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Abstract—This article presents a quartic polynomial based 
approach for frequency estimation of multiple real sinusoids 
in additive white Gaussian noise (AWGN). The estimation of 
the peak and ensemble of subsequent frequencies in the 

spectral data is achieved using a simple slope-based 
approach. The performance of the frequency estimation is 
studied by computing the estimation error for varying 

signal-to-noise ratio. The performance is also studied for 
varying values of signal length and frequency deviation. 
Simulation studies are presented to establish the validity of 

the estimation algorithm for multiple sinusoids. The 
proposed approach is fast and efficient, rendering it suitable 

for application to real-time implementations.  

Index Terms—multiple real sinusoids, frequency estimation, 

quartic polynomial, Discrete Fourier Transform (DFT) 

peaks 

I. INTRODUCTION 

The problem of frequency estimation, although a 

classic research problem, still garners significant interest 

in the research community owing to its relevance in 

several engineering disciplines [1–3]. Although a plethora 

of research literature is available in the field of frequency 

estimation, most of the works address frequency 

estimation for complex sinusoids. Applications of these 

methods to the parameter estimation of real sinusoids is 

challenging as it will result in high estimation bias and 

interference between the positive and negative frequency 

components [4]. Also, seldom do the approaches address 

real-time applications. A desirable requirement for an 

algorithm to be applied for real-time applications is to 

ensure that the computational complexity is less and/or 

the algorithm is fast. To address these requirements, the 

quartic polynomial based frequency estimation technique 

was devised by the authors. The quartic polynomial 

frequency estimator [5] is a fast and computationally 

efficient estimator since the estimate is obtained from the 

roots of the fourth-degree polynomial, which already has 

known analytic solutions.  

In this article, the authors extend the method developed 

in [5] to perform the frequency estimation for a multi-

sinusoidal input signal in Additive White Gaussian Noise 

(AWGN). This consideration is more in line with 

practical scenarios as, often, the incoming signals will be 

a composite sinusoid consisting of multiple frequencies. 
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The composite signal used consists of varying amplitude 

values, varying normalized frequency values raging 

between 0.1 and 0.4 and phase values uniformly 

distributed between 0 and 2π. The spectrum of the 

composite signal is evaluated, and all the peaks are 

identified. The peaks are then sorted in the descending 

order of its magnitude starting from the dominant peak 

and the estimate of the peak is computed. The estimated 

peak is removed, and the next dominant peak is identified. 

This is continued till all the peaks of the spectrum are 

obtained. Further, the quartic polynomial based frequency 

estimation for multiple sinusoids is implemented for the 

estimation of each of the frequencies. An approach based 

on the analytic expressions whose solutions are already 

known will only require a straightforward 

implementation of its solution, thus making the 

implementation fast and computationally less intensive. 

This makes the method non-iterative and highly relevant 

for implementation in real-time applications.  

The rest of the paper is organized as follows. Section II 

discusses relevant literature in multi-sinusoidal frequency 

estimation. Section III describes the quartic polynomial 

approach and its extension to multi-frequency estimation. 

Section IV presents the results of the simulation studies 

validating the proposed approach, followed by the 

conclusion presented in Section V. 

II. RELATED WORKS 

Frequency estimation algorithms available in the 

literature are broadly classified into time or frequency 

domain approaches, iterative or non-iterative approaches 

and for real or complex sinusoidal signal. Dutra et al. [4] 

implemented a spectrum matching approach for 

frequency estimation to mitigate the ill-effects of 

superposition of positive and negative frequency 

components in real sinusoids. The quartic polynomial 

frequency estimator [5] was a fast and computationally 

efficient estimator since the estimate was obtained from 

the roots of the fourth-degree polynomial, which has a 

known analytical solution. Thus, this approach is non-

iterative and highly relevant for implementation in real-

time applications. Frequency estimation was performed 

for real harmonic sinusoids using the linear prediction 

approach [6]. So et al. [7] implemented an extension of [6] 

in which two algorithms, based on constrained weighted 

least squares approach, were developed for frequency 

estimation of multiple real sinusoids. Frequency 
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estimation in real sinusoids for the case of non-uniform 

sampling was explored in [8]. A subspace-based 

approach was adopted for multiple real sinusoids 

reducing the computational load in comparison with the 

ESPRIT algorithm [9]. The parameter estimation was 

performed in [10] for biased multi-sinusoidal signals 

using an adaptive approach. 

