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Abstract—To reduce the impact of Phase-I parameter 

estimation on the performances of Phase-II control charts, 

researchers have incorporated the ideology of Guaranteed 

In-control Performance (GICP) in their statistical designs to 

limit the risk of excessive false alarms. At present, most 

research works have primarily focused on normally 

distributed data. However, the assumption of normality is 

often violated in manufacturing environments, and certain 

data may exhibit positively skewed distributions. In this 

paper, we investigate the performance of the SPRT control 

chart with estimated process parameters designed using the 

GICP method under three different skewed distributions, 

i.e., the Gamma, Lognormal, and Weibull distributions. The 

study is conducted by varying the Phase-I sample size and 

the degree of skewness in order to reveal their impacts upon 

the in-control and out-of-control performances of the SPRT 

chart with estimated process parameters. Results show that 

an increase in the skewness level leads to rapid deterioration 

in both the in-control and out-of-control expected values of 

the average time to signal (AATS) and the average standard 

deviation of the time to signal (ASDTS). Interestingly, we 

have found that increasing the Phase-I sample size leads to 

deterioration in the conditional in-control performance, but 

an improvement in the out-of-control AATS and ASDTS 

values. Furthermore, it is found that, among the three 

distributions, the Lognormal distribution produces the least 

stable performance when skewness is large and the Phase-I 

sample size is small.  

Index Terms—Average time to signal, guaranteed in-control 

performance, parameter estimation, sequential probability 

ratio test, skewed distribution, statistical process monitoring 

I. INTRODUCTION 

Statistical Process Monitoring (SPM) is widely 
practiced in various industries to control the stability of 
industrial processes as well as to maintain the quality of 

 

 

  

production outputs. The control chart, which is one of the 
most common tools in SPM, has garnered significant 
attention due to its operational simplicity and user-
friendly interface. Generally, time-weighted control 
schemes are favored over traditional Shewhart schemes 
as they respond quicker to small and moderate deviations 
in the process quality characteristic. The sequential 
probability ratio test (SPRT) control chart, in particular, 
stands out as a popular example of time-weighted control 
schemes. 

Stoumbos & Reynolds [1] constructed the SPRT chart 
by applying independent sequential tests at fixed time 
intervals over the course of process monitoring. Each test 
samples a random number of observations and is 
expected to conclude in negligible time compared to the 
time between successive tests. Many research findings 
have demonstrated that the SPRT chart is more effective 
than the Shewhart and cumulative sum (CUSUM) charts 
in detecting various magnitudes of process shifts [2–4]. 
Ou et al. [5] proposed an optimization design for the 
SPRT chart based on the average extra quadratic loss 
(AEQL) criterion. The AEQL is a weighted measure of 
the overall performance of a control chart over a specified 
range of shifts. They showed that, by minimizing the 
AEQL over a range of shift sizes, the SPRT chart enjoys 
a generally short average time to signal (ATS) at each 
shift point within the range. Haridy et al. [6] suggested to 
optimize the in-control average sample number (ASN) 
and the reference parameter of the SPRT chart to further 
boost its average detection speed. They showed that the 
proposed optimal design effectively reduces the detection 
time of the SPRT chart by almost twice. Following these 
successful attempts, Mahadik & Godase [4] and Godase 
& Mahadik [7] developed the SPRT sign charts for 
monitoring process mean and process variance, 
respectively, by applying the sequential sign test. 
Findings have shown that the SPRT sign chart has a 
superior performance over other competing charts, such 
as the synthetic Shewhart sign, CUSUM sign, and 
EWMA sign charts. 
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Industrial process monitoring can be divided into two 

main phases, i.e., Phase-I and Phase-II. In Phase-I, a 

moderate set of samples is collected to verify the stability 

of the manufacturing process. These Phase-I data are then 

used to estimate the process parameters, i.e., mean and 

standard deviation. In Phase-II, practitioners usually set 

these parameter estimates as the target process parameters, 

which are then used to evaluate the status of the ongoing 

process until an out-of-control event emerges. It is worth 

noting that, although the samples come from the same in-

control source, the parameter estimates can vary by a 

considerable degree. This phenomenon, known as 

practitioner-to-practitioner variability, is usually much 

more prominent when the number of Phase-I samples is 

small. In standard designs of the control charts, 

researchers often neglect the reality that the process 

parameters are estimated. This results in substantial 

variability in the chart’s performances, as well as 

unacceptably high false alarm levels. Teoh et al. [8] 

found out that there is a near 50% chance that a 

practitioner will obtain a false alarm rate higher than the 

recommended rate, when the control charts with 

estimated process parameters are designed via the 

traditional approach. Similar findings have been obtained 

by [9–11]. To rectify this issue, the Guaranteed In-control 

Performance (GICP) framework has been introduced. In 

this approach, the charting limits are adjusted to ensure 

that the conditional in-control performance exceeds a 

specific threshold with a very high probability (e.g., 90% 

or 95%). Teoh et al. [8] and Diko et al. [9] have reported 

that the GICP approach effectively reduces the risk of 

excessive false alarms associated with Phase-I parameter 

estimation, while retaining a satisfactory level of out-of-

control performance. This approach is extensively used in 

the statistical designs of a myriad of control charts, see 

for example, [12, 13]. For a comprehensive review of 

mainstream control charts with estimated process 

parameters, refer to [14]. 

The majority of control charts in the literature are built 

upon the assumption that process data come from the 

Normal distribution. However, in certain industries, the 

process quality characteristics can exhibit highly skewed 

distributions. Some examples include tensile strength 

measurements of glass fibers [15], lifetimes in 

accelerated life test samples [16], and durations to the 

detection of urinary tract infection [17]. Several 

researchers, such as [18–20], have pointed out that 

positively skewed data can increase the likelihood of 

false alarms in Phase-II chart applications. This issue is 

exacerbated when the control chart is operating with 

estimated process parameters under the traditional design. 

While the GICP framework has proven ability in 

controlling the risk of false alarms, there are some 

concerns regarding its effectiveness when dealing with 

skewed process data. To the best of our knowledge, 

almost none of the existing works have investigated the 

impact of skewness on the performance of GICP-adjusted 

control charts. Therefore, in this paper, we examine the 

performance of the GICP-adjusted optimal SPRT chart 

developed by Teoh et al. [8] under various skewness 

levels. We consider three commonly used skewed 

distributions, i.e., the Gamma, Lognormal, and Weibull 

distributions. 

