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technique that utilizes neutron radiation to probe the 

internal structure of objects, is technically similar to X-ray 

radiography. This imaging technique excels in materials 

characterization, defect detection, and analysis of various 

opaque objects particularly useful for imaging materials 

that are difficult to penetrate with X-rays, such as metals 

or materials with high atomic numbers. Neutrons have 

high penetration capabilities into all types of materials, 

including heavy metals, and are sensitive to many light 

elements, especially hydrogen [1–3] 

Although powerful and unique, neutron images from 

low-power research reactors are usually degraded. Even 

though there are several factors responsible for this 

degradation, the problem is mainly due to the beam 

collimation ratio which is not sufficiently large in order to 

make a parallel beam a valid assumption for NR projection. 

The study to improve the quality of the degraded 

neutron images has high research value and practical 

significance for analyzing and detecting the observed 

object's inner structures and features. The basic principle 

of a neutron radiography facility is a pinhole camera. In a 

pinhole concept, the tiny aperture makes the sharpest 

image, while a big hole produces a blurry image.  

Blurring associated with a lack of collimation in the 

beam gives rise to blurring in neutron images. A collimator 

in a neutron radiography plays a crucial role in controlling, 

shaping, and focusing the neutron beam to achieve high-

quality images. The beam collimation L/D ratio in neutron 

radiography facility is illustrated in Fig. 1, where L is the 

length between the smallest diameter of the collimator and 

the sample and D is the smallest diameter of the collimator. 

This L/D ratio defines the geometrical blurring of the 

neutron imaging facility. In general, the L/D ratio of state-

of-the-art neutron radiography facilities generally lies in 

the range of 100 to 500 [4]. 

Fig. 1. The definition of beam collimation, (L/D) ratio in a typical NR 

image capturing system. 

In contrast to the X-ray imaging system, the source of 

neutron radiography is not a point source but an extended 

aperture. The finite size D of the aperture is the main 

reason for geometrical blurring. The main reason for using 

this extended aperture in a low-power reactor is to 

guarantee that enough flux reaches the sample position. 

Increasing the L/D ratio in most facilities is not a viable 

option due to the necessity of facility reconstruction. 

However, the L/D ratio is the main, but not the only, 

challenge connected with blurring in neutron radiography. 

The scintillator-based digital detectors used in neutron 

radiography also have limitations in terms of spatial 

resolution and sensitivity. This can result in blurry images 

and difficulties in distinguishing fine details or small 

defects. Hence, the imaging detector and large-aperture 

neutron source are the main contributors to the blurring of 

the neutron images.  
Following the basic mathematical fundamentals of the 

degradation theory, the image blurring can be modeled as 
a convolution operation, given by 

𝐵 = (𝑘 ∗ 𝐿) + 𝑁              (1) 
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Abstract—This paper addresses the challenge of accurately 

estimating the 2D Point Spread Function (PSF) or blur kernel 

in neutron radiography, where traditional methods, such as 

the Edge Spread Function (ESF), prove time-consuming and 

reliant on manual edge selection. The proposed alternative 

introduces a robust sparse image prior known as the 

enhanced Patch-Wise Intensity (EPI) image prior in a single-

channel blind deconvolution algorithm, avoiding the need for 

intricate devices like pinhole or slit phantoms. Leveraging 

regularization and optimization techniques, the algorithm 

efficiently estimates PSF in a single image through a multi-

layer iterative alternating approach. The study aims to 

enhance PSF accuracy, leading to a more accurate solution to 

the neutron image restoration problem. Comparative results 

with real neutron images indicate the proposed method 

outperforms ESF, demonstrating improved overall image 

quality both visually and quantitatively in terms of blind/no 

reference evaluation (BRISQUE).

