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Abstract—In wireless networks, managing an increasing 
number of users becomes increasingly challenging as user 
density rises. To address these challenges, various 
algorithms are employed to divide users into smaller, more 
controllable groups. This approach is crucial for optimizing 
the performance of Non-Orthogonal Multiple Access 
(NOMA) systems, which are a key component of next-
generation wireless networks like 5G and 6G. User grouping 
schemes in NOMA systems are essential for optimizing 
resource allocation, mitigating interference, improving 
spectral efficiency, ensuring fairness, and reducing 
complexity. As wireless networks evolve, particularly with 
the integration of advanced technologies like Coordinated 
Multi-Point (CoMP), Internet of Things (IoT), Millimeter-
Wave (mmWave), Terahertz (THz), Unmanned Aerial 
Vehicles (UAVs), Multi-Input Multi-Output (MIMO), and 
5G-6G, effective user grouping will become increasingly 
critical. This research paper provides a systematic 
classification and analysis of various user grouping schemes, 
offering valuable insights for enhancing network 
performance in next-generation wireless networks. 

Index Terms—User grouping schemes, Non-Orthogonal 
Multiple Access (NOMA), Coordinated Multi-Point (CoMP), 
Unmanned Aerial Vehicles (UAV), Internet of Things (IoT) 

I. INTRODUCTION 

In the future, wireless networks are poised to handle 
massive data rates due to the proliferation of bandwidth-
intensive applications, streaming services, and emerging 
technologies. The sheer volume of users and connected 
devices is also expected to surge. To meet these 
unprecedented demands, network architects must develop 
efficient strategies. One such approach is network 
partitioning, where the network is divided into smaller 
user grouping and employs appropriate algorithms. This 
enables more effective resource management by allowing 
localized resource allocation, thereby mitigating 
congestion and interference. Non-orthogonal multiple 
access (NOMA) is a promising technology for next-

generation wireless networks, enhancing spectral 
efficiency and bandwidth utilization [1]. It allows 
multiple users to share the same radio resources, allowing 
them to operate in the same frequency band and 
simultaneously [2]. NOMA distinguishes users based on 
their power levels, allowing them to coexist within the 
same resource block [3]. It was proposed as a candidate 
radio access technology for 5G cellular systems, as it 
serves multiple users using the same time and frequency 
resources, leading to improved system performance. 

In NOMA networks, the adoption of user grouping 
strategies is crucial to tackling various critical challenges 
and enhancing network performance. A primary objective 
is to improve spectral efficiency. By grouping users based 
on similar channel characteristics or quality of service 
requirements, NOMA networks can more effectively 
allocate orthogonal resources, resulting in increased 
capacity utilization and better spectrum utilization using 
Power Domain (PD) NOMA [4]. PD-NOMA is a 
technique for enhancing performance in downlink 
cooperative networks by serving users around a 5G base 
station at the same frequency and time but with varying 
power levels, [5] using superposition coding and 
Successive Interference Cancellation (SIC).  

 
Fig. 1. Two users PD-NOMA scenario. 

In a two-user PD-NOMA scenario, as shown in Fig. 1 
one user near the base station is considered strong due to 
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its substantial channel gain, while the other is weak due 
to diminished channel gain. Both signals are combined at 
the transmitter end using distinct power coefficients. Path 
loss affects the weak user, causing a greater portion of 
power to be allocated to the weak user. This results in a 
higher Signal-to-Noise Ratio (SNR) for the weak user’s 
Signal, Indicating (SIC). However, the strong user’s 
transmission is perceived as noise at the weak user’s 
receiver. Furthermore, user grouping schemes promote 
fairness and quality of service provisioning by enabling 
more equitable resource allocation tailored to individual 
user needs. Lastly, the adoption of clustering schemes 
simplifies resource allocation algorithms, reducing 
computational complexity and overhead. 

This research paper introduces novel contributions to 
the understanding of NOMA and its user grouping 
schemes in next-generation wireless networks. It provides 
new frameworks, comparative analyses, and syntheses 
that offer fresh perspectives on optimizing network 
performance, especially in high-density user 
environments. These contributions offer new perspectives 
and tools that will shape the future of wireless 
communications in dense and complex environments, 
going beyond merely cataloging existing knowledge. 

II. INTEGRATION OF NOMA WITH MULTIPLE 

TECHNOLOGIES 

 
Fig. 2. NOMA integration with multiple technologies. 

The integration of NOMA with various technologies, 
as illustrated in Fig. 2, including Coordinated Multi-Point 
(CoMP) transmission and reception, the Internet of 
Things (IoT), and more, offers the potential to unlock 
new capabilities and improve the performance of wireless 
communication systems across a wide range of 
applications NOMA user grouping schemes have been 
applied in various scenarios and real-world case studies, 
particularly in next-generation wireless networks like 5G 
and emerging 6G technologies. In a European Union 
research project, NOMA user grouping was integrated 
with CoMP to enhance coverage and throughput in 
suburban environments. In a smart factory deployment in 
Germany, it was used to manage communication between 
IoT devices, allowing for more effective resource 
allocation and reduced interference. NOMA user 
grouping was also used in disaster recovery exercises in 
Southeast Asia, where Unmanned Aerial Vehicles (UAVs) 
were used to provide temporary wireless coverage. In 5G 
trials in New York City, NOMA-based user grouping was 
applied to Millimeter-Wave (mmWave) communication 
systems to manage interference and optimize resource 
allocation. The trials demonstrated significant 

improvements in data throughput and coverage reliability 
in urban environments. 

A. CoMP-NOMA 

CoMP techniques involve the coordinated operation of 
multiple base stations to improve coverage, spectral 
efficiency, and user experience. CoMP techniques 
improve services for cell-edge users by enhancing data 
rates. They can be categorized into three types: 
Coordinated Scheduling and Coordinated Beamforming 
(CS/CB), Joint Transmission (JT), and Transmission 
Point Selection (TPS) [6]. CS/CB involves Base Stations 
(BSs) coordinating scheduling decisions and 
beamforming strategies to optimize user performance. JT 
involves simultaneous transmission from multiple BSs to 
a single user, enhancing signal quality and system 
capacity. TPS focuses on selecting the most suitable BS 
for serving a specific user based on channel conditions 
and other relevant factors. By integrating NOMA with 
CoMP, resources can be optimally allocated across 
coordinated base stations, enabling better interference 
management, enhanced user fairness, and higher system 
capacity [7–9]. NOMA’s ability to exploit multi-user 
diversity and power domain multiplexing complements 
the coordinated beamforming and interference 
coordination aspects of CoMP, resulting in improved 
network performance [10]. 