The organization of this paper is as follows. In the 

methodology section, we first describe the charting 

structure and procedure of the SPRT chart. It is then 

followed by a brief review of the run-length properties of 

the SPRT chart under the Normal distribution, both with 

known and estimated process parameters. In the case of 

known parameters, formulae for the ATS, standard 

deviation of the time to signal (SDTS), and ASN are 

provided; whereas in the case of estimated parameters, 

formulae for the average of the ATS (AATS), average of 

the SDTS (ASDTS), and the average of the ASN (AASN) 

are provided. We also detail the statistical properties of 

the Gamma, Lognormal, and Weibull distributions. In the 

methodology section, we describe the design of our 

experiment and outline the measures taken to ensure 

fairness throughout our comparative study. In the results 

section, we present tables showing the AATS and 

ASDTS values of the optimal SPRT chart with estimated 

process parameters under the three skewed distributions. 

Finally, we summarize our findings and provide some 

concluding remarks. 

II. BACKGROUND 

A. The SPRT Chart under the Normal Distribution 

Let Y be the quality characteristic of a normally 

distributed process such that its in-control mean and 

variance are equal to 0  and 2

0 , respectively. Suppose 

that we are interested in detecting a change in the process 

mean, i.e., from 0   to 0 0    , where μ is the 

mean of the ongoing process and δ is the standard mean 

shift size. Suppose further that we are only interested in 

detecting an upper-sided mean shift, i.e., δ>0. The 

charting statistic ( ,i jU ) of the upper-sided SPRT chart is 

, 0

,

1 0

j
i

i j

Y
U










 
  

 
 ,                (1) 

for i=1, 2, , and j=1, 2, , Ni, where Ni is the total 

number of measurements until the ith SPRT is terminated. 

In Eq. (1), ,iY   is the th measurement of the ith SPRT 

and γ > 0 is a reference parameter. It is assumed that the 

observations ,iY   are sampled independently in an 

insignificant amount of time for each SPRT. 

The SPRT chart has two control limits, i.e., a lower 

control limit g and an upper control limit h. During the 

sampling process, 

 if ,i jU <g, the process is indicated as in-control, and 

sampling is terminated, 

 if ,i jU >h, the process is indicated as out-of-control, 

and sampling is terminated, 

 if g≤ ,i jU ≤h, the status of the process cannot be 

determined, and sampling resumes. 
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It should be noted that, when the process is signaled as 

out-of-control, a designated out-of-control action plan is 

executed to identify the root causes of the process shift. 

B. The Run-length Properties of the SPRT Chart with 

Known and Estimated Process Parameters 

When process parameters are known, we can derive 

the formulae for the ASN, ATS, and SDTS of the SPRT 

chart by means of the Markov chain approach [5]. The 

proof begins by partitioning the region [g, h] into a large 

number of subintervals, say ξ subintervals. Each 

subinterval is regarded as a transient state of the Markov 

chain. The ASN of the SPRT chart is computed as 

1ASN 1 ( )   C I R 1 ,                   (2) 

where R is a ξ×ξ transition probability matrix, with 

entries denoted as rs,t =Φ[Δ·(t–s+0.5)+γ–δ]–Φ[Δ(t–s–0.5) 

+γ–δ], C is a ξ×1 vector, with entries denoted as 

cs=Φ[Δs+g+γ–δ]–Φ[Δ·(s–1)+g+γ–δ], I is the ξ×ξ unit 

matrix, and 1 is a ξ×1 vector filled with ones. Here, 

Δ=(h–g)/ξ is the width of each subinterval, and Φ(·) is the 

cumulative distribution function (cdf) of the standard 

normal distribution N(0, 1). 

The ATS and SDTS of the SPRT chart are evaluated as 

1 1
ATS { 0}

1 OC( ) 2
d 



 
   

 
            (3) 

and 

2

OC( ) 1
SDTS { 0}

12[1 OC( )]
d





  


,         (4) 

respectively, where d>0 is the sampling interval, 𝔽(·) is 

the indicator variable, and OC(δ)=P+CT(I–R)–1Q is the 

operating characteristic function of a single SPRT. Here, 

P=Φ(g+γ–δ) is the probability that the process is accepted 

as in-control after the first observation, and Q is a ξ×1 

vector, with entries denoted as qs=Φ[Δ·(0.5–s)+γ–δ]. 

Note that the operating characteristic function represents 

the probability that the process is declared as in-control, 

given that the true mean shift is δ. 

Teoh et al. [8] developed the full theoretical 

framework for the SPRT chart with estimated process 

parameters. Assuming that the process parameters are 

unknown, we estimate 0  and 0  using a set of in-

control Phase-I samples of size m, i.e., X1, X2, , Xm, as 

0

1

1
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and 

2

0 0

1
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ˆ ˆ( )
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m

X
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respectively. 

Teoh et al. [8] showed that the ASN, ATS, and SDTS 

of the SPRT chart with estimated process parameters are 

now conditional functions of the random variables 0̂  

and 
0̂ . By constructing the pivotal quantities W=( 0̂ –

0 )/( 0 / m ) and V=
0̂ / 0 , they derived the 

conditional ASN (CASN), conditional ATS (CATS), and 

conditional SDTS (CSDTS) as 

1ˆ ˆCASN 1 ( )   C I R 1 ,                    (7) 

1 1
CATS { 0}

21 OC( )
d 



 
      

,           (8) 

and 

 

  

respectively, where 
T 1ˆ ˆˆ ˆOC( ) ( )P   C I R Q  is the 

updated operating characteristic function. Here, the 

entries of R̂ , Ĉ , and Q̂  are updated as ,ŝ tr =Φ{V[Δ·(t–s 

+0.5)+γ]–δ+W/ m }–Φ{V[Δ·(t–s–0.5)+γ]–δ+ /W m }, 

ˆ
sc =Φ[V(Δ·s+g+γ)–δ+ /W m ]–Φ{V[Δ·(s–1)+g+γ]–δ+ 

/W m }, and ˆ
sq =Φ{V[Δ·(0.5–s)+γ]–δ+ /W m ], 

respectively; whereas P̂  is updated as Φ[V(g+γ)–δ+ 

/W m ]. 

To evaluate the unconditional performances of the 

SPRT chart with estimated process parameters, Teoh et al. 