Index Terms—Point Spread Function (PSF) estimation, blind 

deconvolution, neutron images and image restoration

I. INTRODUCTION 

Neutron Radiography (NR), a non-destructive imaging 



where B represents the blurred image, L refers to an 
unknown latent or sharp image, and k is the blur kernel or 
point spread function (PSF). The additive noise process N 
may originate during image acquisition or transmission. 

The symbol “*” represents the two-dimensional 
convolution operator. 

Image deblurring is a process of the inverse of the 
convolution, or, in short, deconvolution. Referring to Eq. 

(1), with a known k, the image deblurring is the process of 
deconvolution. The quality of the image deconvolution 
depends on the accuracy of the PSF estimation method. 
There are two major classes in image deblurring: (1) non-
blind deconvolution method has a prior known k; (2) blind 

deconvolution deblurring refers to the problem of 
recovering the sharp image without exact knowledge of k. 

Blind deconvolution, an ill-posed inverse problem, is a 
very challenging task in image processing, and it has 

numerous applications. In general, the PSF needs to be 
measured to remove the blurring. The PSF can be 
described by a mathematical model that can be constructed 
from a function rather than through experimentation. Blind 

deconvolution attempts to iteratively solve for both the 
PSF and the sharp image from a blurry image by 
incorporating general knowledge of both the PSF and 
sharp image into a cost function in a standard model. 
Hence, the blind deblurring is complicated and much more 

challenging than the sharp image, and PSF estimation must 
be performed simultaneously. 

Many research studies have been devoted to blind 
deconvolution. There are two major trends in blind image 

deblurring: optimization-based and learning-based. The 
optimization-based models are explicitly defined, and the 
prior knowledge is carefully included in the solution. In 
contrast to optimization-based models, learning-based 

models do not take advantage of prior knowledge and 
instead use large datasets to predict an unknown solution 
to the inverse problem. However, the success of learning-
based models heavily depends on the consistency between 
the training data and the test data. Due to the lack of 

neutron image datasets, we focus on an optimization-based 
approach for neutron image deblurring.  

Generally, sharp edges are preferred in PSF estimation. 
However, identifying a suitable, significant sharp edge 

feature within a blurred image is crucial to this method. A 
key criterion is that the selected edge should exhibit 
homogeneity on both of its sides. Subsequently, the 
process entails extracting the intensity line profile of the 
identified edge.  

The neutron community commonly utilizes the Edge 

Spread Function (ESF) for PSF estimation. This method is 

a non-iterative edge-profile method to estimate the PSF. 

This method involves selecting a sharp edge or boundary 

in a known object. Researchers take the first derivative of 

the ESF and then employ a functional fitting procedure to 

estimate the Line Spread Function (LSF), or the estimation 

of the PSF. It is very common practice in this method to 

assume that the PSF is symmetrical, meaning that its 1D 

patterns in the horizontal and vertical directions are similar. 

The standard deviation of the LSF corresponds to the 

standard deviation of the symmetric two-dimensional PSF. 

Once the PSF is estimated, the classical Richardson-Lucy 

non-blind deconvolution algorithm is commonly applied 

to restore the final high-resolution image. This approach is 

implemented in [5–7].  

Besides ESF analysis, experiments with various image 

deconvolution methods conclude that the Richardson-

Lucy algorithm yields the most favorable outcome [8, 9]. 

Another approach, a combination of Particle Swarm 

Optimization (PSO) and Bacterial Foraging Optimization 

(BFO) in blind deconvolution for neutron image 

deblurring, was proposed by the author in the study work 

[10]. However, this study depends on many varying 

parameters, such as the swarm size, inertia weight, and 

learning rates. Therefore, this study is not robust; the 

choices or parameters are sensitive and can lead to poor 

restoration performance. Recently, deep learning studies 

have been proposed to restore neutron images [11, 12]. 

However, due to the lack of training sets that contain clear 

neutron images and real degraded neutron images, the 

study in [11] uses X-ray images instead of neutron images 

as data drivers for the network.  