Using a DFT-based approach, in [11], the spectral 

leakage was alleviated by generating the analytic signal 

corresponding to each spectral component of the real 

sinusoid. Serbes [12] achieved the frequency estimation 

of parameters by performing interpolation on the shifted 

DFT coefficients, with a dependency on the DFT shift, 

number of iterations and frequency separation of the 

peaks. Two parametric approaches in the frequency 

domain were proposed for estimation of real and complex 

sinusoids in [13]. An iterative approach was adopted by 

interpolating the Fourier coefficients of the weighted data 

samples [14]. Transforming a non-linear problem into 

linear regression, Vediakova et al. [15] performed the 

finite time estimation of frequencies of a real multi-

sinusoidal signal. Djukanović and Popović-Bugarin [16] 

performed the model order approximation and frequency 

estimation for complex and real sinusoids, where the peak 

detection was done using Neymann-Pearson criterion and 

frequency estimation was carried out using three-point 

spectral maximization. 

Liu et al. [17] proposed a method for frequency 

estimation by locating the maximum DFT peak and two 

Discrete time Fourier Transform (DTFT) peaks on the 

same side of the maximum DFT peak. This three-point 

periodogram approach was computed for the case of 

complex sinusoids. Izacard et al. [18] extended the 

approach dealing with a neural network model for 

frequency estimation in which the local maxima was 

observed at the peak frequency position. They also added 

a neural network module to determine the model order. 

Sajedian and Rho [19] proposed a deep learning-based 

framework for determining the frequency of noisy 

sinusoidal signal. They implemented a three-layer neural 

network for a Signal Noise Ratio (SNR) of 25 dB. 

Dreifuerst and Heath [20] proposed a neural network 

architecture for model order estimation as well as for the 

estimation of signal parameters, accounting for the losses 

encountered due to quantization as a modelling effect. An 

internal reconstruction of the signal was incorporated to 

enhance learning and a worst-case threshold was 

introduced for analyzing the efficacy of their algorithm. 

Almayyali and Hussain [21] presented a deep learning-

based approach for single frequency estimation and 

showed that very few layers, as low as two layers, was 

sufficient for accurate frequency estimation explained in 

the context of sensor communications and Software 

Defined Radio. Katyara et al. [22] presented a fuzzy 

logic-based method for the estimation and classification 

of the harmonics of a sinusoidal signal validated by 

evaluating the loss function and accuracy. The methods 

described in [18–22] are expected to be computationally 

intensive as the approach adopted was based on neural 

networks/machine learning. 

III. THE QUARTIC POLYNOMIAL APPROACH FOR 

ESTIMATION OF MULTIPLE SINUSOIDS 

In this section, the quartic polynomial based frequency 
estimation approach is briefly discussed for the 
estimation of multiple real sinusoids. The number of 
sinusoids in the composite signal, referred to as the model 
order, is represented by M. The signal length or the 
number of samples in a signal is represented as N. The 
term fs represents the sampling frequency. The sampling 

interval, tn, is given as nt n  and 1 sf  . The

flowchart as shown in Fig. 1 represents the system model 
for multi-sinusoidal frequency estimation. 

The signal model for a combination of M real 
sinusoids with distinct frequency values ωi, where ωi 
=2πfi , is given as: 

1

0

[ ] cos( )
M

i i i n i n

i

s n a t y 




    (1) 

where n represents the index taking on discrete integer 
values between [0, N–1]. The term ai represents the 

amplitude of each sinusoid and i represents the phase

parameter uniformly distributed between [0, 2π]. 

Fig. 1. Flowchart representing the system model for multi-sinusoidal 

frequency estimation. 
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In the expression for the noisy real sinusoid of Eq. (1), 

the term yn represents the Additive White Gaussian Noise 

(AWGN). The sinusoids are chosen such that they are 

separated by at least one DFT bin. This is because 

frequency domain methods are not capable of resolving 

peaks that are spaced at less than 1/N [23] in terms of 

cycles per sampling interval. 

