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Abstract—The ability of Generative Adversarial Networks
(GANS5) to produce images that closely resemble real ones has
raised concern. This requires the creation of efficient
detection techniques because it has significant ramifications
for digital media, security, and ethics. In order to
demonstrate the growing difficulties of attaining authenticity
in the rapidly developing field of Artificial Intelligence (AI),
this study introduces this critical issue by leveraging the
“Detect Al-Generated Faces: High-Quality Dataset,”
obtained from Kaggle which contains 3,203 images of real
human faces and Al-generated faces. However, the Orange3
data mining framework is used to analyze these images,
focusing on extracting essential features such as shape
attributes, texture descriptors, and color histograms. The
dataset was divided into a training set (70%) and a testing set
(30%) to evaluate our models effectively. Also, four machine
learning algorithms were employed: K-Nearest Neighbor
(KNN), Artificial Neural Network (ANN), Adaptive Boosting
(AdaBoost), and Gradient Boosting (GB). The results
revealed that KNN and AdaBoost achieved impressive
accuracies of 99.4% and 97.07%, respectively, while GB and
ANN reached even higher accuracies of 99.8% and 99.9%.
These results underscore the effectiveness of advanced
machine learning techniques in accurately distinguishing
between Al-generated and real faces.

Index Terms—artificial intelligence-generated images,
Kaggle, adaptive boosting, decision trees, gradient boosting,
and random forest

I. INTRODUCTION

Technological developments in computer vision and
Artificial Intelligence (AI) have made it feasible for
machines to simulate human characteristics, facilitating
jobs like booking flights and diagnosing illnesses [1]. With
the use of Machine Learning (ML) and Deep Learning
(DL) models, researchers are creating methods to more
precisely identify manipulated images by detecting frauds
more effectively than traditional methods, which extract
simple information and features. Better resilience is
essential for real-world Al applications since DL models
are susceptible to adversarial attacks, despite their
demonstrated good performance in computer vision tasks
[2, 3]. However, Al-generated images can be generated
using Generative Adversarial Networks (GANs), which
are unsupervised ML models consisting of a discriminator
and generator network that separate genuine and erroneous
data and produce high-quality synthetic data, offering
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speed, efficiency,
types [4, 5].

Usually, a binary classifier is trained using a huge
collection of GAN images from pre-trained models in
order to create fake GAN images. However, access to the
particular model that the attacker employed is typically not
available in real-world systems. Two approaches are
investigated in order to train a classifier with fewer fake
images by locating the important up-sampling component
and showcasing distinct frequency-domain artifacts by
creating an emulator framework to replicate the standard
generating pipeline [6]. With an emphasis on artificial face
image synthesis, the researchers in [7] offered a novel
method for separating GAN-generated images from real
ones using spectral band differences. Through the use of
cross-band and spatial co-occurrence matrices, face
images are digitally preserved and subsequently fed into
an architecture of Convolutional Neural Networks (CNN).
In a variety of post-processing settings, the performance
increase is greater than 92%.

Mercaldo et al. used a dataset of retinal images, this
research proposed a technique to evaluate the
distinguishability of bioimages produced by a generative
adversarial network. To find out how well the models can
distinguish between real and fraudulent retinal images, the
researchers trained a number of supervised ML models.
Using a deep convolutional generative adversarial network,
they showed that a classifier with an F-measure greater
than 0.95 can accurately identify created images, even
when they were not visually noticeable as fakes [4].
According to [8], a study on GAN-based image-to-image
translation  detection, some detectors exhibited
improvements on original photos but deteriorating on
compressed images similar to those found on Twitter.
Even when training-test mismatching occurred, deep
networks, in particular XceptionNet, maintained resilience
better than other detectors. According to [9], detection
accuracy of up to 95% can be attained by both
conventional and DL detectors, with DL offering a high
accuracy of up to 89%. On the other hand, Rossler ef al.
[10] employed CNNs to identify them. In addition to
establishing a benchmark dataset, the study showed how
well CNNs differentiate between authentic and
manipulated images. CNN architecture achieved a 91.83%
forgery detection rate, highlighting the need for reliable
detection techniques in the face of developing Al

and adaptability to various data
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capabilities.