All the studies mentioned earlier agreed that the quality 

of neutron images can be improved by the application of 

image deblurring. However, most of the studies required 

experimental work to estimate the PSF and used well-

known non-blind deconvolution to restore neutron images. 

Hence, this study investigates the potential of the recent 

trend of blind deconvolution algorithms with 

regularization and optimization for neutron image 

deblurring. To the best of our knowledge, optimization-

based blind deconvolution for neutron image applications 

has not yet received enough attention in the neutron 

community. The proposed method applies the estimation 

approach using a mathematical model to directly allow for 

the estimated PSF from a single blurred image without 

requiring experimental work and additional devices.  

II. THE BLIND DECONVOLUTION 

In general, regularization is usually introduced into the 

optimization problem to avoid overfitting and reduce 

complexity. Over the last few years, blind deconvolution 

has experienced a renaissance. There have been numerous 

advanced blind deconvolution strategies using the 

maximum a posteriori (MAP) estimation framework for 

seeking both L and k. From Eq. (1), it is almost impossible 

to find an ultimate solution to restore L from B without 

prior knowledge k. In order to make the MAP-estimation 

framework well-posed, it requires additional constraints 

and prior knowledge of PSFs and sharp images. In general, 

the standard MAP-estimation framework contains a 

deconvolution cost function formed by the data fidelity 

term and the regularization term, which can be expressed 

as: 

min
𝐿,𝑘

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝜇𝑃(𝐿) + 𝛾𝑃(𝑘)             (2) 

where P(L) is a prior-related term for L and P(k) is a prior-

related term related to k. These two terms are 

regularization terms. 𝜇  and 𝛾  are the positive penalty 

parameters to balance the weight relationship between the 

fidelity term and the regularization term. Both P(L) and 
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P(k) are used to exploit the edge structures in the latent 

image and PSF, respectively. 

The data fidelity term min
𝐿,𝑘

‖𝐿 ∗ 𝑘 − 𝐵‖2
2  in (2) is a 

conventional constraint, which measures the likelihood 

between the recovered image and the blurred image. This 

term considers the noise distribution given in the blurred 

image. In most cases, the blurred images are degraded by 

Gaussian noise and a least-square data fidelity term is used 

to cope with Gaussian noise. Therefore, usually for this 

data fidelity term, L2 norm is used to promote smoothness. 

In the MAP-estimation framework for blind 

deconvolution, regularization constraints are typically 

used to enforce some prior knowledge or assumptions 

about the solution to the deconvolution problem. 

Regularization constraints can help to ensure that the 

solution is well-posed and stable, even in the presence of 

noise or other sources of uncertainty.  

Previous blind deconvolution methods applied joint 

optimization problems and introduced sophisticated priors 

[13–15]. Therefore, these state-of-the-art methods are 

computationally demanding and time consuming. To 

address the computationally intensive issue in blind 

deconvolution, the utilization of regularization has proven 

to be an effective solution. Most recent regularization 

methods use the L0 regularizer of L (the gradient of L), 

and the L2 norm is applied to constrain the PSF prior. 

Therefore, the objective function (2) can be written as 

follows: 

min
𝐿,𝑘

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝜇‖𝐿‖0 + 𝛾‖𝑘‖2

2           (3) 

where ‖𝐿‖0 = {|𝜕𝑥𝐿| + |𝜕𝑦𝐿| > 0}. 

One of the advantages of using ‖𝐿‖0  is that the L0 

regularization gradient acts as edge preserving, which can 

quickly extract the main edge structure while eliminating 

isolated and harmful subtle details. Hence, this L0 

regularization can preserve the sparsity of image gradients. 

Meanwhile, L2 is applied to constrain the PSF to encourage 

the smoothness of the nonzero elements in k. 

III. METHODOLOGY 

A. Proposed Image Prior 

Using the standard blind deconvolution MAP-

estimation model in (2), a new image prior P(L) is 

proposed. The aim is to enforce sparsity of image prior, 

which helps accelerate the recovery of the intermediate 

latent image L during the iteration process of PSF 

estimation.  

