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Abstract—This paper proposes a quasi-zero-stiffness (QZS) 

vibration isolator with asymmetric stiffness and geometric 

nonlinear damping. The nonlinear stiffness and nonlinear 

damping characteristics of proposed model are studied. The 

motion equation of proposed system under force excitation is 

established, and its dynamic response is solved by the 

harmonic balance method (HBM). In addition, the influence 

of nonlinear damping on force transmissibility is studied. The 

results indicate that the proposed isolator has a large 

equivalent damping ratio in the resonance region and a small 

equivalent damping ratio in the high-frequency region. 

Therefore, the proposed asymmetrical QZS isolator with 

nonlinear damping can supress the resonance in low-

frequency under force excitation and achieve a good high-

frequency vibration isolation effect simultaneously than that 

with linear damping. 

 

Index Terms—quasi-zero stiffness, geometrical nonlinear 

damping, vibration isolation, asymmetrical stiffness 

I. INTRODUCTION 

Low-frequency vibration phenomenon is ubiquitous in 

industrial environments, which will reduce the reliability 

of precision equipment. Reducing the stiffness can 

effectively increase the vibration isolation frequency band 

for linear vibration isolators. However, the decrease in 

system stiffness also means a decrease in bearing capacity, 

which limits the application of linear systems in low-

frequency vibration isolation. Fortunately, nonlinear 

vibration isolators with high-static and low-dynamic 

stiffness (HSLDS) characteristics can overcome this 

problem and have attracted extensive attention [1]. 

Due to the nonlinear stiffness properties, quasi-zero-

stiffness (QZS) isolator is easy to jump when the excitation 

amplitude is large, which seriously affect its vibration 

isolation performance [2]. Increasing damping can 

effectively suppress the resonance and jump of QZS 

isolator, but it will reduce the high-frequency vibration 

isolation performance. Therefore, nonlinear damping has 

been studied to overcome this problem [3]. Previous 

studies mainly focused on the effect of geometrical 

nonlinear damping on QZS isolator with symmetric 

stiffness characteristics, ignoring that with asymmetric 

stiffness characteristics [4]. As a result, this paper proposes 

a QZS isolator with asymmetric stiffness and geometric 

nonlinear damping, and investigates the influence 

mechanism of nonlinear damping on its vibration isolation 

performance under force excitation. The results indicates 

that the proposed QZS isolator can supress the resonance 

in low-frequency and achieve a good high-frequency 

vibration isolation effect simultaneously than linear 

damping. 

II. LITERATURE REVIEW 

Through the exploration and utilization of nonlinear 

characteristics, QZS isolator is proposed by researchers to 

realize low-frequency vibration isolation. QZS isolator is 

usually composed of positive and negative stiffness 

mechanisms in parallel [5]. Carella [6] connects a group of 

oblique springs with vertical springs to construct a classic 

three-spring QZS isolator. The stiffness of the isolator is 

close to zero at the equilibrium position, which can achieve 

good low-frequency vibration isolation effect. With the 

deepening of research, more negative stiffness structures 

are proposed, including cam-rollers [7], magnets [8], 

electromagnetics [9], buckling beams [10] and so on [11], 

[12]. Inspired by the nonlinear characteristics of animal 

limbs, Jing [13, 14] proposed a kind of X-shaped 

mechanism with QZS properties, which is simple in 

structure and beneficial to engineering application. Up to 

now, a large number of research results have been reported 

on X-shaped mechanisms under displacement excitation, 

including asymmetric structures [15], scissors-like 

structures [16] and multi-layer structures [17]. Moreover, 

in order to achieve better low-frequency vibration isolation 

effect, not only the nonlinear stiffness has been widely 

investigated, but also the nonlinear damping 

characteristics, such as cubic damping and horizontal 

geometric nonlinear damping [18, 19]. Cheng [3] proposes 

geometric nonlinear damping and applies it to QZS system 

to improve the vibration suppression performance in low 

frequency region. Dong [20] designs a semi-active 

electromagnetic shunt damping as geometrically nonlinear 

damping. Liu [21] studies the influence of nonlinear 

damping on typical QZS systems. Overall, it is an 

important research purpose to improve the vibration 

isolation performance of QZS isolator through nonlinear 

damping. Manuscript received January 10, 2024; revised February 25, 

2024; accepted March 15, 2024. 
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III. MODELLING AND STATIC ANALYSIS 