In order to enhance medical signal processing and
diagnosis, namely in the classification of epilepsy, the
researcher in [11] investigates the use of Al-generated
content approaches. Also, the researcher presents a system
for creating synthetic EEG signals using generative
adversarial networks to solve data imbalance and scarcity.
The model effectively processes and categorizes EEG
signals using a temporal convolutional network model that
is attention-based. The outcomes demonstrate the potential
of Al-generated content in medical signal processing, with
a 98.89% accuracy and a 98.91% F1 score.

Baraheem et al. in [12] offered an approach for
employing Convolutional Neural Networks (CNNs) to
distinguish between actual and Al-generated photos. The
method entails integrating Class Activation Maps (CAM),
using transfer learning, and gathering GAN-generated
images from diverse tasks and structures. The method
outperform other datasets and setups and obtained 100%
accuracy on the Real or Synthetic Images dataset.
EfficientNetB4, which has been pre-trained and optimized
on the dataset using Adam as an optimizer, was the best
detector.To identify GAN-generated face images.

Tao and his colleagues in [13] provided a blind method
based on hand-crafted features. GAN-generated images
and natural texture and sensor sounds are used as hints in
this method. Additionally, subtractive pixel adjacency
matrix (SPAM) features are retrieved from real and
generated images using uniform Local Binary Pattern
(LBP) features. The SVM classifier confirms that the
images are correct. The method has a 97.60% accuracy rate
in identifying GAN-generated fraudulent face images.
However, soft computing neural network models
(Shallow-FakeFaceNets) with an effective facial
manipulation detection pipeline were employed in [14]
using a dataset of Handcrafted Facial Manipulation (HFM)
images. Shallow-FakeFaceNet (SFFN), a neural network
classifier, uses altered facial landmarks to identify
fraudulent images. For handcrafted fake facial images, the
method’s best Area Under the Receiver Operating
Characteristic (AUROC) performance is 72.52%, whereas
for tiny GAN-generated fake photos, it reaches 93.99%.

The researchers in [15] focused on artificial face image
synthesis and suggests a novel method for distinguishing
real photos from GAN-generated ones using spectral band
differences. The method uses a cross-band and spatial co-
occurrence matrix to digitally preserve face images. In a
variety of post-processing settings, the convolutional
neural network architecture achieves a performance
improvement of more than 92% when utilized for
identifying genuine faces.

In this work, we provide a novel approach that builds
several classification models by extracting features from
images using the Orange3 data mining tool. These features
form the basis for training a number of fundamental
classifiers, such as AdaBoost, ANN, GB, and KNN. The
study emphasizes Orange3’s potential as an efficient
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image categorization tool and emphasizes the need for
strong models to counter Al-generated material. This
result show that model performance in image analysis can
be significantly enhanced by integrating a variety of ML
approaches with effective feature extraction. This strategy
not only improves detection techniques but also offers
insightful information about the persistent problem of
recognizing Al-generated images. With everything
considered, the study highlights how incorporating
cutting-edge tools and methods can improve image-
classifying employment accuracy. In the other hand, the
main goal of this research is to create strong classification
models that can distinguish between actual and Al-
generated images. This will enhance detection methods
and offer important insights into the properties of Al-
generated content.

II. METHODOLOGY

Using the Orange3 data mining framework, this paper
proposes a thorough ML model for identifying whether
images of human faces are (Al)-generated or real, as
shown in Fig. 1, which illustrates the proposed model’s
structure. To ensure accurate evaluation, the dataset’s
3,203 images—which were sourced from Kaggle—are
split into 70% for training and 30% for testing. However,
to increase generalization, decrease dimensionality, and
boost computing performance, the SqueezeNet embedder
model is restricted to 1000 features. This choice reduces
the possibility of noisy or insignificant information,
enhances interpretability, and lessens overfitting. This
method produces better machine learning results by
achieving a compromise between efficiency and
information. However, actual and Al-generated images are
included in this category. To improve image quality,
preprocessing operations include scaling, normalization,
and feature extraction using methods like histogram
equalization. From raw pixel data, pertinent visual
elements, including color histograms, texture patterns, and
facial landmarks, are converted into valuable features.
AdaBoost, KNN, GB, and ANN are among the classifiers
used in the model. During model evaluation, a 10-fold
cross-validation process is used to avoid overfitting. The
classification process is evaluated using performance
indicators including Fl-score, accuracy, sensitivity, and
precision. The model’s implementation and visualization
are made easier by Orange3’s attractive interface, which
also makes it possible to analyze feature importance and
decision limits. The goal of the research is to improve
visual content classification by tackling the difficulties
presented by Al-generated images. Consequently, these
procedures in Orange3 will efficiently extract features and
get the dataset ready for reliable image classification as (AI)
or real. The ability to create a thorough ML model is
improved by the user-friendly interface, which makes it
simple to visualize and examine each step of the process.
Fig. 1 shows the structure proposed model while Fig. 2
shows training model using Orange 3.
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Fig. 2. Orange 3 training model.