A. Derivation of Polynomial Coefficients 

The complex FFT coefficients, Fk(ω), corresponding to 

the Fourier transform of each sinusoid are computed as 

given in Eq. (2): 

1 2
(2 3)

0 1

( ) [ ] ( )
2

n c

k

N
j t j m

k k

n m

m

a
F s n e T e

  


  

 

         (2) 

where the terms ( )
kmT   represent the positive and 

negative frequency terms corresponding to each 

frequency of the multi-sinusoidal signal. The value of k 

ranges from 1 to M, corresponding to the presence of M 

real sinusoids. The index m takes the values 1 or 2, 

representing the positive or negative frequency term 

respectively of the considered kth sinusoid.  

Using the terms 
1 ( )

k
T   and 

2 ( )
k

T  , the time domain 

expressions for the three adjacent spectral components 

centered around the peak to be estimated are given as: 

 

 

( )
2

1
( )

2
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The term 𝛿 represents the offset between the actual and 

estimated frequencies. On performing algebraic 

operations on Eqs. (3)–(8), the equations for the spectral 

peaks are obtained in terms of both 
1 ( )

k
T   and 

2 ( )
k

T  :  

2

1 2

2 ( )
( ) ( ) ( ) c

k kc

jk k s s

k kj

k

F N
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The terms ( )G  and ( )G  are a shortened 

representation of the terms containing deterministic 

sinusoids. These terms are also a function of the offset 𝛿 

and the signal length N.  
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Further algebraic operations are carried out on  

Eqs. (9)–(11) to yield Eq. (12), resulting in the 

elimination of the negative frequency term for the given 

frequency that is to be estimated out of M frequencies: 

1 1

1 1

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( ) 0

k k

k k

k kF T G F T G

G T G T
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     

   

   

 
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where kF   and 1k
T   are defined as: 
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k
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 
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Equate the real part of Eq. (12) to zero to yield an 

expression which is a quartic (fourth degree) polynomial 

in the variable χ as shown: 

2 3 4

0 1 2 3 4( )
k k k k k

P P P P P              (15) 

where  tan 2   represents the roots of the 

polynomial. The coefficients of the quartic polynomial 

corresponding to the frequency estimation of M sinusoids 

are real-valued and are derived as: 

2
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2 2

2 2 2 3 1 3 1

3 1 2 2 2

( )

       ( ) ( )

ck sk k

k

P S C C S S C S S C

C S S S S C S

  

   



   

    

  
   (18) 

2

3 2 2 1 3 1 3

1 3 2 2 2

( ) ( )

       ( ) ( )

ck sk k

k

P C S C C S C C S

S C C C C S C

  

   



   

     

  
  (19) 



4 3 1 2 2( )k ckP C C C CC C                           (20) 

where the terms    and   are deterministic constants. 

The terms ,,ck sk k    are random variables as they are a 

function of kR  which comprise of terms containing the 

Fourier coefficients: 

cos( ),  sin( )C N S N    

1 3 1 3,S S C C       

1 3 1 3,ck k k sk k kC R C R S R S R         
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j
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k k k k kR R R Re F e

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( )

( )

k k s

k

k k

F N
F

F

 



 
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The unknown frequency is estimated from the solution 

of the quartic polynomial having real roots. Let χ = s  be 

the solution of the quartic polynomial from which the 

unknown frequency is obtained as:  

c ikk
                                    

where 

12
tan )( s 


                             

s  is given as tan( ), tan( )[ ]s N N    .  

The solution of the polynomial that lies in the bin 

corresponding to the peak value is used to compute the 

frequency  tan 2    estimate and all other roots are 

neglected. The analytical method available for finding the 

solution of the polynomial is available in [24]. Since the 

exact analytical solutions of polynomials are known up to 

fourth degree, the frequency estimation problem can be 

solved efficiently with the help of a computing platform 

devoid of any iterative or computationally intensive 

operations.  

B. Peak Detection in Multi-Frequency Estimation 

The spectrum of a noiseless multi-frequency sinusoidal 
signal consists of as many dominant peaks as the number 
of frequencies that constitute the signal. We adopt a 
simple technique of detecting the peaks by using the 
gradient based approach. For the peak detection problem 
in multi-frequency estimation, we assume that the model 
order M corresponding to M frequencies in the multi-
sinusoidal signal is known beforehand. The spectrum of 
the composite signal is obtained by computing the FFT of 
the signal.  