B. IoT-NOMA 
Conventional Orthogonal Multiple Access (OMA) 

methods, including Time-Division Multiple Access 
(TDMA) and Frequency-Division Multiple Access 
(FDMA), assign distinct time slots or frequency bands to 
various devices for transmission. However, these 
techniques may not be suitable for IoT networks due to 
the large number of devices and sporadic traffic patterns. 
NOMA, on the other hand, allows multiple devices to 
share the same time-frequency resources by utilizing 
power domain multiplexing. In NOMA, devices with 
better channel conditions are allocated more power, 
allowing them to transmit with higher reliability even if 
they share the same resources with devices experiencing 
poorer channel conditions. IoT-NOMA adapts the 
NOMA concept specifically for IoT applications, where 
the devices typically have low-power and low-complexity 
constraints [11]. By efficiently managing the allocation of 
resources among IoT devices, IoT-NOMA aims to 
improve the spectral efficiency, reliability, and scalability 
of IoT networks [12–14]. This can be particularly useful 
in scenarios where a large number of IoT devices need to 
transmit small amounts of data sporadically, such as in 
smart cities, industrial automation, and environmental 
monitoring applications. 

As NOMA systems are increasingly integrated with 
IoT and other sensitive technologies, addressing security 
and privacy concerns is critical. These concerns, ranging 
from eavesdropping and interference-based attacks to 
privacy issues in user grouping and DoS attacks, 
highlight the need for robust security mechanisms 
tailored to the unique characteristics of NOMA. By 
employing advanced encryption, privacy-preserving 
algorithms, decentralized resource allocation, and strong 
authentication protocols, NOMA systems can be made 
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more secure and resilient, ensuring the safe deployment 
of these technologies in next-generation wireless 
networks. 

C. UAV—NOMA 

UAVs are increasingly being deployed for various 
applications, including aerial surveillance, disaster 
management, and delivery services. Integrating NOMA 
with UAV communication systems can enhance their 
performance by enabling efficient spectrum utilization, 
improved connectivity, and enhanced coverage [15–17]. 
UAV-NOMA systems improve spectral efficiency by 
enabling multiple UAVs to share the same frequency 
resources, especially in limited spectrum availability or 
high-bandwidth communication scenarios [18]. NOMA’s 
power allocation strategy ensures UAVs with better 
channel conditions receive higher power allocations, 
enhancing data rates and throughput. This is crucial for 
real-time data transmission and high-bandwidth 
communication links. NOMA also enhances the 
reliability of UAV communication links by dynamically 
adjusting power allocations based on channel conditions, 
ensuring robust communication even in challenging 
environments or interference. UAV-NOMA systems can 
facilitate the deployment of IoT devices and sensor 
networks in remote or inaccessible areas by providing 
reliable and high-throughput communication links [19]. 
This enables applications such as environmental 
monitoring, precision agriculture, disaster response, and 
infrastructure inspection. 

D. mmWave—NOMA 

mmWave communication refers to the use of 
electromagnetic waves with frequencies in the millimeter 
range, typically between 30 GHz and 300 GHz, for 
wireless communication [20]. These frequencies offer 
significantly wider bandwidths compared to lower 
frequency bands used in traditional wireless 
communication systems, enabling higher data rates and 
capacity. mmWave technology is a key enabler for next-
generation wireless networks, including 5G and beyond, 
due to its potential to deliver multi-gigabit-per-second 
data rates and support for massive connectivity. mmWave 
communication combined with NOMA techniques offers 
several advantages, including increased spectral 
efficiency due to wide bandwidths, enhanced throughput 
for users with favorable channel conditions, improved 
reliability in varying channel conditions, and support for 
massive connectivity [21–23]. NOMA’s power allocation 
scheme ensures reliable transmission, even in challenging 
environments, by allocating more power to users 
experiencing better channel conditions. Additionally, 
mmWave NOMA can support a large number of devices, 
including IoT devices, by efficiently managing resource 
allocation among them. Overall, mmWave-NOMA offers 
numerous benefits for network performance. 

E. Terahertz (THz)—NOMA 

Terahertz frequencies refer to the electromagnetic 
spectrum with frequencies typically ranging from 0.1 to 

10 terahertz, or equivalently, wavelengths between 30 
micrometers and 3 millimeters [24]. Terahertz waves 
offer vast bandwidths and the potential for extremely 
high data rates, making them a promise for ultra-fast 
wireless communication. THz communication combined 
with NOMA offers several benefits, including enhanced 
spectral efficiency, improved throughput, and reliable 
communication [25, 26]. The wide bandwidth in the 
terahertz spectrum, combined with NOMA’s power 
domain multiplexing, allows for more efficient utilization 
of frequency resources, leading to higher data rates and 
capacity in THz communication systems [27]. NOMA’s 
power allocation strategy ensures users with better 
channel conditions receive higher power allocations, 
resulting in faster data transmission rates. It also enhances 
the reliability of THz communication links by 
dynamically adjusting power allocations based on 
channel conditions, ensuring robust communication even 
in challenging environments or interference. THz-NOMA 
systems can support a massive number of devices or users 
[28], each with different channel conditions, scalability is 
crucial for applications like IoT.  

F. MIMO-NOMA  

MIMO is a wireless communication technology that 
enhances data throughput and link reliability by using 
multiple antennas at the transmitter and receiver [29]. It 
uses spatial diversity and multipath propagation to 
transmit multiple data streams simultaneously, enhancing 
spectral efficiency and system capacity. MIMO 
technology combined with NOMA techniques offers 
several benefits, including increased spectral efficiency, 
enhanced throughput, and support for massive 
connectivity [30, 31]. MIMO-NOMA systems utilize 
both spatial and power domain multiplexing, allowing 
multiple data streams to be transmitted simultaneously 
over the same frequency band, resulting in increased data 
throughput and capacity. This approach also allows for 
higher data rates compared to traditional systems, as users 
with better channel conditions can be assigned higher 
power levels and transmitted over multiple spatial 
streams. Additionally, MIMO-NOMA can support a large 
number of users or devices by efficiently managing 
spatial and power resource allocation, making it crucial 
for applications like IoT [32, 33] and future wireless 
networks. 

