 
critical periods. The system also emphasizes safety 
through continuous SOC monitoring, ensuring the battery 
operates within safe limits. If the SOC falls below 10%, 
the system transitions to idle mode or charge mode 
(depending on the time), whereas SOC levels above 
100% trigger the system to halt charging to prevent 
overcharging. Additionally, at any point, the system will 
stop operation to protect the battery if under-voltage or 
over-voltage conditions occur. The total energy consumed 
in kWh is calculated over 30 minutes by summing up the 
power for each minute. Table V shows the equations 
related to the energy calculations with the power 
information obtained from the data logging.  

The performance indicator of the BESS is evaluated 
based on maximum demand reduction factor (KMDR) 
which measures the percentage reduction in the overall 
maximum demand of the electrical system, while peak 
demand reduction factor (KPDR) specifically measures the 

reduction in demand during critical peak periods when 
the grid is under the most stress [32]. 

TABLE V: ENERGY CALCULATIONS 

Energy equation Description 
1320

peak hour load

480

1

60
i

i

E P



  The energy consumed in kWh during peak 
hours. 

1320

saved discharge

480

1

60
i

i

E P



  The energy saved in kWh during peak hours. 

III. RESULTS AND DISCUSSIONS

Fig. 11 shows the daily maximum, minimum, and 
average load power in kW during peak hours from 
January 2022 to December 2024.There was a system 
maintenance at Daikin R&D from 1st May 2024 to 26th 
May 2024, during which the power profile was 
unavailable. The data from January 2022 to April 2023 is 
used as the training dataset, while the period from August 
2024 to December 2024 is used for validation. This 
dataset is used to train and test the hybrid adaptive peak 
load threshold controller for the BESS, enabling the 
controller to learn historical demand patterns and 
optimize real-time peak load management. 

Fig. 11. Time series of daily peak power demand and average peak power demand from 2022 to 2024. 

Table VI compares the performance of various 
machine learning and deep learning models in two stages 
of power demand forecasting: initial threshold prediction 
and 30-minute dynamic threshold prediction. For the 
initial threshold, XGBoost outperforms all other models 
with the lowest MAE (20.30 kW), MAPE (31.59%), 
MSE (4401.14 kW2) and RMSE (66.34 kW), making it 
the most reliable for day-ahead forecasting. In contrast, 
deep learning models such as CNN, LSTM, and GRU 
variants perform poorly in this stage, showing higher 

errors and variability. However, in the dynamic threshold 
prediction, the CNN-LSTM-GRU hybrid model 
significantly outperforms all others, achieving the lowest 
MAE (6.33 kW), MAPE (1.44%), MSE (66.74 kW2) and 
RMSE (8.17 kW), indicating its strength in short-term, 
high-resolution forecasting. This demonstrates that while 
XGBoost is best suited for long-term predictions, hybrid 
deep learning models excel in short-term dynamic 
adjustments.  
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TABLE VI: SUMMARY OF THE MODELS’ PERFORMANCE FOR INITIAL AND 30-MINUTE THRESHOLD PREDICTIONS THROUGH SIMULATION

Model
Initial Threshold Prediction 30-minute Dynamic Threshold Prediction

MAE (kW) MAPE (%) MSE (kW2) RMSE (kW) MAE (kW) MAPE (%) MSE (kW2) RMSE (kW)

XGBoost 20.30 31.59 4401.14 66.34 170.71 81.71 192.19 13.86
CNN 350.98 65.76 152206.31 390.14 11.99 2.72 196.38 14.01

LSTM 131.18 239.10 30908.11 175.80 21.63 20.82 1594.87 39.94
GRU 123.70 299.27 28270.31 168.14 23.44 33.78 1842.78 42.93

CNN-LSTM 252.35 47.61 82167.39 286.65 23.52 5.36 632.59 25.15
CNN-GRU 131.17 23.61 30037.53 173.31 44.70 10.21 2154.58 46.42

LSTM-GRU 506.26 99.73 303971.38 551.36 24.91 5.68 711.55 26.67
CNN-LSTM-GRU 507.26 100.26 305729.94 552.93 6.33 1.44 66.74 8.17



Fig. 12 to Fig. 16 show the distribution of power 
demand before and after implementing of the HAPLT 
controller in peak load reduction from August 2024 to 
December 2024. 

Fig. 12. Comparison of the peak load reduction for August. 