A. Dataset

The dataset used in this study consists of 3,203 Kaggle
images that are divided into two categories: Al-generated
faces and real human faces. This dataset, created by
Shahzaib Ur Rehman, includes images of Al-generated
synthetic faces as well as genuine human faces, intended
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for use in DL and ML applications. It offers a useful tool
for creating and evaluating classifiers that can recognize
real faces from Al-generated ones. This dataset is carefully
selected to support state-of-the-art research and
applications, making it perfect for tasks like facial image
analysis, deep fake identification, and image authenticity
verification [16]. 30% of the dataset is used for testing,
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while 70% is used for training, to guarantee a thorough  image [17-19]. A modularized CNN known as the Fire
assessment. Each image goes through preprocessing,  module serves as the foundation for SqueezeNet, a thin and
which includes feature extraction, scaling, and powerful CNN model. However, SqueezeNet’s
normalization. To improve image quality, methods like  architecture allows for great precision and few parameters,
histogram equalization are used. To convert raw pixel data ~ which makes it effective for tools with limited resources.
into useful features for analysis, 1,000 features are It employs “fire modules” to extract characteristics from
retrieved, including visual qualities like color histograms,  input images, which are then processed by SoftMax,
texture patterns, and facial landmarks. For the ML model ~ convolutional, and global average pooling layers. The
created with the Orange3 data mining framework, this  architecture of SqueezeNet consists of eight fire modules,
systematic methodology provides the groundwork. Fig. 3~ three max-pooling layers, two convolution layers, one
(a) shows the Al-generated face image, while Fig. 3 (b)  global average pooling layer, and one SoftMax output
shows the real face image. layer, making up the model’s fifteen layers [20-22].
SqueezeNet’s construction is depicted in Fig. 4.

Essential elements such as texture descriptors, color
histograms, and shape attributes can be extracted from
images using the Orange3 tool [23]. For classification
tasks, the “Image Analytics” add-on enables users to
examine geometric attributes such as perimeter, area, and
contour. Local Binary Patterns and Gabor filters are
examples of texture descriptors that capture textural
features, whereas shape attributes are defined for accuracy
[24, 25]. Additionally, Orange3 can effectively extract
more than 1,000 characteristics from images using
o SqueezeNet, which improves the feature extraction

In order to minimize the amount of resources needed, procedure even more. The study’s clarity and depth are
feature extraction is an essential procedure in computer greatly increased by this thorough integration, which also
vision, data mining, image retrieval, and image processing. helps to improve feature relationship analysis and

In order to solve issues and communicate significant  jncreases model robustness and classification accuracy.
elements, it entails removing the visual components of an

(®
Fig. 3. Face images: (a) Image generated by Al and (b) real image.
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Fig. 4. SqueezNet structure [26].

instance classification, especially in complex decision
C. Classification Methods boundaries. GB minimizes overfitting across data types
A branch of Al called ML creates supervised and  and has ahigh prediction accuracy. ANN effectively learns
unsupervised learning algorithms that can learn from and  features and models’ complex relationships, particularly in
predict data that has not been observed previously [27].  image classification problems. These classifiers offer an
However, ML algorithms learn to perform tasks on their  original approach to the classification problem because
own. ML, a technology that teaches machines to handle  they haven’t been widely applied in similar scenarios
data better, is becoming more and more common in data  before, and the studies’ empirical data supports their
mining, image processing, and predictive analytics [28]. In  inclusion as the best classifiers for this investigation. Fig.
statistics and ML, classification techniques are used to 5 illustrates classification techniques that employed in this
group or classify data into specific categories. They are  study.
essential components of data mining and ML. Data
analysis, process classification, and correct decision-
making based on patterns and visions retrieved from the
dataset are all frequently accomplished through the J \ ! \

