
Strict Sliding Mode Control with Power Reaching 

Law and Disturbance Bounds in Synchronous 

Servo Tracking Drive System 
 

Quoc Huy Vu
 

Control, Automation in Production and Improvement of Technology Institute (CAPITI), Hanoi, Vietnam 

Email: maihuyvu@gmail.com (Q.H.V.), vuquochuy@capiti.info (Q.H.V.) 

 

 

 
Abstract—This paper presents the analysis and synthesis 

results of a sliding mode controller for tracking drive 

systems using a synchronous servo motor and its 

accompanying power amplifier. Considering a Permanent 

Magnet Synchronous Motor (PMSM) and its accompanying 

Power Amplifier (PA) as one object, the strict control law 

using traditional sliding-surface reaching speed and 

additional exponential components has created the anti-

disturbance torque control signal for the system. Synthesis 

of the sliding mode controller is guaranteed mathematically 

based on Lyapunov stability. The disturbance compensation 

control component is quantified based on the upper and 

lower bounds of disturbance. Simulation in Matlab shows 

visual research findings.  

Index Terms—PMSM tracking drive system, strict sliding 

mode control, power reaching law, Lyapunov stability, 

disturbance bounds 

I. INTRODUCTION 

Currently, due to its stiff torque characteristics with 

wide speed variation, many traction drive systems have 

been using Permanent Magnet Synchronous Motors 

(PMSM) with Power Amplifiers (PA) or inverters [1−5]. 

This application-oriented approach facilitates the design 

and synthesis of control systems by exploiting the basic 

PMSM motor control algorithms and methods already 

built into the PA [6−10]. However, in high-quality 

tracking systems such as aerial target tracking systems 

and element-firing tracking systems [11], because they 

operate in transient mode, the primary control algorithms 

integrated inside the PA alone do not guarantee the 

tracking quality of the system. This contradiction raises a 

scientific problem, the need for suitable outer-loop 

controllers. Although in some studies such as [4, 5], 

system designers have synthesized controllers such as PI, 

PIV, PIDV, or gain scheduling. However, when the 

reference speed signal changes, it is still necessary to 

have subjective controlling parameter adjustments, 

limiting the system’s adaptability. 
Variable Structural Control (VSC) and Sliding Mode 

Control (SMC) were proposed by Utkin, Itkis, and 
Emelyanov. Over the decades, VSC and SMC have been 
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interested in research by the academic community and are 
increasingly enriching and deepening [12−15]. SMC is 
currently being applied as a general design solution for 
many control systems, such as linear systems, nonlinear 
systems, systems with multiple inputs and outputs 
(MIMO), or discrete and random systems [16−19]. The 
advantage of SMC is that when in sliding mode, the 
system is not sensitive to parameter uncertainty and 
disturbance, so the stability of the control system is 
guaranteed [13−15]. 

This study considered the PMSM actuator and PA as 
the control object, but it differs from the studies [1−5] 
where the PA-PMSM adjustment is in position control 
mode. The article proposes a new approach whereby the 
PA is adjusted to work with the PMSM in the combined 
position-torque mode. This synthesis takes advantage of 
the precise resolution of the position control mode. It 
facilitates the control law of the outer loop by direct-
torque control through a DC voltage input. With this 
object, the outer loop sliding control law is synthesized 
based on the combination of constant sliding-surface 
reaching speed and exponential reaching speed [2, 3], 
[20−24]. The disturbance compensation control 
component is quantified based on the upper bound and 
lower bound of the disturbance, so the constant sliding-
surface reaching speed is strictly confined. 

The paper is organized as follows: After the 
introduction section, the second one presents the state 
space equation of the control object (PA-PMSM). The 
third section synthesizes the strict sliding mode controller 
and proves the system’s stability. The fourth section 
presents simulation results. Finally, there are some 
conclusions given. 

II. STATE-SPACE EQUATION OF PA-PMSM 

The traction drive system using the PA-PMSM 
actuator is currently a technology trend, and the actual 
hardware configuration has been studied and applied by 
many studies. 