[8] derived expressions for the AASN, AATS, and 

ASDTS as 

0

AASN CASN ( ) ( )W Vf w f v dwdv

 



   ,        (10) 

0

AATS CATS ( ) ( )W Vf w f v dwdv

 



   ,         (11) 

and 

2

2

1 OC( ) [OC( ) OC ( )] { 0}
ASDTS

[1 OC( )]0

d
   



     
   







 

0.5
2

2 AATS
              ( ) ( ) { 0}

3W V
f w f v dwdv

d
  

 
 

  
,  (12) 

respectively, where fW(w) and fV(v) are the probability 

density functions (pdf) of the random variables W and V, 

respectively. When the process follows the Normal 

distribution, W follows N(0, 1); whereas V follows a 

distribution whose pdf is fV(v)=2(m–1)v 2 , 1m
f
 

[(m–1)v2]. 

Here, 2 , 1m
f
 

(·) is the pdf of the Chi-squared distribution 

with m – 1 degrees of freedom. Note that (10) to (12) can 

be thought of as the “average” of (7) to (9) over all 

parameter estimates. 
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C. Statistical Properties of the Gamma, Lognormal, and 

Weibull Distributions 

In this section, we present the statistical properties, i.e., 

the skewness (k), the in-control mean (Z,0) and the in-

control standard deviation (Z,0), of the Gamma, 

Lognormal, and Weibull distributions. These distributions 

are chosen because their parameters can be tuned to 

achieve a multitude of shapes and skewness [16]. 

The cdf of the single-parameter Gamma distribution is 

given as FZ(z) = 1

0
exp( ) / ( )

z

t t dt     for z≥0, where 

Γ(·) is the gamma function and α>0 is the shape 

parameter. The skewness, in-control mean, and standard 

deviation can be computed as [21] 

2
k


 ,                              (13) 

,0Z  ,                             (14) 

,0Z  ,                          (15) 

respectively. 

The cdf of the two-parameter Lognormal distribution is 

given as FZ(z)=Φ[(lnz–μLN)/σLN] for z>0, where μLN and 

σLN>0 are the location and scale parameters, respectively. 

For the ease of computation, we set μLN=0, since the value 

of μLN does not affect the skewness of the Lognormal 

distribution. The skewness, in-control mean, and standard 

deviation are evaluated as [22] 

2 2

LN LN[2 exp( )] exp( ) 1k     ,            (16) 

LN,0

21
exp

2
Z 

 
  

 
,                                 (17) 

2 2

LN LN,0 exp( )[exp( ) 1]Z    ,             (18) 

respectively. 

The cdf of the two-parameter Weibull distribution is 

given as FZ(z)=1–exp[–(λz)α] for z≥0, where β>0 and λ>0 

are the shape and scale parameters, respectively. For 

convenience, we set λ=1 throughout this paper. The 

skewness, in-control mean, and standard deviation have 

the following formulae [23] 

3

1.5
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3 1 1 2
1 2 1 3 1 1

2 1
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0
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2 1
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respectively. 

III. METHODOLOGY 

In our experiment, we design the SPRT chart with 

estimated process parameters using the GICP method. 

The formulation of the GICP is as follows: 

0Pr[CATS (1 )] 1 p     ,                (22) 

where CATS0 is the in-control CATS (i.e., obtained by 

substituting δ=0 in (8)), τ is the minimum acceptable in-

control ATS (ATS0), ε is a small tolerance term, and p is 

a user-specified error probability. To limit the risk of 

false alarms, p is usually specified as a small percentage, 

e.g., 90% or 95%. It is important to note that increasing 

the value of ε and/or p in (22) can lead to a higher risk of 

obtaining undesirable levels of false alarms, but at the 

same time, it improves the out-of-control performance of 

the control chart towards small process shifts [9]. Note 

that the design is implemented under the assumption that 

the data follow the Normal distribution. 

To achieve the best overall performance, as well as to 

minimize the trade-off between the in-control and out-of-

control performances, Teoh et al. [8] introduced an 

integrated GICP-optimal design for the SPRT chart with 

estimated process parameters. They proposed minimizing 

the average of the AEQL (AAEQL) over a range of mean 

shifts [δmin, δmax], subject to the GICP constraint stated in 

(22). The formula for the AAEQL is 

max min

1
AAEQL

 
 


 

max

min

2

0

CAT ( ) ( )S W Vf fw d dwdv v





 
 



   ,  (23) 

where CATS can be quoted directly from (8). 

To ensure fairness in our comparative study, we 

impose the following five specifications for all the SPRT 

charts designed in this paper: the minimum mean shift 

size δmin, maximum mean shift size δmax, minimum 

sampling interval allowed dmin, the inspection rate R, and 

τ. The values of δmin and δmax are set according to the 

practitioner’s knowledge about the degree of departure of 

the process from its usual level. dmin should be set as a 

suitable value according to the factory’s inspection policy. 

The inspection rate R, which is defined as the ratio of the 

in-control AASN (AASN0) to the sampling interval d, 

should be selected based on practical considerations such 

as the availability of manpower. The value of τ is set to 

give a reasonably small false alarm probability. In this 

paper, we set the design specifications as (δmin, δmax, dmin, 

R, τ)=(0.1, 3.0, 0.25, 3, 370.40).  Note that τ=370.40 is set 

to give an average false alarm probability (=0.27%) 

equivalent to that of the Shewhart X̅ chart with six-sigma 

limits under the Normal distribution. The optimal SPRT 

chart with estimated process parameters is designed by 

minimizing the AAEQL over the shift range [δmin, δmax], 

subject to four constraints, i.e., Pr[CATS0 ≥τ(1–ε)]=1–p, 

R=AASN0/d, AASN0>1, and d>dmin. This involves 

searching the charting parameters (AASN0, γ, d, g, h) in 

their feasible ranges in order to minimize the objective 

function, while keeping the constraints satisfied. The full 
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optimization algorithm can be found in Teoh et al. [8], 

and is omitted in this paper for the purpose of brevity. 