Conventional regularization-based blind deconvolution 

methods are complex and time-consuming. One promising 

approach to regularization methods is to incorporate the 

sparsity and non-overlapping patches strategy within the 

MAP estimation framework. The sparsity constraint 

promotes a solution where most elements are zero or close 

to zero, aiding in simplifying the representation. By 

inducing sparsity, the regularization term facilitates the 

recovery of intermediate latent images by reducing the 

impact of noise and irrelevant information while 

preserving the essential features. Concurrently, the non-

overlapping patches approach can improve accuracy by 

focusing more on local details in a patch. Consequently, 

this non-overlapping approach also helps to converge 

faster. By using a combination of sparsity and non-

overlapping patches, the scanning time can be reduced and 

the execution efficiency can be improved. 

Recently, sparse image priors have made significant 

achievements in image deblurring [16–18]. A simple 

sparse prior based on a collection of local minimal pixels 

in non-overlapping patches has been proposed [19]. 

Referred to as patch-wise minimal pixels (PMP), this prior 

computes the low intensity of dark pixels in the non-

overlapping patch. Inspired by the work in [19], the 

proposed approach drew inspiration from the inherent 

characteristic that non-overlapping patches tend to 

experience a reduction in high intensity values following 

the blurring process. In this study, we propose an improved 

PMP that exploits high-intensity pixels instead of low-

intensity pixels as a mean for estimating the PSF iteratively 

for neutron images. 

The proposed image prior is known as the enhanced 

patch-wise intensity (EPI) image prior. The EPI prior is a 

collection of local high-intensity (maximal) pixels in non-

overlapping patches. The non-overlapping approach has 

been adopted in blind deconvolution to replace the 

conventional overlapping patch. Let a single channel 

grayscale neutron image 𝐿 of size mn represented as L∈
ℝ𝑚×𝑛 be partitioned into 𝑑 non-overlapping patches; with 

a patch size of rr. Here, adaptive patch size r is 

implemented, which is dependent on the image size. In this 

work, given the image size mn, the adaptive patch size 𝑟 

can be varied by the ratio formula, 𝑟 = SF(
𝑚+𝑛

2
), where 

SF is a scaling factor. SF can be a selection of 0.02, 0.025, 

0.03, and 0.035. Hence, the number of patches will be 𝑑 =

[
𝑚

𝑟
] ∙ [

𝑛

𝑟
], and [∙] denotes the ceil operator. The EPI prior of 

image L is defined as: 

EPI(𝐿)(𝑖) = max
(𝑥,𝑦)∈𝛺𝑖

𝐿(𝑥, 𝑦)                  (4) 

where 𝛺𝑖 denotes the pixel index location of the 𝑖th patch, 

𝑖=1, 2, …, 𝑑, (x, y) denotes the pixel coordinates, and 

EPI(L)(i) denotes the collection of local maximal pixels 

over non-overlapping patches of 𝐿 with patch-size rr. 

It is easy to see that EPI(𝐿)∈ℝ𝑑  contains patch-wise 

(local) maximal pixels of 𝐿. 

Introducing the EPI, the objective function (3) can be 

rewritten as: 

min
𝐿,𝑘

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝜇‖𝛻𝐿‖0 + 𝛼‖EPI(𝐿)‖0 + 𝛾‖𝑘‖2

2   

(5) 

where α, 𝜇, 𝛾 are positive weight parameters.  

The first term is a fidelity term that constrains the 

convolution of the latent image L and the PSF k to be 

consistent with the blurred image. The second term is the 

L0 regularization term of the image gradient, which can 

effectively smooth details and retain significant edge 

structures to facilitate PSF estimation. The third term uses 

the L0 norm penalty to achieve sparsity induction on the 
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EPI of the latent image. For the last term, the L2 norm is 

applied to constrain the kernel and obtain a stable solution.  