The PMSM mechanical motion equation dynamics 
equation [1, 2]: 

m m LJ M M b                          (1) 

where  and   are the angular acceleration and the 

actual angular speed relative to the motor shaft end, b is 
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the coefficient of viscous friction (which depends on the 

rotational speed), Mm is the electromagnetic torque - the 

motor shaft end torque (torque control signal), ML is the 

time-varying load torque (disturbance), and Jm is the 

inertia moment of the motor. 

When the PA is set to the combined position and 

torque control mode, the control signal input to the PA is 

a DC voltage signal uv. The outer loop controller 

synthesizes the voltage control signal uv. The PA takes 

care of the imposition of torque on the motor shaft. 

Using the pre-set current control loop, the PA will 

operate in direct torque control mode, and the kinematics 

of the PA-PMSM block has the form of the torque 

multiplied by the control voltage [6]. 

m m vM k u                                   (2) 

where km is the torque adjustment coefficient. 

 
Fig. 1. Direct torque control characteristics of Delta. 

Fig. 1 shows the torque control characteristics of 

Delta’s PA, determined by parameter P1-41 [25]. This 

parameter is to set the maximum analog torque command 

corresponding with the maximum input voltage 

 10; 10vu V   . For example, if P1-41 equals 100 and 

the input voltage is +10V, it indicates that the torque 

command is 100% rated torque. If P1-41 equals 100, but 

the input voltage changes to +5V, then the torque 

command is changed to 50% rated torque. Suppose the 

limit of rated torque is Mmax, then: 

max 1 41

10
m v

M P
M u                           (3) 

Set the angular tracking error and the derivative of the 

tracking error as Eq. (4): 

;d de e                                (4) 

where   is the actual angle; d is the desired angle. 

Combining Eq. (1), Eq. (2), and Eq. (4), the dynamics 

equation of the PA-PMSM object is: 

0m m v m d d LJ e be k u J b M                  (5) 

Setting 1 2;x e x e   in Eq. (5), we get the state space: 

1 2

2 2
m L

v d d

m m m m

x x

k Mb b
x x u

J J J J
 




 
      

 

      (6) 

III. STRICT SLIDING MODE CONTROL WITH POWER 

REACHING LAW AND DISTURBANCE BOUNDS 

Choose a sliding surface Eq. (7): 

1 2 0; 0S x x                         (7) 

Take the first derivative of the sliding function and 
combine it with the state space Eq. (6): 

1 2 2 2

2
m L

v d d

m m m m

S x x x x

k Mb b
x u

J J J J

 

  

   

   
        
   

     (8) 

The sliding-surface power reaching law and 

exponential reaching law was used in several studies [1, 
3], [20−24]. In a traditional sliding mode controller with 
exponential reaching law, fast reaching and low 
chattering cannot be considered simultaneously. In [1], 
the continuous symmetric S-type function instead of the 
sign function and the combined exponential and power 
reaching laws were introduced. However, power 
components were used in all terms for reaching laws with 
a higher degree of S-type function. In [3, 23, 24], the 
basic sliding-surface reaching law with constant speed 
and the sliding-surface power reaching law were also 
proposed. These works offered a combined sliding-
surface reaching law Eq. (9) and discussed stricter 

conditions for constant sliding-surface reaching speed .  
Based on the conventional exponential reaching law 

[20], the paper proposed the power reaching laws with 
one power term in S to get more straightforward solutions 
and stricter disturbance conditions. This reaching law 
increases the sliding-surface reaching speed when the 
system states are far from the sliding surface; reduces the 
reaching rate when the system states are close to the 
sliding surface. As a result, the system quickly enters 
sliding mode and significantly limits chattering. 

   sgn sgn , 0; 0; 1 0S S k S S k


          (9) 

From Eq. (8) and Eq. (9), homogeneously, we get the 
equation: 

 

2

sgn sgn

m L
v d d

m m m m

k Mb b
x u

J J J J

S k S S


  



   
       

   

  

     (10) 

From Eq. (10), get the controller Eq. (11) as follows: 

Torque 

Command 

mM  

Torque 

Control ramp 

(determined  

by P1-41) 

Analog input 

voltage 
vu  

-10          -5 

+5        +10 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 5, September 2023

351



   

   

2

1
sgn

1
sgn

v m m

m

m m d d L

m m

u J b x J S
k

k
J S S J b M

k k



 

 

     

  

  (11) 

Because ML is the bounded uncertainty load 

disturbance, that is M1  ML  M2, the controller Eq. (11) 
will be proposed by the controller Eq. (12). 

