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Abstract—The volume measurement using machine vision 

system is contactless techniques that play an important role 

in industries now a day. Basically, three-dimensional 

reconstruction is required to determine a depth using a 

special lighting system or multiple cameras. This increases 

the complexity of the measurement system. A fast and 

simple machine vision framework called RayVol for 

estimating the volume of axisymmetric objects in near real-

time using a single camera and simple illumination is 

presented. The RayVol framework employs a shadow 

casting method to reconstruct the 3D shape of the object by 

tracing rays from the object’s shadow pixels to the light 

source location. The result of this technique shows a 

significant accuracy improvement from the area-projection 

method. A virtual slice representing the cross-section of an 

object is reconstructed using a cubic spline approximation 

from baseline points derived from the boundary pixels of 

the object image and a shadow casting method. The volume 

estimation was calculated by restricted integration using the 

Riemann sum estimation algorithm, and the closed area of 

the virtual slices was calculated using the shoestring 

algorithm. Mangoes were used as a case study of the RayVol 

framework. The volume estimation provides the correlation 

coefficient of 0.9849 between the developed system and the 

water replacement method.  

Index Terms—3D reconstruction, non-contact volume 

approximation, shadow casting 

I. INTRODUCTION 

Currently, the development of industrial production 
processes has been emphasized on both qualitative and 
quantitative aspects. Size inspection is an important 

process for various industries such as fruit and vegetable 
grading by evaluating volume, length, and weight.  
Completeness inspection, sizing and grading are 
considered important steps in production to produce 

products that meet the needs of customers. Today, 
inspection and classification using machine vision 
systems is widely used due to being able to work 
accurately and quickly, it is also a non-destructive and 

non-contact inspection. This greatly reduces cross-
contamination into the product. Especially food and 
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agricultural products that need to be hygienic production 
process. 

Physical attributes such as volume, mass, surface area, 

and geometric mean diameter (GMD) are commonly used 

for sorting, grading, packaging, pesticide applications, 

and more especially fresh fruits [1]. Among these 

attributes, mass and volume are the most frequently used 

for size classification. Sizing by weight is typically 

achieved by converting gravitational force from 

mechanical mechanisms to measurable data using a force 

transducer, such as a load cell, integrated with conveyor 

belts, and performed as in-motion or dynamic weighing. 

Such systems are capable of measuring weight at around 

a hundred per minute. However, due to the electro-

mechanical structure of these systems, several factors 

such as vibration, dust, temperature fluctuations, 

electrical noise, and corrosion can affect their accuracy. 

Additionally, recalibration or zero resets are required 

after a certain period of usage to maintain precision [2]. 

Since mass and volume are related to density, it might 

be possible to determine the weight from volume by 

using a pre-determined density [3]. Volume is determined 

by the spatial size of an object in three dimensions, and 

estimating this requires three-dimensional information. 

One of the most straightforward, simple, and accurate 

methods of estimating volume is based on Archimedes’ 

Principle, which determines the amount of fluid medium 

displaced by an object [4]. An alternative technique based 

on medium change is the use of an acoustic method, 

whereby a known-size closed chamber with a speaker is 

excited by an oscillating signal. The amplitude of sound 

generated from the speaker varies due to a change in the 

air volume inside the chamber [5–8]. However, such 

processes must be done with offline process, and 

manually taking a sample has led to a risk of damaging a 

sample. Furthermore, when dealing with in-line conveyor 

belts, the measuring time is a major key issue, making 

this method unsuitable for use in an in-line process. 

An alternative approach is machine vision, a non-

contact, rapid, and non-destructive measuring technique. 

In recent years, this approach has gained dominance in 

many agricultural processing systems [9]. As mentioned 

earlier, three-dimensional information is required to 

estimate the volume. Such a system is called a range 

imaging system or 3D scanner system. 
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The 3D scanner method requires an energy-emitting 

source as an additional component to project energy onto 

an inspected object. The most common implementations 

are based on time-of-flight (TOF) and triangulation 

principles; such systems have gained a lot of traction in 

recent decades. The simple active system is laser 

triangulation [10–13], a light source such as laser strip 

line is utilized, projecting onto an object, the reflected 

laser strip line is detected by a camera frame by frame, in 

sync with the conveyor belt position while it is still 

moving. During this process, an analysis of the 

distortions of the laser strip line is performed to obtain 

the depth information, and then 3D information of the 

object is reconstructed. This technique requires many 

frames to be fully completed in 3D reconstruction, which 

is time-consuming. The triangulation principle with a 

simultaneously reconstructed capability by using an 

RGB-D computer vision system to reconstruct the 3D 

shape for volume estimation was published by [14, 15]. 