IV. RESULTS AND DISCUSSIONS 

Table I shows the optimal charting parameters (AASN0, 

γ, d, g, h) of the SPRT chart with estimated process 

parameters designed for Phase-I sample sizes m ∈ {200, 

400, 600, 1000, +∞}, along with the (AATS, ASDTS) 

values for δ∈{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The 

specifications for the GICP method are chosen as p=0.05 

and ε=0.2. Note that m=+∞ corresponds to the case where 

the process parameters are known, hence no parameter 

estimation is required. Therefore, Eqs. (3) and (4) are 

used to compute the ATS and SDTS values of the optimal 

SPRT chart when m=+∞. All the other results are 

computed using (11) and (12), and they have been 

verified using Monte Carlo simulation with 100,000 

simulation runs. As a numeric example, when m=400 

Phase-I samples are used, the charting parameters of the 

SPRT chart with the best AAEQL performance are 

(AASN0, γ, d, g, h)=(1.597, 0.332, 0.532, 0.686, 8.634). 

The (AATS, ASDTS) values at δ=1.0 are equal to (1.06, 

1.05), respectively.  

Table II display the in-control (AATS, ASDTS) values 

(i.e., (AATS0, ASDTS0)) of the optimal SPRT chart with 

GICP-adjusted limits; whereas Table III, Table IV, and 

Table V display the out-of-control (AATS, ASDTS) 

values (i.e., (AATS1, ASDTS1)) under the Gamma, 

Lognormal, and Weibull distributions, respectively. Due 

to the complexity of the sampling distributions of the 

Gamma, Lognormal, and Weibull distributions (i.e., the 

joint density of W and V), it is not feasible to compute the 

AATS and ASDTS values using (11) and (12). Hence, we 

resort to Monte Carlo simulation with 100,000 runs to 

approximate the performances of the SPRT chart under 

these skewed distributions.  

Table II tabulates three in-control performance 

indicators, i.e., the in-control exceedance probability 

Pr(CATS0≥τ), AATS0, and ASDTS0 values, of the 

optimal SPRT chart with GICP-adjusted limits for 

skewness k∈{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The table is 

separated into four layers: the first layer shows the 

baseline performance under the Normal distribution, 

whereas the second, third, and fourth layers show the 

performances under the Gamma, Lognormal, and Weibull 

distributions, respectively. The values of the parameters 

(i.e., α, σLN, and β) affecting the skewness of each 

distribution can be computed using standard root-finding 

methods. For example, to achieve a skewness of 3.0 for 

the Lognormal distribution, we can solve (16) by setting 

k=3.0, which results in σLN=0.71557. The charting 

parameters used to compute the results for each m∈{200, 

400, 600, 1000, +∞} can be quoted directly from Table I. 

As a numeric example, when m=200, k=0.5, and the 

underlying distribution is Weibull, the SPRT chart with 

charting parameters (AASN0, γ, d, g, h)=(1.630, 0.386, 

0.543, 0.540, 8.559) yields Pr(CATS0≥τ)=83.30% and 

(AATS0, ASDTS0)=(2695.90, 9535.27). 

From Table II, it is observed that when k=0.0, the 

exceedance probabilities Pr(CATS0≥τ) for the Gamma, 

Lognormal, and Weibull distributions are fairly close to 

that of the Normal distribution for all values of m, when 

the process parameters are estimated. We notice that 

Pr(CATS0≥τ) for the Normal distribution is slightly lower 

than 95%. This is because a tolerance term of ε=0.2 has 

been introduced in the design of the SPRT chart, hence 

lowering the threshold for the GICP constraint (refer to 

(22)). Referring to the unconditional performances of the 

three distributions under k=0.0, it is noticed that the 

Weibull distribution produces slightly larger (AATS0, 

ASDTS0) values compared to the Gamma, Lognormal, 

and Normal distributions. For example, when m=600 and 

k=0.0, the (AATS0, ASDTS0) values of the Gamma 

(=(1084.11, 1639.53)) and Lognormal (=(1084.30, 

1635.58)) distributions are rather close to those of the 

Normal distribution (=(1091.10, 1638.63)); whereas the 

(AATS0, ASDTS0) values of the Weibull distribution 

(=(1131.91, 1728.81)) are arguably higher than the rest.  

 

TABLE I: OPTIMAL CHARTING PARAMETERS (AASN0, γ, d, g, h), AATS, AND ASDTS VALUES OF THE SPRT CHART WITH ESTIMATED PROCESS 

PARAMETERS DESIGNED UNDER THE GICP FRAMEWORK, FOR m ∈ {200, 400, 600, 1000, +∞}, τ = 370.4, R = 3, dmin = 0.25, δmin = 0.1, δmax = 3, p = 0.05, 
AND ε = 0.2 

m 200 400 600 1000 +∞ 

 (AASN0, γ) (AASN0, γ) (AASN0, γ) (AASN0, γ) (ASN0, γ) 

 (d, g, h) (d, g, h) (d, g, h) (d, g, h) (d, g, h) 

δ (AATS, ASDTS) (AATS, ASDTS) (AATS, ASDTS) (AATS, ASDTS) (ATS, SDTS) 

 (1.630, 0.386) (1.597, 0.332)  (1.624, 0.344)  (1.632, 0.363)  (1.587, 0.380) 

 (0.543, 0.540, 8.559) (0.532, 0.686, 8.634) (0.541, 0.618, 7.991) (0.544, 0.553, 7.297) (0.529, 0.541, 6.327) 

0.0 (5856.56, > 20000) (1784.91, 3501.03) (1091.10, 1638.63) (724.57, 901.03) (370.40, 370.13) 

0.5 (6.66, 9.59) (5.02, 5.54) (4.79, 5.09) (4.72, 4.89) (4.61, 4.61) 

1.0 (1.03, 1.03) (1.06, 1.05) (1.02, 1.00) (0.99, 0.97) (0.98, 0.95) 

1.5 (0.53, 0.48) (0.55, 0.50) (0.53, 0.49) (0.52, 0.47) (0.51, 0.46) 

2.0 (0.37, 0.29) (0.38, 0.31) (0.37, 0.30) (0.37, 0.29) (0.36, 0.28) 

2.5 (0.31, 0.21) (0.31, 0.22) (0.31, 0.21) (0.31, 0.21) (0.30, 0.20) 

3.0 (0.28, 0.17) (0.28, 0.18) (0.28, 0.18) (0.28, 0.17) (0.27, 0.17) 

 

As the skewness level increases from zero, the in-

control performances deteriorate rapidly for all levels of 

m. For instance, when m=1000 and the underlying 

distribution is Lognormal, an increase in the skewness 

from 0.0 to 0.5 causes the exceedance probability 

Pr(CATS0≥τ) to fall from 87.51% to 52.68%, and the 

AATS0 value to drop from 714.56 to 424.17 (see Table 

II). This indicates an increased risk of false alarms when 
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the distribution of data transits from symmetric-shaped to 

skewed-shaped. Besides, as the Phase-I sample size m 

increases, the (AATS0, ASDTS0) values for all three 

distributions tend to converge to their corresponding 

(ATS0, SDTS0) values in the case of known parameters 

(m=+∞). While a larger m seems to result in more 

consistent unconditional performances (i.e., the (AATS0, 

ASDTS0) values approach the nominal (ATS0, SDTS0) 

values), we found that the conditional in-control 

performance worsens as m increases, especially when the 

distribution is skewed (i.e., k>0). It is also worth noting 

that, when m=+∞, only the Weibull distribution with zero 

skewness produces ATS0>370.40 with probability one. 