Machine Learning Classifiers ‘

application of DL and ML [29]. Because of their better
experimental results, the study selected AdaBoost, KNN,
GB and ANN. AdaBoost handles imbalanced datasets and
improves weak classifiers by lowering bias. KNN is a
straightforward and efficient method for proximity-based

AdaBoost GB KNN ANN
Fig. 5. ML classification method.

1) Adaptive Boosting (AdaBoost)
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The AdaBoost algorithm is a supervised learning-based
ensemble technique that creates a robust classifier
distinguishes between positive and negative scenarios by
combining the training of multiple weak classifiers as
shown in Fig. 6 [30, 31]. AdaBoost uses single-level or
partitioned decision trees to merge weak classifiers into a
powerful classifier. This approach assigns equal weights to
each data point, giving points with inaccurate
classifications more weight. In succeeding models, points
with higher weights are given more relevance as the model
trains until a smaller error is achieved. Following each step,

a number of new models are produced based on the prior
model’s sampling error rate. In order to make some
undesirable samples stand out sufficiently to be seen in the
sample guarantee, the sample weight is increased in
accordance with the sampling error rate. Following the
generation of each model, weak learners gain knowledge
by repeated preparation, as per the interaction stated. As a
result, models 1, 2, 3, and N are all separate models,
sometimes referred to as decision trees. To produce an
efficient learner, a combination that is balanced is finally
executed [32-36].

Weight D1 | i J Weak il
Weight D1 Database ran Classifier h1
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Weight D2 Weight D2 - Weak
—— Database Classifier h2

Data!
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Classifier h3

Train-

Database

Weak
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Fig. 6. Structure of AdaBoost [37].

2) K-Nearest Neighbor (KNN)

KNN algorithm is a straightforward, flexible, and
incredibly effective method for classifying data according
to how closely it resembles the training dataset. Identifying
classes according to the number of k values that are closest
to the training data is another usage for it [38—40]. In order
to identify the k closest samples to unknown samples in a
dataset, the KNN classification technique leverages the
distance  between eigenvectors. “Weights”  and
“n_neighbors” are the two main factors that are used to
identify the label of the unknown sample. With inverse
distances and homogenous weights, the weight function
forecasts potential values [41]. Fig. 7 shows the structure

of the KNN algorithm.
9 o

A

Category B Category B
New data point New data point
K-NN assigned to
Category 1

Category A Category A

L L
(- ()

Fig. 7. Structure of the KNN algorithm [42].

3) Gradient Boosting (GB)

GB is a ML technique used for regression and
classification that creates a prediction model as an
ensemble of weak prediction models, usually decision
trees. One of the boosting processes, it constructs the
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model step-by-step and reduces the bias error of the model
[43]. In order to increase prediction accuracy, GB trains
weak classifiers, such as decision trees. It improves
performance in regression and classification tasks by
minimizing bias error and maximizing prediction accuracy
through the application of a cost function known as Mean
Square Error (MSE) [44]. However, by fixing the errors of
the ecarlier models, the basic goal is to progressively
increase the ensemble’s predictive capability, the model is
considered a weak learner if it completes a task just a little
bit better than random guessing. The ensemble consists of
M trees [45]. However, an explanation of the GB model is
provided as

En(x) = %:1Ymhm(x) (D

where Fy(x) is the cumulative prediction after mmm
models have been added to the ensemble, M is the
maximum number of weak learners (e.g., decision trees)
that will be added to the ensemble, ¥, determines how
much the predictions from the new model
hm(x)h_m(x)hm(x) are scaled before being added to the
cumulative prediction Fm(x)F m(x)Fm(x), hn(x) 1is
typically a function or model that is trained to predict the
residuals (errors) of the previous predictions. In many
implementations, this is often a decision tree [46].