The structural diagram of the proposed QZS isolator is 

shown in Fig. 1. In Fig. 1(a), four rods and a slide rail are 

installed between the support platform and the base, and 

the rods are connected by joints. A horizontal spring and 

damper are installed between the end blocks to provide 

negative stiffness and nonlinear damping. The slide rail is 

fixed on the base, and the support table can move vertically 

along the slide rail. Meanwhile, a vertical spring is sleeved 

on the slide rail to provide positive stiffness. The isolated 

mass m is placed on the support platform to realize 

vibration isolation. Fig. 1(b) shows the geometric 

deformation relationship of the proposed model under the 

action of force F. Ignoring the length of the end block and 

the elastic deformation of the rods, the following 

geometric relationship can be obtained as 

𝑥 = 2𝐿 cos 𝜃 − 2𝐿 cos 𝜃0                    (1) 

𝑦 = 2𝐿 sin 𝜃0 − 2𝐿 sin 𝜃                      (2) 

where 0 and  are the installation angle of the system at 

initial and arbitrary positions respectively; L is the length 

of rod, x is the extension length of horizontal spring, and y 

is the vertical displacement.  

 
(a) 

 
(b) 

Fig. 1. Schematic diagram of proposed model. (a) X-shaped QZS 
isolator:1 – mass; 2 – support platform; 3 – base; 4 – rods; 5 – joints; 6 – 
end blocks; 7 – horizontal spring; 8 – damper; 9 – slide rial; 10 – vertical 
spring; (b) Deformation relationship. 

When the support platform is vertically displaced under 

the action of a force, the potential energy V produced by 

the horizontal spring and vertical spring of the system can 

be obtained as 

𝑉 =
1

2
𝑘𝑠𝑥2 +

1

2
𝑘𝑣𝑦2                             (3) 

where ks and kv is the stiffness of horizontal spring and 

vertical spring respectively. By differentiating (3) with 

respect to y, and substituting (1) (2) into (3), the relation 

between restoring force F and vertical displacement 𝑦 can 

be written as 

𝐹 =
𝑑𝑉

𝑑𝑦
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For the convenience of subsequent research, defining 

�̂� = 𝐹/(𝑘𝑠𝐿) is the dimensionless restoring force,  �̂� =
𝑦/𝐿  is dimensionless displacement, 𝛼 = 𝑘𝑣/𝑘𝑠  is spring 

ratio. The expression of restoring force can be rewritten as 
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The nonlinear damping force Fd provided by horizontal 

damping in vertical direction can be expressed as 

𝐹𝑑 = 𝐶�̇� tan 𝜃 = 𝐶 (
𝑑𝑥

𝑑𝑦
∙
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where C is the horizontal damping coefficient; 𝑓𝑑  is the 

dimensionless nonlinear damping function; 𝑓𝑑 = 𝐶𝑓𝑑  is 

the equivalent nonlinear damping coefficient. 

Based on Eq. (5), the proposed model's restoring force-

displacement curve and stiffness-displacement curve at 

different initial installation angles is obtained and plotted 

in Fig. 2. The stiffness-displacement curve of the system 

can be obtained by the derivative of Eq. (5). When the 

dimensionless stiffness �̂� is less than a small value kqzs (e.g. 

�̂� ≤ 0.2 or 𝑘 ≤ 100𝑁/𝑚 ), the system is defined to be 

within the range of QZS [9].  

 
(a) 

 
(b) 

Fig. 2. The dimensionless force and stiffness versus displacement of 

proposed model with different initial angel. (a) Dimensionless force �̂�; 

(b) Dimensionless stiffness �̂� . “Solid line－” for 𝜃0 = 50°, 𝛼 = 0.36; 

“Dash line --” for 𝜃0 = 60°, 𝛼 = 0.5 ; “Dash dot line -·” for 𝜃0 =
70°, 𝛼 = 0.66; “Dot line ⋯” for 𝜃0 = 80°, 𝛼 = 0.83. 



As shown in Fig. 2(a), the proposed model shows 

obvious asymmetric QZS characteristics. With the 

increase of initial installation angle, the bearing capacity 

of the system increases and the maximum stroke becomes 

longer. For the convenience of comparison, the maximum 

stroke points of the system under different angles are set to 

coincide in Fig. 2(b). It can be seen that the QZS range of 

the system increases with the increase of initial angle.  

Fig. 3 shows the nonlinear damping characteristics of 

the system based on (6). As can be seen from Fig. 3, the 

equivalent nonlinear damping of proposed system has 

obvious asymmetric characteristics, which decrease with 

the increase of vertical displacement and increases with the 

increase of horizontal damping coefficient. The benefits of 

this nonlinear damping will be investigated in the next 

section of dynamic analysis. 