TABLE II: PR(CATS0 ≥ τ), AATS0, AND ASDTS0 VALUES OF THE OPTIMAL SPRT CHART WITH ESTIMATED PROCESS PARAMETERS DESIGNED UNDER 

THE NORMAL MODEL, FOR m ∈ {200, 400, 600, 1000, +∞}, k ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, AND τ = 370.4, WHEN THE UNDERLYING 

DISTRIBUTIONS ARE GAMMA, LOGNORMAL, AND WEIBULL 

D
is

tr
ib

u
ti

o
n
 

P
ar

am
et

er
 

 m = 200 m = 400 m = 600 m = 1000 m = +∞ 

k Pr(CATS0 ≥ τ) Pr(CATS0 ≥ τ) Pr(CATS0 ≥ τ) Pr(CATS0 ≥ τ) Pr(CATS0 ≥ τ) 

 (AATS0, ASDTS0) (AATS0, ASDTS0) (AATS0, ASDTS0) (AATS0, ASDTS0) (ATS0, SDTS0) 

Normal 
- 0.0 92.77% 91.34% 90.24% 87.69% 100% 

  (5856.56, > 20000) (1784.91, 3501.03) (1091.10, 1638.63) (724.57, 901.03) (370.40, 370.13) 

Gamma 

α       

160000 0.0 92.61% 91.27% 90.07% 87.46% 0% 

  (5761.50, > 20000) (1762.43, 3484.92) (1084.11, 1639.53) (717.95, 898.54) (368.36, 368.09) 

16.00000 0.5 83.05% 77.64% 69.72% 53.16% 0% 

  (2471.22, 9237.85) (974.13, 1769.69) (622.26, 900.15) (424.31, 515.70) (229.43, 229.16) 

4.00000 1.0 69.25% 59.50% 44.35% 20.24% 0% 

  (1337.99, 4306.31) (624.67, 1079.48) (412.39, 573.39) (285.70, 339.79) (160.62, 160.36) 

1.77778 1.5 54.91% 42.33% 24.78% 6.04% 0% 

  (845.24, 2665.75) (438.75, 741.40) (300.90, 411.06) (211.18, 248.03) (123.37, 123.11) 

1.00000 2.0 42.85% 29.42% 13.54% 1.86% 0% 

  (596.76, 1748.63) (335.50, 564.88) (234.77, 318.22) (168.29, 196.73) (101.77, 101.51) 

0.64000 2.5 33.37% 20.86% 7.81% 0.66% 0% 

  (461.93, 1427.17) (272.85, 463.47) (194.62, 263.38) (142.16, 166.39) (88.50, 88.23) 

0.44444 3.0 26.90% 15.30% 4.92% 0.32% 0% 

  (388.00, 2560.26) (236.03, 398.79) (170.75, 231.03) (126.41, 147.35) (80.40, 80.13) 

Lognormal 

σLN       

0.00167 0.0 92.60% 91.35% 89.99% 87.51% 0% 

  (5784.73, > 20000) (1762.91, 3514.18) (1084.30, 1635.58) (714.56, 892.05) (368.35, 368.09) 

0.16405 0.5 82.66% 77.62% 69.57% 52.68% 0% 

  (2446.71, 9503.49) (974.78, 1777.25) (621.96, 895.81) (424.17, 511.50) (228.73, 228.47) 

0.31426 1.0 68.64% 58.98% 43.60% 19.48% 0% 

  (1266.82, 4251.24) (609.89, 1062.75) (407.41, 565.86) (282.68, 335.84) (160.34, 160.08) 

0.44349 1.5 53.43% 41.40% 24.04% 5.83% 0% 

  (776.54, 3766.32) (430.07, 746.43) (297.50, 403.51) (211.35, 247.87) (125.51, 125.24) 

0.55138 2.0 41.04% 28.91% 13.76% 2.23% 0% 

  (569.86, 5827.56) (337.73, 688.56) (239.33, 332.67) (174.48, 205.54) (107.39, 107.13) 

0.64088 2.5 32.15% 21.24% 9.14% 1.34% 0% 

  (466.17, 5893.05) (290.26, 676.18) (206.92, 317.66) (154.38, 186.75) (97.71, 97.45) 

0.71557 3.0 26.56% 16.94% 7.08% 1.20% 0% 

  (446.88, > 10000) (263.34, 1518.45) (191.88, 456.80) (144.42, 204.31) (92.44, 92.18) 

Weibull 

β       

3.60235 0.0 93.05% 91.88% 90.70% 88.76% 100% 

  (6539.93, > 25000) (1859.32, 3741.83) (1131.91, 1728.81) (748.35, 942.33) (381.74, 381.47) 

2.21560 0.5 83.30% 78.23% 70.57% 54.71% 0% 

  (2695.90, 9535.27) (1008.28, 1864.63) (644.02, 931.29) (436.94, 530.52) (232.78, 232.51) 

1.56391 1.0 69.90% 59.89% 44.77% 20.93% 0% 

  (1411.86, 4456.09) (630.25, 1100.92) (415.55, 579.67) (288.65, 344.64) (160.98, 160.71) 

1.21112 1.5 55.26% 42.53% 24.88% 6.08% 0% 

  (873.10, 2744.46) (441.80, 752.08) (301.20, 411.58) (211.48, 249.77) (122.96, 122.69) 

1.00000 2.0 42.88% 29.33% 13.45% 1.81% 0% 

  (597.04, 1820.98) (337.02, 565.39) (235.05, 318.21) (168.33, 196.67) (101.77, 101.51) 

0.86317 2.5 33.16% 20.75% 7.89% 0.71% 0% 

  (457.03, 2305.04) (277.63, 525.44) (196.02, 265.84) (143.99, 167.57) (89.74, 89.47) 