Because it is difficult to solve (5) directly, the next step 

is applying the alternating optimization rule to (5), which 

splits the cost function into two sub-problems. The first 

sub-problem characterizes L using the following cost 

function: 

𝐿 = min
𝐿

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝜇‖∇𝐿‖0𝛼‖EPI(𝐿)‖       (6) 

and for sub-problem 𝑘 

𝑘 = min
𝑘

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝛾‖𝑘‖2

2              (7) 

B. Optimization Procedure 

The optimization procedures for solving the proposed 

model are described briefly in this section. For the sake of 

simplicity, only important mathematical formulas are 

included in the discussion. Interested readers who wish to 

learn more about the optimization associated with the 

proposed method can read the relevant papers listed in the 

reference section. 

In solving (6), a constraint is imposed to induce sparsity 

on EPI(L), indirectly speeding up the minimization process. 

Mathematically, 

𝐿 = min
𝐿

‖𝐿 ∗ 𝑘 − 𝐵‖2
2 + 𝜇‖∇𝐿‖0              (8) 

subject to EPI(L)(i) ~𝑝(𝑥) , for 𝑖 ∈ {1, 2,¼, 𝑑} . As 

introduced in [19], the 𝑝(𝑥)  is a probability density 

function of a hyper Laplacian distribution for 𝑥 below a 

threshold such as 0.9. When comparing the sparsity of the 

clear image and its blurred counterpart, the expectation is 

that the clear image should be sparser. This is because 

blurring process tends to decrease the sparsity of an image 

due to the values of the high-frequency components are 

reducing. Hence, the EPI(L)(i) of clear images is much 

sparser than those of blurred images. This inequality 

property can be easily proven referring to [19, 20]. 

Then, with the half-quadratics strategy, we introduce the 

auxiliary variable G with respect to the image gradient L, 

hence, (8) can be reformulated as follows: 

min
𝐿,𝐺

‖𝐿 ∗ 𝑘 − 𝐵 − 𝐵‖2
2 + 𝛽‖∇𝐿 − 𝐺‖2

2 + 𝜇‖𝐺‖0      (9) 

subject to EPI(L)(i)~𝑝(𝑥), for 𝑖 ∈ {1, 2,¼, 𝑑}. 

The closed-form solution of (9) can be obtained using 

the FFT algorithm. Mathematically: 

𝐿 = ℱ−1 (
ℱ(𝑘)ℱ(𝐵)+𝛽(ℱ(𝛻ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝐺ℎ)+ℱ(𝛻𝑣)̅̅ ̅̅ ̅̅ ̅̅ ℱ(𝐺𝑣) )

ℱ(𝑘)ℱ(𝑘)+𝛽(ℱ(𝛻ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝛻ℎ)+ℱ(𝛻𝑣)̅̅ ̅̅ ̅̅ ̅̅ ℱ(𝛻𝑣))
)        (10) 

where ℱ(. )  and ℱ−1(. )  represent the FFT and inverse 

FFT respectively.  ℱ(∙)̅̅ ̅̅ ̅̅   is the complex conjugate operator. 

∇𝑣 , ∇ℎ denote vertical and horizontal differential operators, 

respectively.  

The sub-problem k in (7) is based on image intensity. 

To obtain a more accurate solution, it is commonly 

estimated in the gradient space rather than performing the 

estimation in the intensity space, which is more conducive 

to an accurate estimation of PSF.  