   

   

2

1
sgn

1
sgn

v m m

m

m m d d

m m

u J b x J S
k

k
J S S J b M

k k



 

 

     

  

       (12) 

The following theorem shows the conditions for the 

disturbance compensation component M  and stricter 

conditions for constant sliding-surface reaching speed . 

Theorem: The controller Eq. (12) with the sliding 

surface Eq. (7) and sliding-surface reaching law Eq. (9) 

ensures the control system Eq. (6) exists in sliding mode, 

and the system states 1 2, 0x x   with conditions: 

 2 1 2 1 2 1sgn ;
2 2 m

M M M M M M
M S

J


  
      (13) 

where M1 and M2 are, respectively, the lower and upper 

bounds of disturbance ML. 

Proof.  

a) Exist of sliding mode 

Choose a Lyapunov function of the form Eq. (14): 

21

2
V S                              (14) 

The derivative V to time: 

V SS                               (15) 

Here we find the conditions for 0V  . It is necessary 

to consider the kinematics of the sliding surface S. We 

need to consider the derivative of the sliding surface S. 

Substitute Eq. (12) into the second equation of Eq. (6): 

   

   

2 2 sgn sgn

sgn sgn

L

m

L

m

M M
x x S k S S

J

M M
S S k S S

J





 




    


   

  (16) 

Taking S from Eq. (16) into Eq. (15), we have 

   

1

1

1

sgn sgn L

m

L

m

M M
V S S k S S S S

J

M M
S S k S

J

V k S















   


  

 

    (17) 

where 

1
L

m

M M
V S S

J



                      (18) 

Replace M from the assumption in Eq. (18): 

   2 1 2 1

1

2 sgn

2

L

m

M M M M M S
V S S

J


   
     (19) 

To have 0V  , we need to prove 1 0V   with the 

conditions (assumptions) of the theorem. There are 3 

cases according to S as follows: 

1) When S = 0: 

1 0V                                    (20) 

2) When S > 0: 

1
1

L

m

M M
V S

J


 
  
 

                     (21) 

According to the assumption:  2 1 mM M J   , and 

because of M2 > ML, so: 

2 1 1L

m m

M M M M

J J


 
            (22) 

That means: 

1
10 0L

m

M M
V

J



          (23) 

3) When S < 0: 

2
1

L

m

M M
V S

J

 

  
 

                   (24) 

According to the assumption:  2 1 mM M J   , and 

because of M1 < ML, so: 

2 1 2 L

m m

M M M M

J J


 
                (25) 

That means: 

2
10 0L

m

M M
V

J



          (26) 

From Eq. (20), Eq. (23) and Eq. (26) we have 

1 0V S  so 
1

1 0V V k S S


    and V is bounded, 

S  is also limited. 

The conditions 0V S   only ensure that V  is a 

negative semi-deterministic function, so V cannot be an 

actual Lyapunov function yet. 

Without loss of generality, consider ML to be a slowly 

varying disturbance, then: 

0; 0LdM dM

dt dt
                   (27) 
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From Eq. (17), calculate the second derivative of V, 

and use Eq. (27) to get V : 

   

   
 

 

 
 

 

2

22

2

1 sgn

1 sgn sgn

sgn

L

m

L L

m m

V k S k S S

M M
k S S S

J

k M M M M
S S

J J

 





   




    


  

 


  (28) 

Eq. (28) shows that V  is a function of S. Because S is 

continuous and bounded, so V  is also bounded and V  is 

a uniformly continuous function. Barbalat lemma 
guarantees that 

1
0 0L

m

M M
V S S k S S

J





         (29) 

So, controller Eq. (12) ensures that system Eq. (6) 

exists in sliding mode. 

b) System states 1 2, 0x x    

When the system exists in sliding mode, S = 0: 

1 2 1 1 1 1

1

0

1
 ln

S x x x x x x

x t C

  



       

   
         (30) 

where C is a constant.  