From the spectral information, we identify the largest 
peak from the existing peaks based on the gradient 
computation of the slopes. Determine the two adjacent 
frequencies corresponding to the peak frequency ωik as 
the centre, to obtain ωik, ωik – ωs /N and ωik + ωs /N and 
proceed to perform the frequency estimation 
corresponding to the maximum peak using the quartic 
polynomial approach explained in the earlier subsection. 
Intuitively, based on the choice of the sampling interval, 
the frequency term ωik falls in the bin of interest which 
also corresponds to the bin in which the root of the 
quartic polynomial is present. For the estimation of 
frequencies, corresponding to the subsequent peaks, the 
maximum peak is discarded from the spectrum to negate 
the effect of the estimated peak. From determining the 
adjacent frequencies, the same processes are repeated on 
the subsequent peaks till all the M peaks are obtained. 
This gradient based approach to detection of peaks in the 
spectrum is possible because of the spectral resolution of 
DFT ensuring that the sinusoids are separated by at least 
one DFT bin. As each frequency is estimated, the root 
mean square error (RMSE) is calculated to ascertain the 
efficacy of the estimator. 

C. Complexity Analysis of Multi-Frequency Estimation 

The complexity of the proposed approach is small 

since the frequency estimates are obtained from the roots 

of the fourth-order polynomial. By virtue of the problem 

statement and the formulation of the estimation technique, 

the method turns out to be non-iterative compared to 

several existing formulations which are mostly iterative. 

The notion of efficiency of the proposed method is stated 

in terms of the computational complexity involved.  

To the best of author's knowledge, the number of 

arithmetic operations required in all the previously 

reported works is a function of the signal length N. The 

complexity is calculated considering the operations 

required to perform FFT, complex and real valued 

multiplication, addition, and other associated 

mathematical operations. An exhaustive comparison of 

various methods as well as the computational efficiency 

was discussed in [25]. A direct extension of the method to 

multifrequency estimation will require greater than 16MN 

log2(N)+50MN arithmetic operations at the very least, 

where M denotes the model order or the number of 

sinusoids. Similarly, several other methods as can be seen 

in [25] have a strong dependency on N. This implies that 

as the signal length increases, the computational 

complexity will also increase proportionally.  

Since the proposed method relies only on the 

knowledge of the analytical solution of the quartic 

polynomial, the algorithm does not directly exhibit a 

dependency on the signal length. Considering the 

operations involving the computation of the root falling 

in the desired DFT bin and the simple arithmetic 

operations involved in computing the desired root, the 

number of arithmetic operations involved is ≈ 70M. 

Hence, the proposed algorithm offers much lesser 

computational complexity and is desirable for 

implementation in real-time contexts. 
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IV. RESULTS AND DISCUSSION 

This section discusses the results of multi-frequency 
estimation of real sinusoids using the quartic polynomial 
approach. The sampled signal consists of a combination 
of two or more frequencies which are subject to 
estimation by the proposed algorithm. We study the 
accuracy of estimation of our method by computing the 
root mean square error (RMSE) for varying SNR values. 
In all simulations, samples of real sinusoid with multiple 
frequencies embedded in noise are considered. The phase 
of the sinusoid is uniformly distributed within the interval 
[0, 2π]. The obtained plots are compared with the Cramer 
Rao Lower Bound (CRLB), which provides a theoretical 
lower bound on the achievable estimation error for the 
frequencies. For the case of real sinusoids, where the 

SNR of the kth real sinusoid is given as SNR k   
2 22kA  , the expression for the CRLB is given as, 

2

12
var( )

SNR ( 1)
k

k N N
 


                   

Fig. 2 shows the RMSE performance of the quartic 

polynomial based algorithm for the estimation of f1. The 

results are compared with those obtained in [7], by 

adopting the same simulation settings. We perform the 

simulation for M = 2 and the frequency values are chosen 

as f1 = 0.15 and f2 = 0.35. In accordance with the 

parameters in [7], the amplitude values are chosen as 

1 2A  and 
2 2 2A  . The number of samples 

corresponding to (1) is taken as N = 200. It is observed 

that, compared to the Linear Prediction approach of [7] 

with the same simulation parameters, the quartic 

polynomial based approach converges to CRLB faster. 

Extending the simulation experiments based on the 

same parameter settings as in [7], Fig. 3 and Fig. 4 depict 

the RMSE performance of the proposed algorithm for 

varying signal lengths ranging from N = 32 to N = 1024. 

The simulations are carried out for low and moderate 

SNR values ranging between -3 dB to 6 dB. Fig. 3 shows 

the RMSE performance for the estimation of f1 and Fig. 4 

presents the performance of the algorithm for the 

estimation of f2. 