𝑘 = min
𝑘

‖∇𝐿 ∗ 𝑘 − ∇𝐵‖2
2 + 𝛾‖𝑘‖2

2              (11) 

The closed-form solution to (11) can be calculated by 

FFT, 

𝑘 = ℱ−1 (
ℱ(𝛻ℎ𝐿)ℱ(𝛻ℎ𝐵)+ℱ(𝛻𝑣𝐿)ℱ(𝛻𝑣𝐵)

ℱ(𝛻ℎ𝐿)ℱ(𝛻ℎ𝐿)+ℱ(𝛻𝑣𝐿𝑖)ℱ(𝛻𝑣𝐿)+𝛾
)          (12) 

Algorithm 1. Proposed PSF Estimation with EPI prior 

algorithm 

Input: Blurred image 𝐵 
Initialize the intermediate image 𝐿 and PSF 𝑘; 

For  𝑖 = 1: 𝑖𝑡𝑒𝑟 do  

Estimate 𝐿  according to (10) 

Estimate 𝑘  according to (12) 

End For 

Output: estimated PSF 𝑘 ,  intermediate latent image 𝐿  
 

In this study, the algorithm is implemented in MATLAB.  

C. Multi-Layer Pyramid Iterative Alternating Approach 

The restoration process consists of two main steps: PSF 

estimation and final non-blind deconvolution. The overall 

workflow is shown in Fig. 2. The proposed PSF estimation 

is executed in a coarse-to-fine manner, which is commonly 

used in established methods [20–23]. In this scheme, the 

input blurred image is down-scaled to create a series of 

reduce-resolution image L, while the PSF k is upscaled. 

The results of the coarse layer are up-sampled with the 

bilinear interpolation method as the initialization of the 

next fine layer. 

Inside each layer, the alternate minimization process 

iterates between: i) latent image estimation using (10), ii) 

kernel estimation using (12). At each pyramid layer, (10) 

and (12) are refined through the number of iterations iter = 

5.  

We first initialize the intermediate image L and PSF k 

according to the blurry input. The Gaussian PSF, with a 

size of 77 is fixed at the first iteration in the coarsest layer. 

At the start of minimization, the weight 𝜇 is set to a high 

value to ensure the restoration of strong edges and the 

removal of details. In a limited iteration process, L is 

computed with the EPI prior. The EPI prior in each non-

overlapping patch is obtained according to the definition 

of EPI prior in (4).  

Next, k is obtained from the estimated intermediate 

latent image L and a given blurred image. Then the 

estimated k is up-scaled and used as the initial point of the 

next layer estimation. After solving (12), the negative 

values of k are set to zero and normalized so that their 

values sum to one. After that, k is centered and 

renormalized. 

The main purpose of the iterative alternating 

optimization in the multi-layer approach is to avoid falling 

into the local minimum and progressively refine the PSF k, 

while the estimated intermediate latent image L during the 

iteration has no direct effect on the deblurring output. 
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Once the final estimated k is achieved, the final 

restoration is employed using the final estimated k and B 

as the inputs, as shown by the green arrow in Fig. 2. This 

work adopts the non-blind deconvolution algorithm [23] to 

reduce the ring artifact. 

 
Fig. 2. Overall framework of the multi-layer iterative alternating scheme 

of the EPI-based method. 

D. Neutron Radiography Facility at RTP 

All neutron images presented in this work were acquired 

at the Malaysia Nuclear Agency, which houses the 

Research TRIGA PUSPATI (RTP) reactor. The RTP is a 

swimming pool-type light water research reactor with 

enriched uranium-zirconium-hydride fuel and graphite 

reflector. The nominal power of the RTP is 1 MW, and it 

is considered a low-power research reactor. The RTP is a 

pool-type light water research reactor with a nominal 

power of 1.0 MW, which falls under the low-flux research 

reactor category. The maximum flux at the core is 1013 

n/cm²/s. The RTP has three radial beam ports, one 

tangential beam port, and one thermal column. The radial 

piercing beam ports, which directly point at the core, have 

higher flux and larger gamma and epithermal neutron 

backgrounds. On the other hand, the tangential beam port 

has a lower neutron flux and reduced gamma 

contamination. 