They used PrimeSense Camine 1.09, an RGB-D 

commercial camera system (RGB-D stands for an RGB 

camera with a depth acquisition system) for an 

acquisition system. The projected light pattern is then 

distorted by the spatial object profile and detected by the 

camera. This system has the capability of simultaneously 

reconstructing 3D information in a single frame. A fully 

completed 3D model is used to estimate the volume by 

integrating pixel values along the length axis. Another 

technique has been simultaneous 3D reconstruction 

capability using the TOF principle [16], which has a more 

complex system compared to triangulation based. There 

are some publications that used TOF camera [1, 17], the 

Microsoft Kinect V2.0, a commercial low-cost RGB-D 

camera system. This TOF camera used a pulsed light 

method, simultaneously rebuilding the 3-D model which 

was analyzed and extracted. These publications have 

demonstrated that the active principle returns high 

accuracy with robustness and real-time capability. 

From a deterministic point of view, rapid measuring 

with simple techniques while still being cost-effective is a 

challenging task. Since most fresh products presumably 

have axi-symmetric shapes and might be fitted to the 

common 3D mathematical shapes: ellipsoid, spheroid, 

paraboloid, and more. From this assumption, there are 

many techniques developed by researchers that are 

related by mathematical models and numerical analysis. 

There are many published [18–24], using only top view 

image which acquired from single 2D computer vision to 

extracted maximum width and height of object to 

estimate whole volume from mathematic model. Some 

researchers used disk methods to improve the accuracy, 

by slicing the material as virtual slices. The object 

volume is estimated by the integration of the area of each 

slice, where area is computed from mathematical model 

or interpolation that derived from width and height from 

top-view image [25–28]. However, predictions based on 

2D information lack actual surface depth distribution [29], 

and there are also some fresh products that have an 

irregular or imperfectly axisymmetric shape, which 

decreases accuracy. To account this issue, many 

researchers proposed the multiple views method. The 

classification system for Harum Manis Mango by 

utilizing additional mirror is developed [3], both top-view 

and side-view images are used to estimate the volume by 

the disk method, enabling in-line processing ability.  In 

[30] assumed that the tomato has an ellipsoid and 

axisymmetric shape, and the volume is computed using 

the disk method which modeled by conical frustrum, their 

acquisition system consisted of 5 cameras. Also, in [31], 

a turntable was used to rotate the strawberry while 

capturing, a total of 50 captured images in different views 

are used to reconstruct the 3D shape. However, additional 

equipment caused even more system complexity, and 

increased computational time expenses. 

In contrast to all the above schemes, we investigated 

the feasibility of retrieving 3D shapes from shadow, a 

concept that was introduced in the late 1980s [32–35]. 

These publications provide information for the 

reconstruction method and evaluate by measuring simple 

polygon objects. However, they have only focused on the 

validity and accuracy of shape recovery. 

Our approach focuses on enhancing the speed and 

accuracy of volume estimation by utilizing simple 2D 

machine vision while maintaining feasibility within the 

in-line application process. We present an approach for 

volume estimation from a single top-view 2D image of 

the fruit with its shadow. In this research, we used the 

mango as the test material, which is considered an 

irregular or axisymmetric shape [3, 23, 24]. 

This paper is organized into several sections. Section II 

provides the design of the framework and the light source 

position calibration method. In Section III, the image 

processing method and procedure are explained, as well 

as the 3D reconstruction method. Section IV is an 

evaluation and discussion of the performance of the 

developed framework using spherical objects and 

mangoes. Finally, a conclusion has been provided in 

Section V. 

II. FRAMEWORK DESIGN AND LIGHT SOURCE 

CALIBRATION 

A. Hardware Setup 

A simple vision system was designed to capture top-

view images of objects, along with their shadows. Fig. 1 

illustrates the vision system hardware components. A 5-

megapixel USB camera, equipped with a 5–50 mm lens 

(ELP-USB500W05G-MFV) was mounted on top of the 

aluminum frame, perpendicular to the fruit being 

inspected. A typical white color LED SMD (surface 

mount) type was mounted opposite the camera, projecting 

light rays to create object shadows at a fixed distance. 

The angle of the light source was initially adjusted to 

ensure no shadow fell out of the frame.  