G. 5G/6G—NOMA 

The evolution from 5G to 6G communications will 
bring about new requirements, use cases, and 
technological challenges. NOMA is expected to play a 
significant role in shaping the future of wireless 
communication systems, bridging the gap between 
current and future generations of mobile networks. 5G 
networks aim for higher data rates, lower latency, and 
increased reliability [34, 35]. NOMA can help achieve 
these goals by enabling efficient sharing of time-
frequency resources among multiple users, leading to 
increased spectral efficiency. This scalability is crucial 
for applications like smart cities, industrial automation, 
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and healthcare, as 5G networks support a massive number 
of devices, including IoT devices and sensors [36, 37]. 

6G networks aim to support higher data rates and lower 
latency [38]. NOMA can help achieve this by efficiently 
using available spectrum resources and enabling 
simultaneous transmission of multiple data streams. 
Combining 6G with IoT supports a massive number of 
devices [39, 40]. 6G networks may also integrate satellite 
communication for ubiquitous connectivity across urban, 
rural, and remote areas, ensuring seamless connectivity 
and high-quality service delivery [41, 42]. 

The integration of NOMA with multiple technologies 
offers a pathway toward more efficient, scalable, and 
versatile wireless communication systems. By leveraging 
NOMA’s unique capabilities in resource allocation, 
interference management, and multi-user diversity, these 
integrated solutions can address the evolving demands of 
modern communication networks across a wide range of 
applications and deployment scenarios. 

III. USER GROUPING SCHEMES IN NOMA 

The NOMA system employs various user grouping 
schemes to optimize resource allocation, interference 
management, and system performance. These schemes 
use algorithms and strategies to categorize users based on 
different criteria, as illustrated in Fig. 3. 

 
Fig. 3. User grouping schemes in NOMA 

A. K-Means Clustering Based User Grouping 

K-means clustering simplifies resource allocation in 
scenarios where a Base Station (BS) serves multiple users. 
It achieves this by grouping users based on their Channel 
State Information (CSI) and spatial correlation.  

The K-means algorithm is employed to cluster users 
based on their CSI, and subsequently, the users are 
grouped into distinct clusters based on their proximity to 
the cluster centers [43]. This approach has demonstrated 
an effective trade-off between the aggregate data rate and 
user fairness.  

K-means clustering is useful for grouping users with 
similar channel conditions together. This grouping can 
help in allocating the available resources optimally, such 
as power allocation and subcarrier allocation, in NOMA 
systems. K-means clustering can also be employed to 
group users based on their proximity or similarity in 
terms of their channel characteristics, traffic patterns, or 
quality of service requirements [44]. This grouping can 
aid in efficiently applying NOMA techniques to serve 
multiple users simultaneously. NOMA relies on the 
principle of Successive Interference Cancellation (SIC) to 
decode multiple signals simultaneously at the receiver. K-
means clustering can be used to group users in a way that 
minimizes interference among them, thereby enhancing 
the performance of SIC. In NOMA systems employing 
beamforming techniques, K-means clustering can help in 
grouping users that can be served by the same 
beamforming vector [45]. This can lead to improved 
spectral efficiency and reduced interference. Table I 
shows a summary of K-means clustering-based user 
grouping in NOMA. 

 

TABLE I: K-MEANS CLUSTERING BASED ON USER GROUPING IN NOMA 

Ref. Classification System model Problem Design objective Optimization method Main findings 

[46] mmWave -
NOMA 

Downlink+ single 
BS+ Multiple users+ 
Multiple clusters. 

To optimize the 
performance of 
mm Wave NOMA 
systems in 
imperfect (SIC) 
involving efficient 
user grouping, 
beamforming 
optimization, and 
power allocation. 

To develop algorithms 
that jointly address user 
grouping, beamforming, 
and power allocation to 
maximize the 
throughput. 

Cross entropy (CE) & 
K-mean based clustering 

The proposed algorithms 
for joint user grouping, 
beamforming, and power 
allocation in mmWave-
NOMA systems with 
imperfect SIC. 

[47] UAV-NOMA 

Downlink+ 
Single BS+ Single 
UAV+ Multiple 
users. 

The optimization 
challenges in a 
downlink NOMA 
system integrated 
with UAVs. 

To improve user pairing 
and power allocation in a 
downlink NOMA-UAV 
system, taking into 
account the 
imperfections in SIC. 

K-mean clustering algorithm 

The performance 
improvements achieved by 
the proposed machine 
learning-based approach 
for user pairing and power 
allocation in the downlink 
NOMA-UAV system with 
imperfect-SIC. 

[48] 6 G -NOMA Downlink + One BS 
+ Multiple users 

To address the 
challenges posed 
by short-packet 
communication in 
(6G) networks. 

To achieve low-latency 
communication while 
ensuring extended 
coverage and spectral 
efficiency. 

K-means algorithm 

The study evaluates the 
performance of the short-
packet C-NOMA 
communication system, 
revealing the influence of 
channel usage and the 
number of UEs on BLER 
and sum rate. 

[49] CoMP-NOMA Downlink+ Multiple 
BS+ Multiple users 

To address re-
source allocation 
issues for CoMP- 
NOMA networks, 
addressing the 

To optimize resource 
allocation to enhance 
system performance. 

K-means algorithm & Adap-
tive User Pairing algorithm 
(AUP) 

The proposed scheme, 
demonstrated through 
simulation, is more 
effective in enhancing the 
system sum-rate and 
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challenges of 
spectrum scarcity 
and inter-network 
interference. 

reducing interference in 
ultra-high user and base 
station density compared 
to other techniques. 

[50] MMC Net-
works- NOMA 

Downlink One BS 
+Multiple users+ 2 
cluster 

Addressing the 
limitations of 
traditional K-
means clustering 

Enhance clustering by 
integrating NOMA 
principles into the K-
means algorithm in 
MMC Networks 

Enhanced K-means algo-
rithm 

The proposed scheme 
demonstrated superior net-
work sum throughput 
compared to traditional K-
means. 

[51] MISO-NOMA Uplink + One BS 
multiple K users 

Investigating the 
user grouping and 
power control in 
the uplink (MISO-
NOMA) networks. 

To develop an effective 
user grouping scheme 
for multiantenna uplink 
NOMA transmission. 

K-means algorithm 

The study proposes a 
terference-compression-
based user grouping 
method for overall power 
control, followed by a per-
cluster power adjustment 
and an improved K-means 
method for channel 
correlations and gain 
differences. 