The neutron radiography facility at the RTP was 

constructed at one of the radial beam ports. The main 

components of the neutron facility at the RTP are 

illustrated in Fig. 3. Referring to Fig. 3(b), the neutron 

radiography facility at RTP consists of a 232-meter-long 

divergent collimator with a 3-cm-diameter aperture [24, 

25]. This divergent collimator is used to channel the 

neutron beam from the reactor core to the sample and 

ultimately to the scintillator, where neutrons are converted 

into visible light radiation. The light is then focused onto 

the CCD camera through a tilted mirror to avoid a direct 

radiation beam. To perform neutron radiography, the 

sample is positioned at a distance of 80 cm from the beam 

port exit. Since the neutron entrance aperture diameter is 3 

cm and the distance between the inlet aperture and the 

image plane is 312 cm, this gives a L/D ratio of 

approximately 104. This low L/D ratio is the main reason 

for the degradation of neutron images, as previously 

explained.  

 
Fig. 3. Schematic picture of neutron radiography facility at RTP (a) cross-

section view (b) The collimation set-up showing the distance between 

aperture and sample L, and the aperture size of inlet collimator D. 

TABLE I: MAIN PARAMETERS OF THE NEUTRON FACILITY AT RTP 

Parameters Specification 

Beam line Radial 
Neutron spectrum Thermal 

Flux at sample position 104 n/cm2/s 

Length collimator [cm] 232 
Distance outer collimator to sample[cm] 80 

L/D 104 

 
Fig. 4. A photo of neutron radiography facility at RTP. 

Fig. 4 shows the experimental setup at the neutron 

radiography facility at RTP. All parameters of the neutron 

facility in RTP are shown in Table I. 

Another source of degradation is impulse noise due to 

the generation of high-energy gamma radiation at the 

radial beam port, as discussed earlier. The radial beam port 

contains high-energy gamma radiation compared to the 

tangential beam port. At 750 kW of nominal operating 

power, the flux intensity at the sample position is 104 

n/cm²/s, which is low compared to state-of-the-art facilities. 

A typical flux of reactor-based neutron radiography 

facilities at the sample position is 107 n/cm²/s. Meanwhile, 

a typical flux of spallation-based neutron radiography 

facilities at the sample position is 109 n/cm²/s. Low thermal 

flux means neutron radiographic images produced by RTP 

exhibit a low dynamic range. One way to overcome this 

problem is to increase the exposure time, which in turn 
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enhances the noise. As a trade-off between dynamic range 

and noise, all images shown in this paper were acquired 

with a 200-second exposure time. 

The imaging detector is a scintillator-based CCD type 

using a 16-bit cooled CCD camera. The neutron beam 

strikes a 0.1-mm-thick green scintillation screen. The 

lights produced by the scintillation screen were recorded 

on the CCD, which comprises 2200  2750 pixels. A 

double-surface coating was used to keep the camera away 

from the direct neutron beam. Additional shielding was 

used to protect the electronic parts from the direct neutron 

beam. There are limitations in the imaging system. This 

type of standard CCD-based detector suffers from blurring 

from the lens system due to the large distance between the 

scintillator and the lens system.  

All acquired neutron images were processed using 

Remove Outlies function in open-source ImageJ software 

to remove the significant noise. This noise mainly added 

during acquisition. Then, the low dynamic range image 

contrast is adjusted to widen the dynamic range. The 

neutron image was too large, causing the algorithm to run 

very slowly; therefore, the original image is cropped for 

the selected area. Then, the denoised blurred image is 

normalized between 1 and 0 from the original 16-bit digital 

values. 

IV. RESULTS AND DISCUSSION 

In the following, we present some experiment 

deblurring results using the proposed method and 

compared with the conventional edge-based neutron image 

deblurring method. Fig. 5 shows a small water-pump, Fig. 

6 shows an electronic board, and Fig. 7 shows electronic 

digital camera. The aim is to estimate PSF and the 

estimated PSF is then input into a non-blind deconvolution 

method. As discussed in previous section, within the 

neutron community, the ESF and LSF based methods is 

the easiest approach used for PSF estimation and iterative 

RL deconvolution is commonly used for final restoration. 