 
Fig. 3. Equivalent nonlinear damping properties of proposed model 
versus displacement and damping coefficients for 𝜃0 = 60°. 

IV. DYNAMIC ANALYSIS 

This section will discuss the dynamic response 

characteristics of the proposed asymmetric QZS system 

and the influence mechanism of geometrical nonlinear 

damping on the force transmissibility. 

A. Dynamic Response 

The system will produce a static displacement 𝑦𝑠𝑡 under 

the action of the loaded mass m, which is the equilibrium 

position. Setting the equilibrium position to the origin, the 

dynamic displacement of the system is 𝑦𝑒 = 𝑦 − 𝑦𝑠𝑡 . 

Under the action of harmonic force excitation 𝐹𝑒 =
𝑓 cos 𝜔𝑡  from the supported equipment, the motion 

equation of the system is obtained as 

𝑚�̈�𝑒 = −𝐶𝑓𝑑�̇�𝑒 − 𝑘𝑠𝐿�̂�(𝑦𝑒) + 𝑚𝑔 + 𝑓 cos 𝜔𝑡       (7) 

Defining 𝜔0 = √𝑘𝑠/𝑚  as the natural frequency of 

proposed system, (7) can be can be deduced as 
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𝜔

𝜔0
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In order to establish the dimensionless motion equation 

of proposed system to facilitate the subsequent analysis, 

we introduce the following parameters [2, 21]: 

𝛺 = 𝜔/𝜔0, �̂�𝑒 = 𝑦𝑒/𝐿, 𝜏 = 𝜔0𝑡, 

𝜉 = 𝐶/(2𝑚𝜔0), 𝑓0 = 𝑓/(𝑚𝐿𝜔0
2)            (9) 

where  is the dimensionless excitation frequency; �̂�𝑒 is 

the dimensionless dynamic displacement;  is the 

excitation frequency; 𝜏 is the dimensionless time;  means 

the geometrical nonlinear damping ratio, f0 is the 

dimensionless excitation amplitude.  

Expanding the dimensionless restoring force and the 

nonlinear damping function by Taylor expansion at 

equilibrium position, and then substituting (9) into (8), the 

system’s dimensionless motion equation can be written as 

�̂�𝑒
′′ + (𝜒1�̂�𝑒 + 𝜒2�̂�𝑒

2 + 𝜒3�̂�𝑒
3) + 

2𝜉(𝜂0 + 𝜂1�̂�𝑒 + 𝜂2�̂�𝑒
2 + 𝜂3�̂�𝑒

3)�̂�𝑒
′ = 𝑓0 cos(Ω𝜏)      (10) 

where 𝜒𝑖 , 𝜂𝑖 , 𝑖 = (0, 1, 2, 3)  is the Taylor expansion 

coefficients of �̂�(𝑦𝑒) and 𝑓𝑑(𝑦𝑒) respectively, and (∙)′ =
𝑑(∙)/𝑑𝜏,  𝜒0 = 𝑚𝑔/(𝑘𝑠𝐿). 

Considering only the primary harmonic response, the 

steady-state response of the system can be assumed as 

�̂�𝑒 = 𝑎0 + 𝑎 cos(Ω𝜏 + 𝜑). Using the HBM, the response 

of proposed system can be solved as  

3

2
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1

2
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𝜉𝑒𝑎𝛺 = 𝑓0 sin 𝜑                         (11c) 
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3
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𝜂2 (
1

4
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where 𝜉𝑒 is the equivalent damping ratio of the system; 𝑎0 

is the offset of the response; 𝑎  is the amplitude of the 

response; and 𝜑 is the phase of the response. 

 
(a) 

 
(b) 

Fig. 4. The steady-state response of the system for different excitation 
amplitude with 𝜃0 = 60°, 𝛼 = 0.5, 𝜉 = 0.2. (a) constant component 𝑎0; 

(b) resonance component 𝑎. 



The steady-state response of proposed system varies 

with the excitation amplitude is solved based on (11) and 

plotted in Fig. 4. It can be seen that with the increase of 

excitation amplitude, the system's response peak and 

corresponding frequency are also larger. The system 

shows the characteristics of hardening stiffness and 

jumping phenomena can be observed when the excitation 

is large. In addition, as the response of the system increases, 

the constant component 𝑎0 becomes larger, and the system 

tends to oscillate in the negative direction of the 

equilibrium position, that is, the mass vibrates at a smaller 

vertical displacement �̂�.  