B. Software Implementation 

The software was implemented as a web application. 

Fig. 2 shows the graphical user interface (GUI) operated 

on Google Chrome. The front end of the application was 

developed using JavaScript, HTML5, and CSS. The 

backend was developed by micro web framework Flask, 
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along with the image processing libraries OpenCV and 

Scikit-Image.  

 
Fig. 1. System hardware component and arrangement. 

 
Fig. 2. Graphical user interface of RayVol application. 

C. Lightsource Position Calibration 

Typically, transformation between image coordinates 

and world coordinates requires extrinsic and intrinsic 

matrices, which are derived by performing a calibration. 

The process usually involves manual labor and taking 

multiple (10–20) photos of a checkerboard from different 

angles. Since the shadow and object lie on the same 

planar surface, a projective transformation called a 

homography method [36, 37] was used to simplify the 

process. The relationship between the image plane with 

pixel data '( ', ', ')x y wp and world coordinates  ( , , )x y wp  

can be given as (1).  

11 12 13

21 22 23

31 32 33

x h h h x

y h h h y

w h h h w

     
      
    
        

Hp                 (1) 

where H is the homography matrix. All feature points are 

considered in homogeneous coordinates, thus, ' 1w w  . 

At least four feature points are required to calculate the H 

matrix by the least square method, which is defined from 

the corners of the measuring area. 

The light source position was determined by the 

intersection of four rays, traced inversely from the 

shadows cast by the four cuboids of known dimensions, 

which were arranged in a square formation within the 

measurement region. Each of cuboid shadow vector AA’, 

BB’, CC’, and DD’ as shown in Fig. 3(a) was used to 

compute the elevation angle    as expressed in Eq. (2) 

for create a ray vector that point to LED light source 
position,  

1 cuboid height
tan

AA'
   
  

 
                      (2) 

Thus, these rays will intersect at a distant point O, 

which represents the position of the light source. 

However, since these rays were defined manually, there 

may be inaccuracies. To account for this, point O is 

determined from the average of the closest points of 

intersection of the four rays, as illustrated in Fig. 3(b). 

 
(a) 

 
(b) 

Fig. 3. Light source calibration process: (a) fixed height cuboid and its 

shadow cast with originated vector point (A’, B’, C’ and D’) and lines 
(AA’, BB’, CC’, DD). (b) light source position at point O (blue dot) 

from the nearest average of the closest traced rays. 

III. METHODS 

In this section, the proposed method for 3D volumetric 

reconstruction from a set of 2D cross-sections (virtual 

slices) is described. Fig. 4 shows an overview of the 

processing pipeline. The first step is extracting only the 

mango and its shadow information from the real-time 

captured image. To accomplish this, a reference 

background image obtained during the calibration process 

is used to perform a simple background subtraction. The 

resulting image is then subjected to an opening 

morphological operation to enhance the image and 

remove any residual noise. Finally, the contouring 

process is applied to filter out small objects except the 

largest object, which represents the mango and its shadow. 

This image results, allowing us to proceed to the next 

process steps: mango and shadow separation as well as 

skeleton extraction. 
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After obtaining the image result, the mango and its 

shadow were separated by thresholding. This is done by 

taking advantage of the fact that shadows are in dark 

areas, while mangoes are colored in bright areas. The 

Hue-Saturation-Value (HSV) color model was used to 

separate the brightness contrast by thresholding, where 

the value channel represents the brightness level. Two 

binary images of mango and shadow as shown in Fig. 4, 

served as the inputs for the reconstruction process. 

Furthermore, during the separation process, the skeleton 

of the object was also extracted. With the known position 

of the light source in three-dimensional space, the pixel 

length between the skeleton image and the bottom edges 

of shadow image which projected from the light source 

position was used to determine the object’s height data. 

Cubic spline interpolation was used to generate the point 

cloud to reconstruct the virtual slice. Finally, the 3D 

shape was recovered by integration of the virtual slices. 

Additionally, a sub-application was also developed in 

the settings page of the RayVol application, which allows 

users to manually adjust the Hue-Saturation-Value (HSV) 

in real-time. This sub-application provides users with an 

independent threshold for each channel, allowing them to 

fine-tune to achieve the desired value in real-time and 

save it as a JSON configuration file, which can be used as 

a preset for main processing tasks. This feature enhances 

the system’s flexibility and efficiency by enabling users 

to customize the image processing settings according to 

their specific needs. 