As shown in Fig. 8 the context of GB, includes the
variables », x, and y, where r indicates the errors or
residuals from the prior iteration, these residuals are
iteratively corrected by the model in GB to enhance
predictions; x stands for the predictors or input features
that the model uses, the model makes predictions based on
these variables; y indicates the actual output or target
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variable that the model is attempting to forecast, in the
context of categorization, this might stand in for class
labels.
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Fig. 8. Gradient boosting structure [45].

4) Artificial Neural Network (ANN)

Hidden Layer

Input Layer

Fig. 9. ANN classifier structure [49].

Output Layer

Hundreds of individual units, or artificial neurons,
joined by coefficients (weights) that make up the neural
structure, create an artificial neural network, a computer
model inspired by biology as shown in Fig. 9 [47].
Additionally, ANN is composed of three layers: the input,
hidden, and output layers, which is a feed-forward neural
network. It can handle nonlinear functions and learning

100 Accuracy
99
98
97
95
Adaboost KNN GB ANN
(a)
Precision
100
98
96
94 I
92
Adaboost KNN GB ANN
(©)

weights and is useful for addressing problems involving
text, images, and tabular data. ANNs are capable of
learning universal approximations, which are complex
relationships between input and output data. ANNs are
used by researchers to resolve complicated issues like
WiFi and cellular networks coexisting in unlicensed
spectrum [48].

III. RESULTS AND DISCUSSION

Once the primary model assumptions have been tested
and validated, it is crucial to examine how well the
proposed model predicts. Therefore, the suitability of the
suggested models was assessed using assessment measures.
Because of this, the confusion matrix is a useful instrument
for evaluating the performance of the classification and
prediction algorithms. In accuracy rate computations, it
calculates the proportions of True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative
(FN) [50-55]. This study examined the effectiveness of the
suggested model using the F-measure, accuracy, precision,
and sensitivity, as indicated in (2), (3), (4), and (5):

TP+TN

Accuracy = ——— 2)
TP+TN+FP+F

TP
Sensitivity = 3
Y= 1rs 3)

- TP

Precision = 4)

TP+FP

2xPrecisionxSensitivit,

F — measure = 4 5)

Precision+Sensitivity

However, Fig. 10 illustrates the performance matrices
evaluation by using Orange3 to assess the effectiveness of
classifiers: Fig. 10 (a) accuracy, Fig. 10 (b) the F-measure,
Fig. 10 (c) precision and Fig. 10 (d) sensitivity.

F-measure
100
98
96
92
Adaboost KNN GB ANN
(b)
Sensitivity
100
98
96
92
Adaboost KNN GB ANN
(d)

Fig. 10. Performance matrices evaluation: (a) Accuracy of all classifiers, (b) F-measure of all classifiers (c) precision of all classifiers, and (d)
sensitivity of all classifiers.

Several methods, including AdaBoost, ANN, GB, and
KNN, were employed in this study to classify real vs. Al-
generated images.

The confusion matrix is used to evaluate each
algorithm’s performance, Fig. 11 describes the confusion
matrix of classifiers using Orange3: (a) confusion matrix
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of ANN, (b) confusion matrix of KNN, (c) confusion
matrix of GB, and (d) confusion matrix of AdaBoost, as
shown in Fig. 11 (a), (b), (c), and (d), respectively.

The study examined how well different classification
models performed in differentiating between actual and
artificial intelligence-generated images of human faces.
AdaBoost classifier achieved 97.07% accuracy rate while
the accuracy of the KNN model was 99.4%, high-
dimensional data and computational resources may limit
its effectiveness. With a remarkable accuracy of 99.8%,
the GB model proved its capacity to capture the
complexities of the dataset. The remarkable 99.9%
accuracy of the ANN model was ascribed to its capability
to identify intricate in the data. However, in real-time
applications, the complexity and resource requirements
could provide difficulties. The study indicated that while