Fig. 13. Comparison of the peak load reduction for September. 

Fig. 14. Comparison of the peak load reduction for October. 

Fig. 15. Comparison of the peak load reduction for November. 

Fig. 17 illustrates a comparative box plot of the 
monthly power demand distributions before and after the 
implementation of the HAPLT controller from August 

2024 to December 2024. The figure complements the 
detailed monthly trends shown in Fig. 12 to Fig. 16 by 
summarising the overall impact across the evaluation 
period. Each pair of box plots represents the demand 
spread for a given month, highlighting the shift in peak 
demand values. A noticeable reduction in both the 
median and the interquartile range of power demand can 
be observed in the post-implementation data. This result 
validates the effectiveness of the HAPLT controller in 
reducing peak load and flattening demand variability. 

Fig. 16. Comparison of the peak load reduction for December. 

Fig. 17. Monthly power demand distribution before and after HAPLT 
implementation from August to December 2024. 

Fig. 18. KPDR validation results of the HAPLT controller. 

Fig. 19. RTE validation results of the HAPLT controller. 
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Table VII shows the performance of HAPLT for both 
initial threshold prediction and 30-minute dynamic 
threshold prediction. For the initial threshold prediction, 
the model performs the best in August 2024 with a 
MAPE of 30.78% and RMSE of 74.25 kW. The average 

MAPE is 58.43% and RMSE is 93.98 kW. For 30-minute 
dynamic threshold prediction, the model achieves better 
overall accuracy. The lowest error is in August 2024, 
with a MAPE of 18.04% and RMSE of 32.02 kW. The 
average MAPE is 34.68% and RMSE is 38.16 kW. 

Fig. 18. illustrates the values of KPDR of the HAPLT 
controller across five months. It is noticed that KPDR 
varies from 0.1 to 0.9 in August 2024 and December 
2024, while KPDR being relatively stable in September and 
October.  

Fig. 19 presents the round-trip efficiency (RTE) of the 
battery across different days from August 2024 to 
December 2024. November 2024 shows the highest 
overall efficiency, with RTE consistently near 0.9. 

Table VIII shows the KMDR validation results of the 
HAPLT controller to demonstrate its effectiveness in 
reducing monthly maximum demand (MD). The initial 
reduction target (MDRi) was set at approximately 49 kW 
each month, with the actual reduction achieved (MDRa) 
averaging 43.57 kW. The KMDR values, representing the 
percentage of the intended reduction successfully 
achieved, are in the range of 0.72 and 0.99, with an 
average of 0.89, indicating high effectiveness in peak 
demand reduction. The controller achieved the highest 
KMDR (0.99) in November 2024, nearly meeting the full 
reduction target. The controller performed well in 
September 2024 and December 2024 because KMDR are 
0.96 and 0.93, respectively. On the other hand, the 
controller delivered KMDR of 0.72 in October 2024.  

Overall, the HAPLT controller consistently achieved 
over 89% of its reduction targets, making it an effective 
strategy for peak demand management. 

Table IX shows the results from August 2024 to 
December 2024, demonstrate the effectiveness of the 
HAPLT controller in reducing peak load and optimizing 
energy savings. The overall average load factor of 0.74, 
indicating efficient power usage despite varying peak 
demands. The total average RTE ranged of 0.70, 
reflecting the system’s efficiency in minimizing energy 
losses during storage and retrieval. The total energy saved 
is at an average of 2342.21 kWh over the five months.  

Fig. 20. Peak load reduction profile with BESS at Daikin R&D on 21st August 2024. 

Fig. 20 illustrates the power flow dynamics and battery 
SOC throughout the day under the HAPLT controller. 
The load demand fluctuates over time, with noticeable 

peaks occurring in the morning and early afternoon. Grid 
power consumption increases as the SOC gradually 
depletes, indicating a shift in power source as the battery 
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TABLE VII: SUMMARY OF THE HAPLT PERFORMANCE FOR INITIAL AND 30-MINUTE THRESHOLD PREDICTIONS THROUGH VALIDATION

Month
Initial Threshold Prediction 30-minute Dynamic Threshold Prediction

MAE (kW) MAPE (%) MSE (kW2) RMSE (kW) MAE (kW) MAPE (%) MSE (kW2) RMSE (kW)