Assume the system states at the time of falling on the 

sliding surface: 
0

1 1 0( )s st t
x x t


 , then: 

1 0 0

1
ln ( )sC x t t


                       (31) 

Combine Eq. (30) and Eq. (31) to get: 

1 1 0

1
ln ln ( )sx t x t


                    (32) 

   0 0
1 1

1 0
1 1 0 2

( )
( ) ,   

t t t t
s

s

x t
x x t e x e 



   

         (33) 

Because of 0   so, the formula Eq. (33) shows that 

1 2, 0x x  as t  . Thus, the controller Eq. (12) 

guarantees that the system states 1 2, 0x x  . The theorem 

has been proved. 

Remark: The disturbance parameter ML varies in the 

range [M1; M2]. The theorem shows the stricter conditions 

of  , which: 

 2 1 mM M J                                   (34) 

IV. SIMULATION RESULTS 

Consider the system Eq. (35) under the influence of the 

disturbance Eq. (36) [12] with the profile graph in Fig. 2. 

25 133 v Lu M                        (35) 

   
2 2

2 2

1.5 3
50exp 20exp

2 0.2 2 0.1
L

t t
M

    
      

       

    (36) 

 
Fig. 2. Disturbance profile graph. 

In Fig. 2: M1 = –20; M2 = 50  15 35sgnM S    . 

Angular tracking error and its derivative: 

;d de e                              (37) 

Setting 1 2;x e x e  , the system Eqs. (35−37), can be 

as Eq. (38): 

 
1 2

2 225 133 25v d d L

x x

x x u M 




     

       (38) 

Let us say angular position and initial angular speed: 

   0 0.5rad; 0 0.5rad/sd d                (39) 

With the desired angle as a step function 1( )d t  , the 

initial states of the system are: 

   1 2 1.5 0.5
T T

x x                     (40) 

Set parameters for the controller: 

15; 70; 0.8; 20k                   (41) 

The sliding surface has the form Eq. (42): 

1 215 0S x x                           (42) 

The sliding-surface reaching law has the form Eq. (43): 

   
0.8

1 2 1 2 1 270sgn 15 20 15 sgn 15S x x x x x x       (43) 

With sin( )d t  , the controller has the form Eq. (44). 

   
   

   

0.8

1 2 1 2

1 2 2

1 2

1
20 15 sgn 15

133

     70sgn 15 10 sin

     25cos 15 35sgn 15

vu x x x x

x x x t

t x x

   

   

  

       (44) 

With 1( )d t  , the controller has the form Eq. (45): 

   
 

 

0.8

1 2 1 2

1 2 2

1 2

1
20 15 sgn 15

133

     70sgn 15 10 15

     35sgn 15

vu x x x x

x x x

x x

   

   



      (45) 
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Case 1: Simulation with 70  . 

Remark: There is chattering with the control signals in 

Fig. 3 (a) and Fig. 4 (a). Simulations performed with 

inputs 1(t) and sin(t) show that the system exists in 

sliding mode and the system states 0 , as shown in Fig. 

3 (b) and Fig. 4 (b). Desired and actual angles fit in Fig. 5 

(a) and Fig. 5 (b). Note that the transient system time Ts = 

0.5 s in Fig. 5 (b); load disturbance ML is fully 

compensated with an angular tracking error, not 

exceeding 0.005 rad during the disturbance.  

 
(a) Control signal 

   
(b) System states 

Fig. 3. Control signal and system state trajectory with sin( )d t  . 

 
(a) Control signal 

 
(b) System states 

Fig. 4. Control signal and system state trajectory with 1( )d t  . 

Fig. 3 and Fig. 4 show the state variables and control 

signal of the system. Although there is some chattering, 

the phase's trajectory converges to zero. Fig. 5 (b) shows 

a good system response with 0.5 second settling time. 

Actual angle tracked tightly desired angle (Fig. 5(a)). 

 
(a) System response to sin( )d t   

 
(b) System response to 1( )d t   

Fig. 5. System response to different inputs. 