[52] THz-MIMO-
NOMA 

Downlink+ One 
Micro BS +Multiple 
small BS + Multiple 
users 

Addressing energy 
efficiency 
challenges in 
Terahertz MIMO-
NOMA systems, 
particularly related 
to user grouping, 
hybrid precoding, 
and power 
optimization. 

Develop an energy-ef-
ficient user grouping 
algorithm for Terahertz 
MIMO-NOMA systems 

Enhanced K-means algo-
rithm 

The study proposes a fast 
convergence scheme for 
user grouping in a NOMA-
MIMO system using an 
enhanced K-means 
machine learning 
algorithm, utilizing a 
hybrid precoding scheme 

[53] mmWave-
NOMA 

Downlink + One BS 
+Multiple users 

Addressing 
challenges in user 
grouping for 
mmWave-NOMA 
systems, with a 
focus on eraging 
unsupervised 
machine learning 
techniques. 

To develop an unsuper-
vised machine learning-
based user grouping 
algorithm for mmWave-
NOMA systems 

K-means 
algorithm 

Channel correlations 
efficiently measure K-
means-based clustering, 
and a closed-form 
expression for optimal 
power allocation is 
developed for each cluster, 
assuming equal allocation 
of power. 

 

B. Coalitional Game Theory-Based User Grouping 

Coalitional game theory can indeed be applied in the 
context of NOMA systems. In NOMA, multiple users 
share the same time-frequency resources, but their signals 
are separated based on power domain multiplexing rather 
than traditional orthogonal allocation. Coalitional game 
theory can be used to model the interactions between 
users in forming coalitions to improve their individual or 
collective utilities. Users in a NOMA system can form 
coalitions based on their mutual interests, such as 
improving their overall throughput, minimizing 
interference, or maximizing their fairness in resource 
allocation. Coalitional game theory provides frameworks 
for users to form stable coalitions where they can 
cooperate to achieve common goals [54]. Within each 
coalition, users can negotiate and cooperate to allocate 
transmit power, subcarrier assignment, or other resources 
optimally to maximize their joint utility.  

Coalitional game theory helps in modeling these 
negotiations and designing mechanisms for fair and 
efficient resource allocation [55]. Users belonging to 
different coalitions may have conflicting interests, 
especially in NOMA where power-domain multiplexing 
introduces inter-user interference. Coalitional game 
theory can be used to model the interactions between 
different coalitions, where they may cooperate or 
compete to optimize their individual or collective utilities. 
Coalitional game theory also addresses the stability and 
fairness of coalition formations [56]. Stable coalition 
structures ensure that no subset of users has an incentive 
to deviate from their coalition and form a new one. 
Moreover, coalitional game theory provides mechanisms 
for ensuring fairness in resource allocation among users 
within and across coalitions. Table II shows a summary 
of Coalitional game theory-based user grouping in 
NOMA.

TABLE II: COALITIONAL GAME THEORY-BASED USER GROUPING IN NOMA 

Ref. Classification System model Problem Design objective Optimization method Main findings 

[57] UAV-NOMA 

UAVs, + 
attacker, and 
ground 
nodes 

To address the 
security challenges 
in unmanned aerial 
vehicle (UAV) 
communications. 

 To create a secure 
communication 
framework for UAVs 

Efficient incentive scheme 
based on the coalitional 
game 

The proposed scheme 
enhances the utilities of 
legal UAVs and network 
security compared to 
conventional schemes, 
according to simulation 
results. 

[58] UAV-IoT-NOMA 
 UAVs, + IoT 
devices+ 
satellites+ 

To address security 
issues in UAV 
communications 

The goal is to minimize 
the computational 
overhead of terminal 

A low-complexity algorithm 
based on a coalition game 
approach 

The proposed algorithm 
effectively optimizes 
UAV emergency 
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control center during emergency 
situations, focusing 
on improving 
network services and 
ensuring efficient 
communication for 
UAVs in critical 
situations. 

devices (such as marine 
Internet of Things (IoT) 
devices) while ensuring 
timely task completion 
and energy efficiency 

communication in a 
NOMA-based marine IoT 
context, demonstrating its 
feasibility compared to 
existing schemes in the 
literature. 

[59] JT-CoMP -NOMA 

Downlink + 
Multiple BS+ 
Multiple users  

 

Addressing the 
challenge of 
providing improved 
service to cell-edge 
users in downlink 
NOMA 

To develop a solution 
using coalition 
formation games for 
optimizing the 
downlink NOMA and 
MU-MIMO small cell 
systems 

Coalition formation algo-
rithm 

The proposed scheme 
successfully formed 
coalitions of RRHs, 
facilitated intercell inter-
interference cancellation 
for cell-edge users, and 
resulted in an immediate 
increase in throughput. 

[60] JT-CoMP-NOMA 
Downlink+ 
Multiple BS+ 
Multiple users 

Addressing the 
challenge of radio 
resource 
management in small 
cell networks and 
NOMA for improved 
efficiency. 

To improve spectral 
efficiency, overall 
network performance, 
and resource allocation 
among users. 

Cooperative Coalition game 
algorithm 

The Cooperative Coalition 
game algorithm forms 
optimal Remote radio 
heads (RRH), groups, 
improving edge user 
throughput and overall 
cell network throughput, 
as shown in the results. 

[61] 5G -NOMA 
Uplink+ Single 
BS+ Multiple K 
users  

Addressing the chal-
lenge of user 
grouping in NOMA 
systems with a focus 
on generalized and 
overlapping 
scenarios. 

To develop a solution 
for generalized user 
grouping in NOMA 
based on an 
overlapping coalition 
formation game. 

Overlapping coalition 
formation (OCF) algorithm 

The algorithm 
successfully converges to 
a stable coalition structure 
within finite iterations, 
enabling efficient 
optimization of GuG and 
power control solutions. 

[62] MEC network-
NOMA 

Uplink+ Single 
BS+ Multiple 
UE users’ 
equipment’s 

Investigating 
Computation 
offloading in multi-
carrier NOMA-
enabled MEC 
systems. 

To minimize the energy 
consumption and/or 
overall latency of UEs 

Coalition formation game 

A low-complexity 
algorithm that achieves 
Nash-stable solution and 
outperforms baseline 
schemes. 

[63] MIMO-NOMA 

Downlink+ 
Single BS+ two 
mobile users 
(Mus). 