0.76862 3.0 26.59% 15.44% 5.38% 0.41% 0% 

  (378.92, 2261.98) (238.05, 415.72) (172.42, 236.30) (128.95, 151.13) (83.07, 82.80) 

 
Table III, Table IV, and Table V tabulate the out-of-

control metrics, i.e., the (AATS1, ASDTS1) values, of the 

optimal SPRT chart with GICP-adjusted limits when the 

underlying distributions are Gamma, Lognormal, and 

Weibull, respectively. For each skewness k, the results 

are calculated for δ∈{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. As a 

numeric example, when m=400, k=2.0, and the 

underlying distribution is Gamma, the (AATS1, ASDTS1) 

values at δ=0.5 are equal to (6.93, 9.24), respectively (see 

Table III).  
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TABLE III: AATS1 AND ASDTS1 VALUES OF THE OPTIMAL SPRT CHART WITH ESTIMATED PROCESS PARAMETERS DESIGNED UNDER THE NORMAL 

MODEL, FOR δ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, k ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, AND m ∈ {200, 400, 600, 1000, +∞}, WHEN THE UNDERLYING 

DISTRIBUTION IS GAMMA 

   m = 200 m = 400 m = 600 m = 1000 m = +∞ 

α k δ (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (ATS1, SDTS1) 

160000 0.0 

0.5 (6.64, 9.46) (5.01, 5.50) (4.82, 5.14) (4.72, 4.90) (4.62, 4.61) 

1.0 (1.03, 1.03) (1.06, 1.05) (1.03, 1.00) (0.99, 0.97) (0.98, 0.95) 

1.5 (0.53, 0.48) (0.55, 0.51) (0.54, 0.49) (0.52, 0.47) (0.51, 0.46) 

2.0 (0.37, 0.29) (0.38, 0.31) (0.37, 0.30) (0.37, 0.29) (0.36, 0.28) 

2.5 (0.31, 0.21) (0.31, 0.22) (0.31, 0.21) (0.30, 0.21) (0.30, 0.20) 

3.0 (0.28, 0.17) (0.28, 0.18) (0.28, 0.18) (0.28, 0.17) (0.27, 0.17) 

16.00000 0.5 

0.5 (7.61, 12.25) (5.43, 6.18) (5.20, 5.63) (5.11, 5.35) (4.99, 4.98) 

1.0 (1.09, 1.11) (1.13, 1.13) (1.09, 1.07) (1.05, 1.03) (1.03, 1.01) 

1.5 (0.54, 0.50) (0.56, 0.52) (0.55, 0.51) (0.53, 0.48) (0.52, 0.47) 

2.0 (0.36, 0.28) (0.37, 0.30) (0.37, 0.29) (0.36, 0.28) (0.35, 0.27) 

2.5 (0.29, 0.19) (0.30, 0.20) (0.30, 0.20) (0.29, 0.19) (0.29, 0.19) 

3.0 (0.29, 0.18) (0.27, 0.16) (0.28, 0.16) (0.27, 0.16) (0.27, 0.16) 

4.00000 1.0 

0.5 (8.87, 18.93) (5.86, 6.97) (5.63, 6.23) (5.55, 5.89) (5.39, 5.38) 

1.0 (1.16, 1.19) (1.20, 1.20) (1.15, 1.14) (1.10, 1.09) (1.09, 1.07) 

1.5 (0.55, 0.51) (0.58, 0.55) (0.56, 0.52) (0.54, 0.49) (0.53, 0.48) 

2.0 (0.35, 0.27) (0.36, 0.29) (0.35, 0.28) (0.34, 0.26) (0.33, 0.25) 

2.5 (0.28, 0.17) (0.28, 0.18) (0.28, 0.17) (0.28, 0.17) (0.27, 0.16) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

1.77778 1.5 

0.5 (10.36, 25.34) (6.38, 7.97) (6.11, 6.97) (6.01, 6.47) (5.81, 5.81) 

1.0 (1.23, 1.29) (1.27, 1.28) (1.22, 1.22) (1.16, 1.15) (1.14, 1.12) 

1.5 (0.56, 0.53) (0.60, 0.57) (0.58, 0.54) (0.55, 0.50) (0.53, 0.49) 

2.0 (0.32, 0.24) (0.34, 0.27) (0.33, 0.24) (0.31, 0.22) (0.31, 0.22) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

1.00000 2.0 

0.5 (12.33, 38.99) (6.93, 9.24) (6.60, 7.76) (6.50, 7.14) (6.27, 6.27) 

1.0 (1.30, 1.39) (1.34, 1.37) (1.28, 1.29) (1.22, 1.22) (1.20, 1.18) 

1.5 (0.57, 0.55) (0.63, 0.61) (0.59, 0.56) (0.55, 0.51) (0.54, 0.50) 

2.0 (0.29, 0.19) (0.30, 0.21) (0.28, 0.18) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.64000 2.5 

0.5 (14.79, 59.06) (7.56, 10.83) (7.15, 8.80) (7.02, 7.87) (6.77, 6.76) 

1.0 (1.38, 1.52) (1.42, 1.46) (1.35, 1.37) (1.29, 1.29) (1.26, 1.24) 

1.5 (0.56, 0.58) (0.65, 0.65) (0.60, 0.58) (0.55, 0.52) (0.54, 0.50) 

2.0 (0.28, 0.17) (0.27, 0.17) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.44444 3.0 

0.5 (17.70, 101.46) (8.27, 13.06) (7.74, 10.05) (7.63, 8.80) (7.14, 7.13) 

1.0 (1.46, 1.66) (1.53, 1.58) (1.44, 1.47) (1.36, 1.37) (1.33, 1.32) 

1.5 (0.54, 0.62) (0.65, 0.69) (0.58, 0.59) (0.50, 0.49) (0.51, 0.46) 

2.0 (0.28, 0.17) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

From all the three tables, we notice that when k=0.0, 
the (AATS1, ASDTS1) values of the SPRT chart under 
the Gamma, Lognormal, and Weibull distributions are 
very similar to those obtained under the Normal 
distribution (see Table I). It is interesting to note, 
however, that the reported values for the Weibull 
distribution are slightly lower than those of the other 
distributions for a small shift size (i.e., δ = 0.5), both in 
the cases of known and estimated process parameters. 