 
Fig. 2. Comparison of RMSE performance of the proposed approach 

with LP method for the estimation of f1. 

 
Fig. 3. RMSE performance of quartic polynomial based multi-sinusoidal 

frequency estimation for varying signal length for the estimation of f1. 

 
Fig. 4. RMSE performance of quartic polynomial based multi-sinusoidal 

frequency estimation for varying signal length for the estimation of f2. 

 
Fig. 5. RMSE performance of quartic polynomial based multi-sinusoidal 

frequency estimation considering five frequencies for varying signal 

length for the estimation of f1. 

We also evaluate the performance of the algorithm for 
model order M=5. The RMSE performance for the 
estimation of f1 is shown in Fig. 5. The efficacy of the 
algorithm is compared with [11]. In accordance with the 
sinusoidal parameters in [11], the frequency values are 
chosen as f1 =0.05, f2 =0.13, f3 =0.26, f4 = 0.34 and f5 = 
0.44. It is evident from Fig. 5 that even for sufficiently 
high model order, that is, in the presence of 5 frequencies, 
the estimation of the frequency corresponding to the 
dominant peak exhibit good performance, conforming to 
the CRLB.  
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We have also presented the performance of estimation 

of f2 along with f1. For the estimation of f1, the 

performance of the algorithm meets the CRLB from 

SNR=10 dB onwards, establishing the efficacy of the 

algorithm for moderate and high SNR values. In 

comparison with [11], although the quartic polynomial 

algorithm is slightly sub-optimal at low SNR values, it is 

observed that the algorithm converges earlier. 

In the context of multi-sinusoidal frequency estimation, 

it is significant to evaluate the performance of the 

algorithm in terms of the separation between the 

frequency components. It is a measure of how accurately 

frequency estimation can be performed when the 

subsequent frequencies are spaced close together.  

In Fig. 6, we consider a sinusoid consisting of two 

components with frequencies f1 and 2 1f f f   . In this 

simulation environment, we consider M = 2, i.e, two 

sinusoids. The parameters chosen for simulation are a1 = 

1, a2 = 0.8, N = 256 and SNR (dB) = 10 dB. The term Δf 

represents the frequency displacement. Fig. 6 presents the 

RMSE performance of the estimation of f1 and f2 

evaluated for varying values of normalized frequency 

displacement ΔfN. The simulation is performed for the 

interval [1 : 0.25]N , considering increments in the step 

of 1/N . In each iteration, f1 is chosen randomly from the 

interval (0.5, 0.5). It is observed that in the estimation of 

f1, the estimation error is lower than the errors in 

estimation of f2.  

 
Fig. 6. Performance of the estimation of frequencies in a multiple 

sinusoid with M = 2 versus the frequency displacement.  

At very low values of frequency deviation, the 
resolution of the frequencies is less than one DFT bin, 
which does not align with the assumption considered in 
the simulation. In general, at very small values of 
frequency displacements, the performance of algorithm 
deviates from the CRLB. For all other values of 
frequency deviation, the performance of the estimator 
closely follows the CRLB. This is indicative of the 
capability of the algorithm to be able to resolve the peaks 
in the spectrum. 

V. CONCLUSION 

In this work, we present the quartic polynomial 

approach for the frequency estimation of multiple real 

sinusoids in additive white Gaussian noise. A simple 

gradient-based approach is adopted to identify the peaks 

and subsequently perform the frequency estimation from 

the spectral information. Firstly, the spectrum of the 

composite signal is evaluated, and all the peaks are 

identified. Starting from the dominant peak, the peaks are 

estimated one by one. Each estimated peak is removed 

before the next dominant peak is identified. This is 

continued till all the peaks are obtained and then the 

quartic polynomial based frequency estimation for 

multiple sinusoids is implemented for the estimation of 

each of the frequencies by presenting the derivations as 

applicable for the multi-sinusoidal estimation.  

The performance of the algorithm is studied by 

computing the estimation error for varying signal-to-

noise ratio, varying values of signal length and frequency 

deviation. Simulation studies are presented to establish 

the validity of the estimation algorithm for multiple 

sinusoids, by comparing the obtained results against 

existing works. The proposed approach is fast and 

efficient, rendering it suitable for application to real-time 

implementations. 
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