In this study, 15 iterations were used for final deblurring. 

 
Fig. 5. Iterative image deblurring comparing conventional and proposed methods. (i) neutron image, (ii) the estimated PSF and (iii) selected regions are 

zoomed-in to highlight small and fine details in red box, (a) blurred image, (b) and (c) are restored image by the conventional and proposed methods 

respectively. 
 

 
Fig. 6. Restoration comparing conventional and proposed methods. (i) neutron image, (ii) the estimated PSF and (iii) selected regions are zoomed-in 

to highlight small and fine details in red box, (a) blurred image, (b) and (c) are restored image by the conventional and proposed methods respectively. 

 
Fig. 7. Restoration comparing conventional and proposed methods. (i) neutron image, (ii) the estimated PSF and (iii) selected regions are zoomed-in 

to highlight small and fine details in red box, (a) blurred image, (b) and (c) are restored image by the conventional and proposed methods respectively. 

The neutron images involved no ground-truth images. 

Besides visual inspection, to evaluate the deblurring 

performance of the neutron images, the BRISQUE index 

is used to assess the quality of the neutron images. 

As seen clearly from Fig. 5 (i) to Fig. 7 (i), the proposed 

method performed exceptionally well compared with 

conventional methods. Visually, the structure of the 

deblurred images in the proposed method appears 

relatively sharper and clearer compared with the 

conventional method. It can be seen that the conventional 

method using iterative Richardson-Lucy algorithm 

produces slightly ringed artifacts at the top and bottom. 

Even though the appearance of structures in Fig. 5 (iii) to 

Fig. 7 (iii) has improved slightly, they are still blurry. This 
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is due to the final deblurring results, which depend on the 

accuracy of the estimated PSF. From Fig. 5 (ii) to Fig. 7 

(ii), the multi-layer iterative alternating approach in the 

proposed method produced a refined k, while the ESF 

approach in the conventional method produced an 

asymmetric k. 

Referring to Table II, the proposed model has better 

performance in terms of BRISQUE measures. On average, 

the proposed method resulted in a BRISQUE index of 

45.88 compared to the conventional method’s 57.35 and 

blur’s 49.21.  

TABLE II: THE DEBLURRING PERFORMANCE COMPARING THE 

CONVENTIONAL AND PROPOSED METHODS IN TERMS OF BRISQUE 

QUALITY INDEX 

Unit 
Conventional edge  

method 
Proposed method Blur 

Water-pump 57.03 48.45 49.63 

Board 56.80 43.51 48.50 

Camera 58.23 45.68 49.50 
Average 57.35 45.88 49.21 

 
Fig. 8. Line profile of Fig. 6 (a) to (c) (i) through the horizontal line y-

800. Analyzing this profile allows us to assess the impact of the proposed 

technique on the image features in the region of interest. 

To demonstrate the effectiveness of the proposed 

technique, Fig. 8 shows a line profile which is obtained by 

sampling the pixel intensities along the horizontal line 

positioned at y = 800.  

Please note that it is not a fair comparison to compare 

CPU times in both methods due to the different approaches; 

the conventional method applied a non-iterative PSF 

estimation process, while the proposed method utilized an 

iterative PSF estimation process. The point to be made 

here is that the blind deconvolution method can be used to 

estimate PSF compared to normal practice, which often 

relies on a trial-and-error approach.  

V. CONCLUSION 

This paper describes a robust method for deblurring a 

single blurred neutron image. An improved image prior for 

image deblurring in a blind deconvolution framework is 

presented. A coarse-to-fine multi-layer iterative approach 

is also implemented within the MAP framework. Overall, 

these steps resulted in a more accurate estimation of PSF 

and, hence, superior restoration performance for neutron 

images. 
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