 
Fig. 4. Overview of the proposed 3D reconstruction pipeline. 

A. Virtual Slicing 

Reconstructing 3D shapes from a set of 2D cross-

sectional slices is widely used in various fields, such as 

medical imaging, where internal specimen data is 

obtained using penetration waves generated by 

techniques such as X-rays or Magnetic Resonance 

Imaging (MRI). However, these methods can be time-

consuming and can contaminate the sample.  

In certain applications, particularly for agricultural 

products, generating 2D cross-sectional profiles must be 

done non-destructively and as fast as possible. A recent 

study by [22] introduced a method for producing virtual 

slices of cucumber from 2D photographs. This was 

achieved by circulating around the object’s midline if the 

cucumber’s shape closely resembles that of a simple 

cylinder. 

Our proposed methodology employs cubic spline 

interpolation to create point clouds from boundary object 

information which extracted from 2D images, in 

combination with height data obtained through shadow 

casting. This approach enables the precise and 

dependable two-dimensional cross-sectional slices 

reconstruction for both regular and irregular shapes of 

agricultural material, which enhances the quality of 

reconstructions. 
The process of generating the virtual slicing involves 

dividing the object into two halves. Each of the halves is 

then constructed using three points as basis points, which 

are illustrated in Fig. 5(b) and Fig. 5(c). The first basis 

point is located at the boundary of the object image and 

constructed at zero on the z-axis (height axis). The second 

basis point is obtained through the shadow casting 

method, at the positive z-axis, which derived from the 

height data using Eq. (3). The obtained height h  data 

must be divided in half to generate the third point in the 

subsequent process. 

tan( )

2

s
h


                                 (3) 

The length of the resulting shadow s  is determined by 

the displacement of the object’s medial information and 

the bottom boundary of the shadow image which relative 

to the position of the light source, as illustrated in Fig. 5(a) 

and Fig. 5(b).  

The object’s medial information is obtained by 

performing skeletonization of the object image. To 

determine the  angle, the inverse trigonometry Eq. (4) is 

utilized.  

1cos
w

v
   
  

 
                           (4) 

where w and v  are displacements from B to C  and A to 

C respectively. The third point in the negative z-axis is 

generated by applying a mirroring transformation from 

the second point in the positive z-axis This methodology 

assumes that most agricultural objects have an axi-
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symmetric configuration, despite any inherent 

irregularities. Finally, this set of three points is used to 

construct new points through cubic spline interpolation as 

shown in Fig. 5(d). 

                    
(a)                                                                                                 (b) 

                  
(c)                                                                                                          (d) 

    
(e)                                                                                                      (f) 

Fig. 5. 3D reconstruction process: (a) and (b) visualizing the geometry structure relationship of shadow casting in 3D and 2D, respectively; (c) 
obtaining an example of the left half of the virtual slice through the shadow casting method, as indicated by the symbol “x” in (b); (d) the completed 

virtual slice by combining the left and right halves; (e) Visualizing of the virtual slice stacking along x-axis; and (f) Fully 3D reconstruction. 

B. Volumemetric Rendering 

To reconstruct a 3D volume image, the reconstructed 

slices are stacked sequentially along the x-axis as shown 

in Fig. 5(e), with a pixel length distance of one, which is 

transformed to real-world information by performing a 

homography transform. Fig.5 (f) illustrates the completed 

3D reconstruction obtained from a stack of virtual slices. 

To estimate the volume, the finite sum approximation of 

an integral is utilized, expressed as 

 
1

n

i

i

V A x x


                         (5) 

where x is stack distance in world coordinate and 

( )iA x represents the area of the closed polygon of the 

individual full slice, which is approximated by the 

Shoelace method. 

IV. RESULTS AND DISCUSSION 

A. Repeatability 

The repeatability of the proposed system was evaluated 

using three metal spheres of different sizes. The volume 

of each individual sphere was computed using the sphere 

volume formula: 

34

3
V r                                   (6) 

where r is radius of the sphere. The volumes for the three 

spheres were calculated to be 28.73 cm
3
, 65.45 cm

3
, and 

268.1 cm
3
, respectively.  

Thirty measurements were taken for each sphere at the 

same location in the measurement area using the 

proposed system. The precision of the system for volume 

estimation was evaluated by determining the coefficient 
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of variation [38] which is calculated from Eq. (7) for the 

estimated volume using the proposed system was 0.88%, 

0.65%, and 0.82% for the three different-sized spheres, 

respectively as shown in Table I. Our volume estimation 

method demonstrated high repeatability; the CV is less 

than 1% for all samples. 