Investigating 
MIMO-NOMA 
clustering with 
beamforming and 
power allocation 

To minimize the power 
consumption of MUs 

An improved coalition game 
approach 

The study presents a linear 
optimization method for 
beamforming and power 
allocation, as well as a 
low-complexity algorithm 
for MU clustering. 

[64] mm-wave-NOMA 

Downlink+ 
Single BS+ 
Multiple N 
users’ 

Investigating User 
grouping and power 
allocation in 
mmWave-NOMA 
systems. 

To maximize the sum 
rate of the system. 

A Stackelberg game 
approach 

The study presents a low-
complexity algorithm for 
user grouping and power 
allocation, comparing its 
performance with OMA-
based schemes.  

 

C. Genetic Algorithm-Based User Grouping  

Using a genetic algorithm (GA) for user grouping in 
NOMA systems can be an innovative approach to 
optimize resource allocation and enhance system 
efficiency. NOMA allows multiple users to share the 
same time-frequency resources, exploiting the power 
domain for multiplexing, which is particularly beneficial 
for enhancing spectral efficiency and accommodating 
diverse quality-of-service requirements. GA is used to 
solve complex optimization problems [65], such as non-
convex and challenging resource allocation problems. 
They adapt to changing environments, user requirements, 
and system constraints, finding robust solutions even 
when channel information is imperfect or noisy. GA aids 
in user grouping and pairing decisions, enhancing system 
efficiency [66]. It strikes a balance between exploring 
new solutions (diversification) and exploiting promising 
ones (intensification), ensuring efficient resource 
utilization while avoiding premature convergence to 
suboptimal solutions. By balancing fairness, throughput, 

and energy efficiency, GA helps optimize user clusters 
and ensure efficient resource utilization in NOMA 
systems. 

Researchers have developed a Genetic Algorithm (GA) 
to optimize Energy Efficiency (EE) in downlink wireless 
systems by combining millimeter-wave technology with 
non-NOMA [67]. The algorithm targets the asymmetric 
data rate of user applications, specifically addressing the 
non-convex Energy Efficiency (EE) problem in an 
imperfect channel state information (CSI) downlink mm-
Wave NOMA system. A recent study proposes an 
energy-efficient resource allocation scheme using a 
Genetic Algorithm (GA) for heterogeneous networks [68]. 
The study focuses on designing an energy-efficient 
scheme that enables shared spectrum access for small 
cells while maintaining the quality of service for macro 
cell users. Additionally, the scheme aims to reduce 
overall energy consumption by transitioning underutilized 
small cells to sleep mode. Table III shows the summary 
of genetic algorithm-based user grouping in NOMA. 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 13, No. 6, 2024

447



TABLE III: GENETIC ALGORITHM-BASED USER GROUPING IN NOMA 

Ref. Classification System model Problem Design objective Optimization method Main findings 

[69] IoT-NOMA 
Downlink + 
Single BS+ 
Multiple users 

The optimization 
challenges in 
(NOMA) 
networks 
integrated with 
(IoT) devices 

To develop a novel 
optimization algorithm for 
multi-objective 
optimization in NOMA-
IoT networks. 

Genetic Algorithm-Based 
Reinforcement Learning 
(GA-RL) 

The GA-RL algorithm for 
multi-objective op-
timization in NOMA-IoT 
networks is evaluated for 
improvements in system 
throughput, delay 
reduction, energy 
efficiency enhancement, 
and fairness compared to 
traditional techniques. 

[70] MIMO-NOMA 

Downlink + 
Multiple BS+ 
Multiple users’ 
equipment’s 

Optimization 
challenges in 
downlink MIMO 
heterogeneous 
networks, focus-
ing on 
beamforming 
techniques to im-
prove NOMA 
system per-
formance in di-
verse 
environments 

The study focuses on 
designing semi-blind 
beamforming techniques 
for downlink MIMO-
NOMA heterogeneous 
networks to optimize 
system throughput, 
minimize interference, 
and enhance user fairness. 

Genetic algorithm GA-
based heuristic 
optimization scheme 

The paper presents 
performance analysis and 
evaluation results of a 
proposed semi-blind 
beamforming algorithm for 
downlink MIMO-NOMA 
heterogeneous networks, 
highlighting improvements 
in system throughput, 
interference mitigation, and 
spectral efficiency. 

[71] UAV-NOMA 

Downlink + 
multiple UAV + 
multiple cluster + 
multiple user 
each cluster 

To address the 
issue of efficient 
resource 
allocation in 
multi-cluster 
NOMA networks 
involving UAVs, 
focusing on 
spectral 
efficiency, 
interference 
minimization, and 
resource 
utilization 
optimization. 

To develop a novel 
resource allocation 
scheme for multi-cluster 
NOMA-UAV networks, 
enhancing performance 
metrics like throughput, 
latency, and energy 
efficiency. 

Genetic algorithm 

Optimization of UAV 
transmission power, 
hovering locations, and 
duration using optimal 
clusters and routing, 
adopting SCA for convex 
subproblems, and 
proposing an iterative 
algorithm for resource 
allocation. 

[72]  V2X-NOMA 

Downlink+ 
Single BS+ 
Multiple UE 
users’ equip-
ment’s 

Latency and user 
throughput 
problem in 
NOMA systems 

Maximize the sum rate of 
the system 

A genetic algorithm 
approach with continuous 
pool 

The study presents a low-
complexity algorithm for 
hyper-fraction channel and 
power allocation, 
comparing its performance 
with OMA-based schemes. 

[73] 5G-NOMA 

Downlink+ 
Single BS+ 2 
(UE) users’ 
equipment’s 

Addressing Multi-
user radio 
resource al-
location for 
NOMA downlink 
systems 

Maximize the geometric 
mean of user throughputs Genetic algorithm (GA) 

A robust heuristic that 
swiftly converges to the 
desired solution, balancing 
the balance between system 
throughput and user 
fairness. 

[74] NOMA 
Downlink+ 
Single BS+ 
multiple M users 

User grouping in 
the NOMA 
scenario with no 
limit on the 
number of users 
in each cluster 

Maximize the system’s 
total throughput under 
minimum rate constraints 

Genetic algorithm (GA) 

The algorithm is designed 
to minimize computational 
complexity and outperform 
other heuristic and random 
user grouping methods 
using a greedy strategy. 