For instance, when m = 400, k=0.0, and δ=0.5, the 
(AATS1, ASDTS1) values of the SPRT chart under the 
Gamma (=(5.01, 5.50)) and Lognormal (=(5.03, 5.55)) 
distributions are quite close to those under the Normal 
distribution (=(5.02, 5.54)); whereas the Weibull 
distribution reports slightly better performances (=(4.95, 
5.45)) compared to the other three. Overall, when the 
skewness level increases, the out-of-control performances 

deteriorate, with the worst case being reported for the 
smallest m (=200). It is also observed that, when only a 
small m is available, the out- of-control performances are 
affected the most when the underlying distribution is 
Lognormal. This is evident from the cells corresponding 
to m=200, k=3.0, and δ=0.5 in Table III to Table V. It is 
noticed that the (AATS1, ASDTS1) values under the 
Gamma (=(17.70, 101.46)) and Weibull (=(19.56, 
228.99)) distributions are not too far from each other, 
while those under the Lognormal distribution (=(58.69, 
3056.37)) are seen to be strikingly large. As m increases, 
this phenomenon ceases, and the chart’s performances 
stabilize and converge to their corresponding (ATS1, 
SDTS1) values in the case of known parameters. However, 
the deterioration in the out-of-control detection times due 
to skewed distributions remains a significant concern. 
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TABLE IV: AATS1 AND ASDTS1 VALUES OF THE OPTIMAL SPRT CHART WITH ESTIMATED PROCESS PARAMETERS DESIGNED UNDER THE NORMAL 

MODEL, FOR δ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, k ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, AND m ∈ {200, 400, 600, 1000, +∞}, WHEN THE UNDERLYING 

DISTRIBUTION IS LOGNORMAL 

   m = 200 m = 400 m = 600 m = 1000 m = +∞ 

σLN k δ (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (ATS1, SDTS1) 

0.00167 0.0 

0.5 (6.68, 9.60) (5.03, 5.55) (4.81, 5.11) (4.73, 4.91) (4.62, 4.61) 

1.0 (1.03, 1.03) (1.06, 1.05) (1.03, 1.01) (0.99, 0.97) (0.98, 0.95) 

1.5 (0.53, 0.48) (0.55, 0.50) (0.54, 0.49) (0.52, 0.47) (0.51, 0.46) 

2.0 (0.37, 0.29) (0.37, 0.31) (0.37, 0.30) (0.37, 0.29) (0.36, 0.28) 

2.5 (0.31, 0.21) (0.31, 0.22) (0.31, 0.21) (0.31, 0.21) (0.30, 0.20) 

3.0 (0.28, 0.17) (0.28, 0.18) (0.28, 0.18) (0.28, 0.17) (0.27, 0.17) 

0.16405 0.5 

0.5 (7.63, 13.31) (5.43, 6.19) (5.22, 5.66) (5.12, 5.36) (4.99, 4.99) 

1.0 (1.09, 1.10) (1.13, 1.13) (1.08, 1.07) (1.04, 1.02) (1.03, 1.01) 

1.5 (0.54, 0.49) (0.56, 0.52) (0.55, 0.50) (0.53, 0.48) (0.52, 0.47) 

2.0 (0.36, 0.28) (0.37, 0.30) (0.37, 0.29) (0.36, 0.28) (0.35, 0.27) 

2.5 (0.29, 0.19) (0.30, 0.20) (0.30, 0.20) (0.29, 0.19) (0.29, 0.19) 

3.0 (0.28, 0.16) (0.27, 0.16) (0.28, 0.16) (0.28, 0.16) (0.27, 0.16) 

0.31426 1.0 

0.5 (8.95, 19.94) (5.92, 7.07) (5.67, 6.31) (5.56, 5.90) (5.40, 5.40) 

1.0 (1.15, 1.18) (1.19, 1.19) (1.14, 1.13) (1.09, 1.08) (1.08, 1.06) 

1.5 (0.54, 0.50) (0.57, 0.54) (0.55, 0.51) (0.53, 0.48) (0.52, 0.47) 

2.0 (0.35, 0.27) (0.36, 0.29) (0.35, 0.28) (0.34, 0.26) (0.33, 0.25) 

2.5 (0.28, 0.18) (0.28, 0.18) (0.28, 0.18) (0.28, 0.17) (0.27, 0.17) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.44349 1.5 

0.5 (10.91, 40.03) (6.44, 8.15) (6.14, 7.05) (6.02, 6.54) (5.81, 5.81) 

1.0 (1.20, 1.27) (1.24, 1.25) (1.19, 1.19) (1.13, 1.13) (1.12, 1.09) 

1.5 (0.54, 0.51) (0.58, 0.55) (0.56, 0.51) (0.53, 0.48) (0.51, 0.47) 

2.0 (0.33, 0.25) (0.34, 0.27) (0.34, 0.25) (0.32, 0.24) (0.32, 0.23) 

2.5 (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.55138 2.0 

0.5 (14.83, 296.93) (7.06, 11.55) (6.61, 8.17) (6.49, 7.90) (6.20, 6.20) 

1.0 (1.25, 3.20) (1.29, 1.32) (1.23, 1.24) (1.17, 1.16) (1.15, 1.13) 

1.5 (0.53, 0.52) (0.58, 0.56) (0.55, 0.51) (0.52, 0.47) (0.51, 0.46) 

2.0 (0.31, 0.23) (0.33, 0.25) (0.32, 0.23) (0.30, 0.21) (0.30, 0.20) 

2.5 (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.64088 2.5 

0.5 (30.62, 5188.91) (8.29, 275.83) (7.21, 12.35) (6.92, 11.44) (6.56, 6.56) 

1.0  (1.82, 625.89) (1.33, 1.40) (1.26, 1.29) (1.19, 1.19) (1.17, 1.15) 

1.5 (0.53, 0.53) (0.58, 0.57) (0.55, 0.52) (0.51, 0.47) (0.50, 0.45) 

2.0 (0.30, 0.21) (0.31, 0.23) (0.30, 0.20) (0.29, 0.18) (0.28, 0.18) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.71557 3.0 

0.5 (58.69, 3056.37) (12.52, 743.25) (7.84, 24.01) (7.44, 13.58) (6.89, 6.89) 

1.0 (7.90, 1973.22) (1.42, 137.45) (1.29, 1.34) (1.21, 1.23) (1.19, 1.17) 