 / 100%CV                              (7) 

TABLE I: VARIATION ANALYSIS OF THE VOLUME OF A SPHERE METAL 

BALLS MEASURED BY RAYVOL 

Size (mm) n Mean (µ) S.D. (σ) CV (%) 
38 30 30.14 0.267 0.88 
50 30 67.68 0.43 0.65 
80 30 273.13 2.23 0.82 

B. Accuracy  

The comparison was performed between the results 
measured by the proposed machine vision system and the 
water displacement method based on Archimedes’ 
principle. The thirty mangoes were used as samples, 
randomly selected from a local farm. The sample was 
positioned in the measurement area, similarly to the 
repeatability evaluation procedure. The results obtained 
from the proposed method were compared with the water 
displacement method. The deviation is shown in Fig. 6(a), 
indicating that almost all the errors from the proposed 
method fell within the 95% limit of agreement. 

Fig. 6(b) shows the comparison data, revealing a 
significant linear correlation between the volume 
estimated from RayVol framework and the volume 
measured by Water Displacement Method (WDM). The 
squared correlation coefficient (R2) between the water 
displacement method and the RayVol measurement was 
0.9849. This value signifies the proportion of the variance 
in the RayVol measurements that can be explained by the 
variance in the actual measurements. A higher R2 value 
implies a closer correspondence between the RayVol 
measurements and the actual measurements, thereby 
indicating the greater accuracy and reliability of the 
proposed machine vision system. 

 
(a) 

 

(b) 

Fig. 6. The deviation and accuracy performance between water 

displacement method and RayVol framework: (a) 1.96-σ plot for 

volume difference; (b) R2 and correlation. 

C. Mango Size Classification Experiment 

In this study, the proposed framework was utilized for 
mango size classification. A total of thirty mangoes were 
selected and categorized based on the assigned codes, as 
shown in Table II. The classification results were visually 
represented through box plots, as shown in Fig. 7. Each 
box plot contained the dataset, where the center of the 
box represented the median, the box edges represented 
the 25th and 75th quartiles, the whiskers illustrated the 5th 
and 95th  quartiles, and the minimum and maximum 
values were presented as outliers. 

TABLE II: VARIATION ANALYSIS OF THE VOLUME OF A SPHERE METAL 

BALLS MEASURED BY RAYVOL 

Type Code Volume (cm3) 

Small S 180–234 

Medium M 235–315 

Large L 316–450 

 

 
Fig. 7. Box plot representation of mango classification by volume. 

Showing the quartiles, the 5th and 95th percentiles (whiskers) and 

extreme values to the minimum and maximum. 

D. Computation Expense 

The PC computer with an AMD Ryzen 7 5700 (3.8 

GHz) was used as the computational device for this 

research. The Python backend software and web 

application were operated on Ubuntu 16.04. The 

computational time of all experiments ranged from 0.3 to 

0.75 s, generating 28,000–40,000 points clouds.  The 

setup was able to estimate the object volume for 1–3 

objects per second with an object volume ranging from 

180–480 cm3 and a resolution of 28,000–40,000 points 

cloud. 

The computation time varied depending on the size of 

the image and the size of the object being processed. To 

improve the computation time, the camera resolution 

could be reduced. However, reducing the camera 

resolution would also affect the quantity of the point 

cloud, which might impact the resolution of the volume 

estimation. Therefore, it is essential to consider the trade-

off between computation time and volume estimation 

resolution when selecting the camera resolution. 

V. CONCLUSION 

A simple and non-contact framework for measuring 

the volume of axi-symmetrical objects based on shadow 

casting is presented. A cost-effective machine vision 

framework based on this method was designed and built 

specifically for measuring agricultural materials. The 



 

The results of the performance analysis have shown 

that the proposed framework is accurate, precise with 

non-destructive for measuring the volume of axi-

symmetrical objects, particularly in the case of 

agricultural materials. However, the resolution of volume 

measurements is dependent on the size of the region of 

interest in the image, which is also related to the size of 

the object being measured, and this may affect 

computation time. Furthermore, the angle of the light 

source also has an impact on accuracy. The setting up of 

the light source must be carefully done. Nevertheless, the 

proposed system provides sufficient accuracy and 

precision to make it competitive in this research area and 

in industrial applications. 
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