The case 70   satisfies the conditions Eq. (13) of the 

theorem ( 70  ).  

Case 2: Simulation with 60   

 

(a) System states 

 
(b) System response 

Fig. 6. Response and system states with 1( )d t   and 60  . 

Remark: Fig. 6 shows the phase trajectory and step 

response of the system. The system exists in sliding mode; 

the system states 0 , but when the load disturbance ML 

occurs, Fig. 6 (b) shows that the amount of disturbance 

compensation is not enough to keep the system in 

equilibrium; the system is knocked out of equilibrium 

states (Fig. 6 (a)) by disturbance, then slowly returns to 

equilibrium. In Fig. 6 (b), the load disturbance appears 

0.5 
Ts 
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when t1 = 1.5 s and t1 = 3.0 s visually represents this 

process. The reason is that the condition  = 60 does not 

satisfy the condition 70  that the theorem states. 

 
(a) System states

 

 
(b) System response 

Fig. 7. Response and system states with 1( )d t   and 50  . 

Case 3: Simulation with 50  . 

Remark: Fig. 7 shows the phase trajectory and step 

response of the system. The system exists in sliding mode; 

the system states 0 , but when the load disturbance ML 

occurs, Fig. 7 (b) shows that the amount of disturbance 

compensation is insufficient to keep the system in 

equilibrium. The system is knocked out of equilibrium 

states (Fig. 7 (a)) by disturbance, then slowly returns to 

equilibrium. The reason is that the condition 50   does 

not satisfy the condition 70   the theorem states. 

Compared with the case of 60   (Fig. 6 (b)), the 

amount of disturbance compensation control when 

50   (Fig. 7 (b)) is less, so the system is thrown further 

from equilibrium. 

Case 4: Simulation with 70; 0.08; 220k    .  

Case 5: Simulation with 70; 0.05; 225k    . 

Fig. 8 and Fig. 9 show the step response and the 

control signal uv of the system in Case 4 and Case 5. The 

purpose of these two simulations is to keep the 

 satisfying condition Eq. (34) and only adjust the power 

coefficient α and k factor to ensure better control quality 

and get low chattering. 

 
(a) System response to 1( )d t   

 
(b) Control signal 

Fig. 8. Response and control input with 1( )d t   and 

70; 0.08; 220k    . 

 
(a) System response to 1( )d t   

 
(b) Control signal 

Fig. 9. Response and control input with 1( )d t   and 

70; 0.05; 225k    . 

Remarks: In cases 4 and 5, simulations were 

conducted with ε = 70, but α and k changed to eliminate 

chattering.  

With ε = 70, the tracking quality of the system was 

kept well in both Case 4 and Case 5 (Fig. 8 (a) and Fig. 9 

(a)). However, the chattering phenomenon in Case 5 was 

better eliminated than it in Case 4 because the power 

reaching parameter α and the coefficient k multiplied to 

 sgnS S


were tuned better (Fig. 8 (b) and Fig. 9 (b)). 

In conclusion, simulation results show that: 

1) Choosing the right   not only helps the system to 

fall into the sliding mode quickly but also ensures to keep 

the system is in equilibrium when there is a change in the 

load disturbance ML. If choosing the stricter  , the more 

stringent the equilibrium of the system is kept and the 

better the tracking quality of the system. 

2) Tuning α and k make the system eliminate the 

chattering phenomenon. 
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3) Controllers Eq. (44), Eq. (45) with sliding-surface 

reaching law Eq. (43) put the system in sliding mode and 

ensure the system states converge to zero. 

V. CONCLUSION 

The article presents a novel approach when 

considering the control object using the PMSM motor 

actuator and its accompanying PA in the combined 

position-torque mode. This approach facilitates the 

synthesis of the law of direct control of the outer loop 

torque through a DC voltage input. Still, it takes 

advantage of the high-resolution characterization of the 

position control mode. This study has synthesized the 

outer-loop sliding mode control law for the angle tracking 

system with stricter conditions of the constant sliding-

surface reaching speed component  . The solution that 

combines the sliding surface reaching-speed components 

has ensured the adaptability and sustainability of the 

system. Research results are proven mathematically and 

simulated intuitively. 
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