[67] MmWave-NOMA 

Downlink+ 
Single BS+ 2 
(UE) users’ 
equipment’s 

The study 
addresses the 
non-convex 
energy efficiency 
problem in an 
imperfect CSI 
downlink 
mmWave NOMA 
system. 

Maximize the energy 
efficiency of the system Genetic algorithm (GA) 

The GA-derived solution is 
nearly identical to the 
optimal value and 
outperforms conventional 
orthogonal multiple access, 
enhancing the EE by over 
75%. 

[75] IoT-6G-NOMA 

Downlink+ 
Single BS+ 
multiple IoT 
nodes 

Addresses the 
challenge of 
power allocation 
in 6G-enabled 
Internet of Things 
(IoT) networks. 

To enhance the spectral 
efficiency and energy 
efficiency of NOMA-
based 6G-enabled IoT 
nodes. 

Multi-objective genetic 
algorithm (MOGA) 

A QoS-aware power 
assignment approach was 
developed to improve the 
spectral efficiency and 
energy of NOMA-based 
IoT nodes in the 6G era. 
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D. Reinforcement Learning-Based User Grouping 

Reinforcement Learning (RL) based user grouping in 
NOMA systems presents an intriguing approach to 
optimizing resource allocation, user pairing, power 
allocation, and other aspects of NOMA networks. RL 
algorithms can learn optimal resource allocation policies 
based on changing channel conditions and user 
requirements [76]. NOMA networks operate in complex 
environments with varying user densities, mobility 
patterns, and interference levels. RL techniques enable 
NOMA systems to adapt autonomously and optimize 
performance without explicit models. RL technique can 
optimize system parameters like power allocation, user 
pairing, and decoding in order to maximize throughput 
and fairness [77]. RL can explore novel resource 
allocation strategies that may not be feasible or apparent 
through traditional optimization techniques, leading to 
innovative solutions that improve the efficiency and 
effectiveness of NOMA systems. User dynamics, such as 
traffic demands and Quality of Service (QoS) 
requirements, significantly impact system performance. 

RL-based approaches facilitate self-organizing 
capabilities in NOMA networks, enabling them to 
configure and optimize their operation without human 
intervention, especially in large-scale deployments where 
manual management becomes impractical. 

In scenarios where cellular networks face congestion, 
Unmanned Aerial Vehicles (UAVs) can assist by 
offloading traffic. NOMA can be employed at each UAV 
to enhance spectral efficiency. Multi-agent RL techniques 
can optimize UAV placement, power allocation, and 
resource utilization. These algorithms learn from 
interactions with the environment and adapt to varying 
conditions, improving overall system efficiency [78]. In a 
recent study, researchers proposed a semi-supervised 
reinforcement learning-based solution to the problem of 
user grouping and power allocation in NOMA systems 
[79]. The solution uses the (OMA) and one of its variants 
to resolve the grouping in NOMA systems.  

Table IV shows the summary of reinforcement learning 
-based user grouping in NOMA. 

TABLE IV: REINFORCEMENT LEARNING-BASED USER GROUPING IN NOMA 

Ref. Classification System model Problem Design objective Optimization method Main findings 

[79] NOMA 
Downlink+ 
one BS+ Multiple 
K users 

NOMA systems face 
problems in grouping 
users into prespecified 
time slots and 
determining power 
allocation for each user 

Develop a semi-su-
pervised 
reinforcement 
learning-based 
solution for user 
grouping in NOMA 
systems. 

Reinforcement learning-
based solution 

The proposed semi-
supervised reinforcement 
learning solution 
effectively optimizes user 
grouping in NOMA 
systems. 

[80] MIMO-NOMA 
Downlink+ one 
BS+ Multiple K 
users 

Addressing challenges in 
beam selection, hybrid 
beamforming, and user 
grouping in Massive 
MIMO-NOMA systems, 

Optimize hybrid 
beamforming 
strategies to 
enhance spectral 
efficiency and user 
experience 

Reinforcement learning-
based beam-user 
selection and novel user 
grouping methods. 

The RL-based DFT-
NOMA algorithm, 
utilizing channel 
correlation and gain 
information, significantly 
enhances inferior energy 
efficiency and spectral 
efficiency by 42% 
compared to existing 
schemes 

[81] mm Wave-NOMA 

Downlink+ Mul-
tiple 
 BS+ Multiple K 
users 

Addressing issues in 
mm-wave NOMA 
network, such as 
Successive Interference 
Cancellation (SIC), 
higher intra-beam 
interference, and inter-
beam inter-cell 
interference. 

To maximize the 
aggregate network 
capacity by jointly 
addressing user-cell 
association and 
selecting the 
optimal number of 
beams. 

Reinforcement learning 
algorithm. 

 

TQL and Q-learning 
show a 12% rate of im-
provement under mobil-
ity conditions, while Q-
learning and BSDC 
outperform TQL in 
stationary scenarios but 
achieve a 29% conver-
gence speedup. 

[82] UAV-NOMA 

Uplink + Single 
UAV + Single 
cluster + multiple 
user  

Optimizing resource 
allocation and network 
performance in NOMA-
UAV networks, 
addressing challenges 
due to dynamic UAV 
movements, varying 
channel conditions, and 
efficient spectrum 
utilization. 

The research aims 
to create an 
adaptive 
reinforcement 
learning framework 
for NOMA-UAV 
networks, focusing 
on dynamic 
resources and al-
location to enhance 
network 
performance 
metrics like 
throughput, latency, 
and energy 
efficiency. 

Reinforcement learning 
(RL) 

Adaptive reinforcement 
learning framework for 
NOMA-UAV networks 
outperforms exhaustive, 
greedy, and random 
policies, outperforming 
SIC in interference 
marred environments, 
despite increased 
complexity. 

[83] 5G-NOMA 
Downlink+ 
one BS+ Multiple 
M users 

Addressing challenges in 
user grouping and power 
allocation in NOMA sys-
tems, 

Implement a 
reinforcement 
learning-based 
solution for power 
allocation to 

Reinforcement learning 
algorithm 

The proposed Q-learning 
algorithm with user 
grouping achieves the 
highest throughput, 
overcoming multiple 
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enhance overall sys-
tem performance. 

NOMA constraints like 
transmission power 
budget and minimum 
user data rate 
requirements. 

[84] IoT-NOMA 
Uplink+ one BS+ 
Multiple N users 
 

This study addresses two 
key issues in fair 
resource allocation in 
NOMA techniques: 
dynamic user allocation 
and balancing resource 
blocks and network 
traffic. 