Aug-2024 54.67 30.78 5513.97 74.25 25.31 18.04 1059.82 32.02

Sep-2024 67.55 39.90 6470.45 80.43 26.37 21.29 1219.35 33.99

Oct-2024 87.45 76.49 10854.46 104.18 32.70 37.25 1483.40 37.79

Nov-2024 79.22 45.96 7875.54 88.74 35.49 41.57 1992.18 43.49

Dec-2024 102.72 99.01 14958.75 122.30 38.87 55.25 2069.43 43.52

Average 78.32 58.43 9134.63 93.98 31.75 34.68 1564.84 38.16

TABLE VIII: THE KMDR VALIDATION RESULTS OF THE HAPLT
CONTROLLER

Month
Monthly MD before 

reduction (kW)
MDRi

(kW)
MDRa

(kW)
KMDR

Aug-2024 349.23 49.00 40.86 0.84

Sept-2024 369.87 49.00 47.07 0.96

Oct-2024 336.92 49.00 35.36 0.72
Nov-2024 386.93 49.50 49.00 0.99

Dec-2024 316.52 49.00 45.55 0.93

Average 351.89 49.10 43.57 0.89

TABLE IX: THE VALIDATION RESULTS OF THE HAPLT CONTROLLER

Month
Average Load 

Factor
Average RTE

Total Energy 

Saved (kWh)

Aug-2024 0.78 0.65 2344.59

Sep-2024 0.77 0.63 1841.29

Oct-2024 0.79 0.77 2910.35
Nov-2024 0.66 0.72 2378.67

Dec-2024 0.71 0.72 2241.18

Average 0.74 0.70 2342.21



discharges. The threshold power limit is maintained at a 
relatively stable level, ensuring peak demand control. The 
battery discharge occurs primarily during peak hours, 
reducing dependence on grid power. The SOC starts at a 
high level in the morning and steadily declines 
throughout the day, reaching lower levels after mid-
afternoon. This indicates strategic battery utilization, 
ensuring energy availability during high-demand periods. 
The figure demonstrates that the HAPLT controller 
effectively optimizes battery discharge to manage peak 
loads while maintaining a suitable SOC profile to sustain 
system operation. 

IV. CONCLUSION 

The validation results demonstrate that the HAPLT 
controller effectively manages peak load reduction and 
optimizes battery energy storage utilization. For the 
initial threshold prediction, the model achieved an 
average Mean Absolute Error (MAE) of 78.32 kW, Mean 
Absolute Percentage Error (MAPE) of 58.43%, Mean 
Squared Error (MSE) of 9134.63 kW², and Root Mean 
Squared Error (RMSE) of 93.98 kW. The 30-minute 
dynamic threshold prediction exhibited improved 
accuracy, with an average MAE of 31.75 kW, MAPE of 
34.68%, MSE of 1564.84 kW², and RMSE of 38.16 kW. 
The peak demand reduction performance, represented by 
KMDR values, averaged 0.89. The Round-Trip Efficiency 
(RTE) of the battery varied across months but remained 
stable in most cases, ensuring effective energy utilization. 
The power flow analysis confirms that the controller 
strategically discharges the battery to reduce peak grid 
consumption while maintaining a sustainable SOC. 
Overall, the HAPLT controller proves to be a reliable and 
adaptive solution for peak power demand reduction, 
dynamically adjusting thresholds to optimize battery 
usage while effectively reducing grid dependency. By 
implementing the HAPLT controller, the estimated 
annual cost savings for Daikin R&D is RM29,340.84, 
demonstrating its economic benefits in reducing peak 
demand and optimizing energy consumption. 

While the HAPLT controller demonstrates strong 
performance in peak load reduction and battery 
optimization, several areas for improvement can enhance 
its effectiveness. Incorporating more advanced deep 
learning models, such as transformer-based architectures, 
or integrating external factors like weather and 
production schedules may further refine accuracy. The 
current model does not explicitly account for battery 
degradation over time. Implementing a degradation 
model to adjust charging and discharging cycles 
dynamically can enhance long-term efficiency and reduce 
maintenance costs. The system could be enhanced by 
integrating renewable energy sources such as solar or 
wind, reducing grid dependency further while optimizing 
battery storage. By addressing these aspects, the HAPLT 
controller can be refined to provide even more accurate, 
efficient, and cost-effective peak demand reduction 
solutions in industrial settings. 
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