AdaBoost offers a strong basis, KNN, GB, and ANN
greatly improve classification accuracy and reliability. To
overcome the weaknesses of individual models and
capitalize on the advantages of several classifiers, future
studies could investigate ensemble approaches. The study
emphasizes how crucial it is to choose the right
categorization methods when dealing with Al-generated
content because incorrect classification can have serious
implications in a number of areas, such as media integrity
and security. Fig. 12 depicts a comparison of performance
matrices of all classifiers, while Table I shows
classification results and performance evaluation. Also,
Table I presents the findings of the comparison of the
classifier’s performance evaluation of the suggested model
with earlier research.
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Fig. 11. Confusion matrix evaluation: (a) confusion matrix of ANN, (b) confusion matrix of KNN, (c) confusion matrix of GB, and (d) confusion
matrix of AdaBoost.
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[4] /2023 Supervised machine learning F-measure > 0.95 Proposed AdaBoost, ANN, GB and KNN Accuracy 99.9 %

models

using Orange3 data mining tool
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In the other hand, this work used a visual representation
of a binary classifier’s performance is the Receiver
Operating  Characteristic (ROC) curve [56]. In
computational statistics and ML, it is now the accepted
metric for assessing binary classifications. The area under
the ROC curve (AUC) measures the classifier’s overall
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performance, whereas the ROC curve efficiently illustrates
the trade-offs between true positive and false positive rates.
This tool is crucial for evaluating binary classifiers’
performance in a range of applications [57-60]. However,
Fig. 13 illustrates the ROC curve that is utilized to assess
the effectiveness of classifiers using Orange3: (a) ROC
curve analysis according to Al and (b) ROC curve analysis
according to real target.

Additionally, the performance curve is employed to
assess classifier performance. Lift curves, cumulative
gains, and precision-recall curves are the three types of
curves that compare the fraction of genuine positive data
occurrences to the classifier’s threshold [61]. The model is
improved with a longer flatness and a larger initial curve,
as Fig. 14 illustrates. The performance curve is also
utilized to assess the effectiveness of classifiers using
Orange3. Al target performance curves are shown in Fig.
14 (a); real target performance curves are shown in

Fig. 14 (b).
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IV. CONCLUSION

Creating a ML model that can distinguish between
actual and artificial intelligence-generated human face
images is the main objective of the work. The model makes
use of a collection of 3,203 photos from Kaggle, which are
separated into images created by Al and actual human
faces, using the Orange3 data mining framework. The
study extracted visual features from the images using
feature extraction, which forms the basis of classification
systems. AdaBoost, K-NN, GB, and ANNs are among the
techniques used in the model. F1-score, recall, accuracy,
and precision are some of the measures was used to
evaluate how well these classifiers work. To determine
which of the four algorithms was the best classifier, a
comparative analysis was conducted. The results showed
that the ANN classifier had the highest accuracy, at 99.9%.
By addressing the consequences of Al-generated images
in a variety of fields, such as media, entertainment,
security, and privacy, the work seeks to advance the
conversation regarding the authenticity of visual
information and improve the capacity to distinguish
between real and artificial faces. Additionally, Limitations
of the classifier study include a particular dataset that
might not accurately represent real-world situations,
concentrating on a small number of classifiers without
investigating other algorithms or hybrid models, and
failing to consider each aspect of classifier performance.
Making decisions might be difficult due to the ANN
model’s interpretability, particularly in high-stakes
industries like healthcare and finance. Furthermore, the
study did not take into consideration the computational
resources needed for practical use, which can have an
impact on their viability. Understanding these limitations

can motivate further study for better classification methods.

V. FUTURE WORK

Future image classification research can increase
robustness and accuracy by creating hybrid models with
different algorithms, utilizing transfer learning for small
datasets, refining real-time classification systems for
dynamic environments, improving explain ability, adding
adversarial training to make them insensitive to
manipulation, and growing datasets to include a variety of
Al-generated images. Ethical issues and cross-domain
applications can increase these classifiers’ effectiveness.
However, this study explores the potential applications of
classifiers like AdaBoost and ANN in various industries,
including supply chain management, healthcare, finance,
retail, transportation, and environmental monitoring.
These models can improve demand forecasting, diagnostic
accuracy, credit scoring, customer experience
customization, autonomous vehicle decision-making, and
environmental monitoring. By transforming empirical data
into insights, these classifiers can stimulate innovation,
enhance decision-making, and advance society by
fostering the development of more effective systems.
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