To create an intelli-
gent resource 
allocation scheme 
for uplink NOMA-
IoT 
communications to 
optimize the 
average 
performance of sum 
rates. 

Deep reinforcement 
learning (DRL) and 
SARSA-learning 

The framework offers a 
long-term guaranteed 
average rate with 
reliability and stability 
and has proven to be 
efficient for complex 
scenarios. 

[85] NOMA 
Downlink+ 
one BS+ Multiple 
N users 

The issue lies in the 
optimal allocation of 
resources like power and 
channels to users to 
enhance system 
performance. 

Optimize power 
allocation and 
channel assignment 
in NOMA systems 
using Deep 
reinforcement 
learning (DRL) 
techniques. 

Deep reinforcement 
learning framework 

The study introduces a 
deep reinforcement 
learning framework 
utilizing an attention-
based neural network for 
channel assignment 
problems, demonstrating 
superior performance 
compared to two other 
approaches. 

[86] NOMA Uplink+ one BS+ 
Multiple N users 

Addressing the challenge 
of throughput 
improvement in the 
uplink of grant-free 
NOMA 

To develop a 
solution using Deep 
Reinforcement 
Learning (DRL) for 
improving the 
throughput of the 
uplink in grant-free 
NOMA systems 

Deep reinforcement 
learning Based Grant-
Free NOMA Algorithm 

The proposed algorithm, 
based on DRL, 
outperforms slotted 
ALOHA NOMA with a 
156% gain on system 
throughput when the 
number of devices is five 
times the subchannels. 

 

E. Proportional Fairness-Based User Grouping 

Proportional fairness in NOMA refers to the concept of 
distributing resources among users in a way that ensures 
each user receives a fair share relative to their channel 
conditions and quality of service requirements. In NOMA, 
multiple users share the same time-frequency resources, 
and their signals are separated based on power domain, 
allowing them to access the channel simultaneously. 
Achieving proportional fairness in NOMA involves 
allocating transmit power levels to users in such a manner 
that the system maximizes a fairness metric while 
satisfying certain constraints, such as power constraints 
and quality of service requirements. This technique 
simplifies resource allocation in scenarios where a base 
station (BS) serves multiple users [85]. It calculates 
priorities for active users using Proportional Fairness (PF). 

The user with the highest priority is selected, and its 
corresponding Resource Block (RB) is determined. Other 
users assigned to the same RB are chosen based on a 
user-grouping strategy that considers Channel State 
Information (CSI) and spatial correlation [86]. This 
approach achieves a favorable trade-off between total 
data rate and user fairness [87]. 

One approach to achieving proportional fairness in 
NOMA is to use optimization techniques to allocate 
transmit power levels to users dynamically [88], 
considering factors such as channel conditions, data rates, 
and QoS requirements. This optimization process aims to 
maximize a fairness metric, such as the proportional 
fairness index, subject to constraints such as total transmit 
power and individual user QoS requirements. Table V 
shows a summary of PF-based user grouping in NOMA. 

TABLE V: PROPORTIONAL FAIRNESS-BASED USER GROUPING IN NOMA 

Ref. Integration 
System 
model Problem Design objective 

Optimization 
method Main findings 

[86] 

User-
centric 
(UC) net-
works-
NOMA 

Downlink 
multiple BS+ 
multiple users 

Resource allocation issues 
in UC networks by 
examining slot resource 
allocation and precoding 
design over consecutive 
time-slots. 

To achieve proportional-
fair resource allocation, 
ensuring each user 
receives a fair share of 
available resources while 
enhancing system 
performance. 

Proportional-fair 
resource 
allocation 
scheme 

The scheme addresses UE grouping and 
intra-group resource allocation issues 
using modularity-based user grouping 
and parallel distributed PFRA 
algorithms, utilizing local CSI for large-
scale network applications. 

[89] UAV-
NOMA 

Downlink 
One UAV + 
multiple users 

The challenge lies in 
efficient power allocation 
considering UAV mobility 
and dynamic network 
conditions. 

It aims to improve 
the transmission rate for 
users with relatively 
worse channel state 
information while mini-
mizing the overall sum 
rate loss. 

Proportional-fair 
scheme 

The solution addresses user pairing and 
subchannel allocation, determining the 
optimal power allocation factor for 
users on the same subchannel, and 
allocating appropriate power to improve 
performance. 

[90] 
IoT-
NOMA 

Uplink+ Pri-
mary and 
secondary BS 
+ IoT devices 

To investigate scheduling 
and power allocation 
problems in industrial 
cognitive IoT over NOMA 

To maximum throughput 
in NOMA-IoT network 

Proportional-fair 
scheme 

The study suggests fairness-aware 
algorithms that balance throughput and 
fairness constraints, potentially 
enhancing the performance of cognitive 
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networks using imperfect 
channel state information 
and spectrum sensing. 

heterogeneous NOMA networks in 
industrial IoT scenarios. 

[91] NOMA 
Downlink + 
One BS + 
multiple users 

Investigating the resource 
allocation problem in a 
downlink multi-carrier 
(NOMA) system with K 
users and N sub-carriers 

To maximize the 
expected sum capacity 
under a proportional user 
fairness constraint 

Proportional-fair 
resource 
allocation 
scheme. 

The proposed algorithm can offer 
higher anticipated system capacity with 
the same order of time complexity 
under the same proportional user 
fairness constraint compared to the con-
ventional OFDMA. 

[92] NOMA 
Downlink + 
One BS + 
multiple users 

Investigating the 
optimization problem of 
associated with the 
selection of users, 
assignment of subcarriers, 
and allocation of power. 

To increase the 
sum capacity under a 
general proportional user 
fairness constraint 

Proportional-fair 
resource 
allocation 
scheme. 

The proposed algorithm optimizes 
NOMA sum capacity by pairing users 
with the smallest starving indexes, 
assigning subcarriers and power to 
different pairs, and enhancing system 
capacity over conventional OFDMA 
systems. 

[93] 5G 
Downlink 
One BS + M 
users 

Investigating the power 
allocation problem of 
NOMA system based on 
QoS 

To develop a power 
allocation algorithm that 
ensures proportional 
fairness among users. 

Proportional-fair 
based Karush-
Kuhn-Tucker 
(KKT) 
constraints. 

The data rate aligns with NOMA’s 
fundamental principle, indicating that 
users with poor channel conditions 
allocate more power, while those with 
better conditions allocate less power. 