B. Force Transmissibility 

Force transmissibility Tf is the ratio between the force 

transmitted to the base and the excitation force, which can 

be expressed as 

{
𝑇𝑓 =

1

𝑓0
√(2𝜉𝑒𝑎Ω)2 + 𝛬2

𝛬 = 𝜒3 (
3

4
𝑎3 + 3𝑎𝑎0

2) + 2𝜒2𝑎𝑎0 + 𝜒1𝑎
       (12) 

Fig. 5 shows the force transmissibility and the 

equivalent damping ratio of the system versus excitation 

frequency under different damping coefficients for 𝜃0 =
60°, 𝑓0 = 0.002.  

 
(a) 

 
(b) 

Fig. 5. Force transmissibility and equivalent damping ratio of the system 
under different damping coefficients for 𝜃0 = 60°, 𝛼 = 0.5, 𝑓0 = 0.002. 
(a) Force transmissibility; (b) equivalent damping ratio. 

Note that Fig. 5 (a) is plotted based on (12) and Fig. 5 

(b) is based on (11d). In order to compare the advantages 

of nonlinear geometric damping, the force transmissibility 

of vibration isolators with linear damping is also plotted. 

The linear damping represents the damping between the 

foundation and the platform, and its value remains constant 

during the vibration process. The linear damping ratio 𝜉𝐿 

is set to 𝜉𝐿 = 0.02 in this paper. It can be seen that the 

system possesses good vibration isolation performance in 

low-frequency region. With the increase of the nonlinear 

damping ratio, the peak transmissibility and resonance 

frequency of the system decrease, that is, the resonance 

response of the system is suppressed. In addition, 

resonance can also be suppressed by setting linear 

damping (𝜉𝐿 = 0.02). Although the increase in nonlinear 

damping ratio 𝜉 will reduce the vibration isolation effect 

in high-frequency region, as can be seen from Fig 5 (a), 

compared with using linear damping 𝜉𝐿 , better high-

frequency vibration isolation performance can be obtained 

by using the proposed nonlinear damping to suppress the 

resonance response.  

The reason why geometrical nonlinear damping can 

achieve better vibration isolation is shown in Fig 5 (b). It 

can be seen that the equivalent nonlinear damping ratio 𝜉𝑒 

can reach the same magnitude as the linear damping 𝜉𝐿 in 

the resonant region, but is much smaller than the linear 

damping in the high frequency region. Therefore, the 

nonlinear damping not only achieve the low-frequency 

resonance suppression, but also has a better high-

frequency isolation effect. As previous analysis in this 

paper, the system response in the resonance region is large 

and the mass vibrates at a smaller vertical displacement �̂�. 

As can be seen from Fig 3, the nonlinear damping 

coefficients of the system increases with the decrease of 

displacement, therefore, the system exhibits a high 

equivalent damping ratio in the resonance region and the 

resonance will be effectively suppressed. The system 

response is small in high-frequency region, that is, the 

system exhibits small damping. At this time, the system 

has a smaller equivalent damping ratio and possesses 

better high-frequency vibration isolation performance.  

C. Discussion 

For symmetric QZS isolator, its force transmissibility in 

high frequency region will not decrease with the increase 

of geometric nonlinear damping [3, 21]. However, this 

result is not completely valid for asymmetric QZS system. 

Nevertheless, through the analysis in this paper, it can be 

conducted that the high-frequency transmissibility of 

asymmetric QZS system can still be reduced by increasing 

geometric nonlinear damping to suppress the resonance 

compared with increasing linear damping. As a result, 

geometrically nonlinear damping is still beneficial for 

asymmetric QZS isolator. 

V. CONCLUSION 

In this paper, a QZS isolator with asymmetrical stiffness 

and geometric nonlinear damping is proposed. The 

nonlinear stiffness and nonlinear damping characteristics 

of proposed model are studied. The motion equation of the 

system under force excitation is established, and its 

dynamic response is solved by HBM. Finally, the force 

transmissibility of the system under different damping 

coefficients is studied. The results indicate that the 

proposed isolator has the characteristics of asymmetric 

stiffness and asymmetric damping. The proposed system 

exhibits a large equivalent damping ratio in the resonance 

region and a small equivalent damping ratio in the high-

frequency region, that is, the proposed QZS isolator can 

supress the resonance in low-frequency under force 



excitation and achieve a good high-frequency vibration 

isolation effect simultaneously than linear damping. 
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