[94]  5G 
Downlink 
One BS + M 
users 

Addresses the issue of 
resource allocation in 
downlink NOMA cellular 
systems. 

To optimize energy 
efficiency while ensuring 
the minimum data rate 
within the base station’s 
limited power budget. 

Proportional-fair 
based a model 
solver and power 
optimization 
scheme  

The proposed algorithm optimizes 
throughput for multiple users on the 
same channel using a channel as-
signment technique and DC 
programming for power allocation. 

TABLE VI: THE COMPARISON OF LIMITATIONS OF USER GROUPING SCHEMES IN NOMA 

No. User grouping schemes Limitations 

1 K-Means clustering 

Sensitivity to Initial Conditions: K-Means clustering is susceptible to preliminary cluster centroids placement, 
causing varying final cluster assignments. To mitigate this, multiple runs with different initializations are used [95]. 
Assumption of Spherical Clusters: K-Means assumes spherical clusters with equal variance, but real-world scenarios 
may have different shapes and variances, and NOMA user groups may have diverse channel conditions [96]. 
Handling Outliers: Outliers can significantly affect K-Means results, dragging centroids and affecting cluster 
boundaries. Preprocessing steps like outlier removal are crucial before applying K-Means [95]. 
Determining the Number of Clusters (K): K-Means requires pre-specified clusters (k), which can be challenging in 
NOMA systems to determine the optimal number of user groups, as incorrect choices can result in suboptimal 
outcomes [97]. 
Scaling with Dimensions: K-Means performance can degrade as dimensions increase, but distance-based similarity 
measures can converge in high-dimensional spaces, and techniques like Principal Component Analysis can help 
overcome this limitation [96]. 
Cluster Shapes and Density: K-Means struggle with varying cluster sizes and densities, potentially causing non-
uniform clusters in NOMA user groups due to imbalanced channel conditions [98]. 

2 Coalitional Game Theory 
(CGT) 

Complexity and Scalability: CGT-based approaches model user interactions as coalitions, increasing computational 
complexity with network size. Finding optimal coalitions becomes expensive and impractical for real-time scenarios 
as the network scales up [99]. 
Optimal Coalition Formation: CGT offers a framework for coalition formation, but finding the globally optimal 
structure can be challenging due to the NP-complete problem and the use of approximation algorithms [99]. 
Dynamic User Behavior: CGT-based approaches assume static coalitions, but dynamic environments require users to 
switch or form new ones, requiring continuous reformation, and introducing overhead [100]. 
Assumptions About User Cooperation: CGT assumes rational users act in their best interest, but in practice, users 
may not always cooperate optimally or exhibit selfish behavior, impacting coalition effectiveness [101]. 

3 Genetic Algorithm (GA) 

Computational Complexity: Genetic algorithms, due to their high computational cost and complexity, can be 
challenging to implement in real-time, especially in large-scale systems [102]. 
Convergence Speed: Genetic algorithms may face slow convergence rates, especially in complex optimization 
problems, resulting in longer execution times and delayed optimal or near-optimal solutions [102]. 
Dynamic Environments: NOMA systems operate in dynamic environments with changing channel conditions, user 
mobility, and traffic patterns, which genetic algorithms may struggle to adapt to efficiently due to their static problem 
formulation [103]. 
Limited Communication Overhead Consideration: Genetic algorithms may overlook communication overhead in 
NOMA systems, affecting system performance due to factors like signaling overhead, feedback latency, and channel 
estimation complexity [104]. 

4 Reinforcement Learning 
(RL) 

Complexity and Training Time: RL algorithms require significant computational resources and time for training, 
making them challenging in NOMA systems with rapidly changing channel conditions, potentially hindering real-
time adaptation [105]. 
Sample Efficiency: RL requires extensive samples for effective policy learning, while NOMA can be challenging to 
collect due to limited communication resources [106]. 
Reward Design: The choice of reward function significantly influences RL performance in NOMA clustering, as 
poorly designed rewards can lead to suboptimal policies [106]. 
Model Complexity and Interpretability: The complexity of RL models can make understanding their decision-making 
process challenging, hence, in NOMA, interpretable policies are preferred for network operators [105]. 

5 Proportional Fairness 
(PF) 

User Interference: PF-based user grouping aims for fairness by allocating resources proportionally, but interference 
between users with different channel gains can negatively impact communication quality and system performance 
[107]. 
Resource Wastage: NOMA user grouping approaches often divide users into disjoint sets, potentially wasting power 
resources. Efficient utilization of available resources is crucial for maximum capacity gain [108]. 
Complexity and Scalability: PF-based algorithms use iterative optimization, increasing computational complexity 
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with network size, making optimal solutions costly and impractical in real-time scenarios [109]. 
Trade-off Between Fairness and Efficiency: PF aims for fairness, but balancing fairness with system performance 
can be challenging, potentially sacrificing throughput or spectral efficiency [110]. 

 
F. The Comparison of Limitations of User Grouping 

Schemes in NOMA 

Table VI evaluates the comparison of limitations of 
user grouping schemes in the NOMA system, 
categorized into five groups, highlighting their 
challenges and limitations. 

IV. CONCLUSION 

The research emphasizes the importance of user 
grouping schemes in NOMA communication for 
improving network performance, particularly in densely 
populated networks. This strategy optimizes resource 
allocation and minimizes interference. It also applies to 
emerging technologies like IoT, UAVs, and advanced 
transmission techniques like CoMP, MIMO, mm Wave, 
and THz. It also applies to 5G and 6G networks. The 
paper discusses user grouping schemes in wireless 
networks, including Proportional Fairness, K-Means 
clustering, Coalitional Game Theory, Genetic Algorithm, 
and Reinforcement Learning. It highlights their 
importance in managing network resources and adapting 
to changing conditions. The paper emphasizes the critical 
role of these schemes in ensuring optimal network 
performance and service quality as wireless networks 
accommodate a larger number of users. The increasing 
number of users in a network makes finding optimal user 
grouping schemes increasingly complex. Researchers are 
developing low-complexity methods to address this 
challenge. This survey paper encourages researchers to 
explore user grouping techniques in NOMA networks to 
improve network efficiency and resource utilization. 
However, the paper discusses the limitations of user 
grouping techniques in in the NOMA network. Despite 
these challenges, the paper emphasizes the importance of 
ongoing investigation to address these limitations and 
enhance the effectiveness of NOMA communication 
systems. 
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