1.5 (0.52, 5.08) (0.58, 0.59) (0.54, 0.52) (0.50, 0.46) (0.49, 0.44) 

2.0 (0.29, 0.23) (0.30, 0.21) (0.29, 0.19) (0.28, 0.17) (0.27, 0.16) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

        

V. CONCLUSION 

In this paper, we investigate the impact of skewness on 
the performances of the optimal SPRT chart designed 
with GICP-adjusted control limits. The study has been 
conducted by considering three different well-known 
distributions, i.e., the Gamma, Lognormal, and Weibull 
distributions. Based on our findings and analyses, we 
have obtained the following conclusions: 

1) An increased skewness level k poses adverse 
effects on both the conditional and unconditional in-
control performances of the SPRT chart with estimated 
process parameters. In particular, when k increases, the 
exceedance probability of the SPRT chart drops rapidly, 
hitting percentages as low as 0.32% when k=3.0. This is 
an alarming sign, since practitioners are exposed to 
higher risks of false alarms under skewed datasets. 

Besides, the AATS0 values are found to decrease as k 
increases, indicating worse in-control performance in the 
unconditional sense.  

2) The out-of-control performances of the SPRT 
chart with estimated process parameters are found to 
deteriorate as the skewness level k increases. This 
situation is especially severe when the underlying 
distribution is Lognormal and the Phase-I sample size is 
small.  

3) It is found that a larger m tends to lead to poorer 
in-control performance, but a contrastingly better out-of-
control performance. This phenomenon aligns with the 
commonly observed “trade-off” between in-control and 
out-of-control performances, as found in scenarios 
involving the adjustment of p and/or ε to control the 
rigidity of the GICP constraint.  

Regarding the appropriate choice of m in practice, we 
recommend practitioners to carefully assess i) the degree 
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of skewness of the data, ii) the relevant in-control policy 
set by the factory, and iii) the mean shift size to be 
targeted in the course of SPM, before proceeding with 
any sort of decision-making. For instance, if a 
practitioner expects a small mean shift (e.g., δ=0.5) to 

take place, then it may not be wise to pursue a small m 
merely for the purpose of preserving good in-control 
performance, since the out-of-control performance would 
be considerably compromised for such a small δ. 

TABLE V: AATS1 AND ASDTS1 VALUES OF THE OPTIMAL SPRT CHART WITH ESTIMATED PROCESS PARAMETERS DESIGNED UNDER THE NORMAL 

MODEL, FOR δ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, k ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, AND m ∈ {200, 400, 600, 1000, +∞}, WHEN THE UNDERLYING 

DISTRIBUTION IS WEIBULL 

   m = 200 m = 400 m = 600 m = 1000 m = +∞ 

β k δ (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (AATS1, ASDTS1) (ATS1, SDTS1) 

3.60235 0.0 

0.5 (6.54, 9.09) (4.95, 5.45) (4.75, 5.04) (4.67, 4.84) (4.55, 4.55) 

1.0 (1.03, 1.03) (1.06, 1.05) (1.02, 1.00) (0.99, 0.96) (0.98, 0.95) 

1.5 (0.53, 0.49) (0.55, 0.51) (0.54, 0.49) (0.52, 0.48) (0.51, 0.47) 

2.0 (0.37, 0.30) (0.38, 0.31) (0.38, 0.31) (0.37, 0.30) (0.36, 0.29) 

2.5 (0.31, 0.21) (0.31, 0.22) (0.31, 0.22) (0.31, 0.21) (0.30, 0.21) 

3.0 (0.28, 0.17) (0.28, 0.17) (0.28, 0.17) (0.28, 0.17) (0.27, 0.17) 

2.21560 0.5 

0.5 (7.47, 12.12) (5.35, 6.07) (5.14, 5.56) (5.06, 5.30) (4.93, 4.92) 

1.0 (1.10, 1.11) (1.12, 1.12) (1.09, 1.08) (1.05, 1.03) (1.04, 1.01) 

1.5 (0.55, 0.51) (0.58, 0.54) (0.56, 0.52) (0.54, 0.49) (0.53, 0.48) 

2.0 (0.37, 0.29) (0.38, 0.31) (0.37, 0.30) (0.36, 0.29) (0.35, 0.28) 

2.5 (0.29, 0.19) (0.29, 0.20) (0.29, 0.19) (0.29, 0.19) (0.28, 0.18) 

3.0 (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

1.56391 1.0 

0.5 (8.70, 16.78) (5.80, 6.83) (5.58, 6.13) (5.51, 5.84) (5.35, 5.35) 

1.0 (1.17, 1.20) (1.20, 1.20) (1.16, 1.15) (1.11, 1.10) (1.10, 1.08) 

1.5 (0.56, 0.52) (0.60, 0.56) (0.58, 0.53) (0.55, 0.50) (0.54, 0.49) 

2.0 (0.35, 0.27) (0.37, 0.30) (0.36, 0.28) (0.34, 0.26) (0.34, 0.26) 

2.5 (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

1.21112 1.5 

0.5 (10.19, 23.56) (6.34, 7.89) (6.07, 6.89) (5.99, 6.41) (5.81, 5.80) 

1.0 (1.24, 1.29) (1.27, 1.28) (1.22, 1.22) (1.17, 1.16) (1.15, 1.13) 

1.5 (0.57, 0.54) (0.61, 0.58) (0.59, 0.55) (0.55, 0.51) (0.54, 0.50) 

2.0 (0.32, 0.23) (0.34, 0.26) (0.32, 0.24) (0.31, 0.21) (0.30, 0.20) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

1.00000 2.0 

0.5 (12.33, 41.18) (6.94, 9.42) (6.60, 7.80) (6.49, 7.13) (6.27, 6.27) 

1.0 (1.30, 1.40) (1.34, 1.37) (1.28, 1.29) (1.22, 1.21) (1.20, 1.18) 

1.5 (0.57, 0.55) (0.63, 0.61) (0.59, 0.56) (0.55, 0.51) (0.54, 0.50) 

2.0 (0.29, 0.19) (0.30, 0.21) (0.28, 0.18) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.86317 2.5 

0.5 (15.22, 76.83) (7.60, 11.25) (7.15, 8.82) (7.04, 7.94) (6.73, 6.73) 

1.0 (1.35, 1.50) (1.40, 1.44) (1.33, 1.35) (1.27, 1.27) (1.24, 1.22) 

1.5 (0.55, 0.57) (0.64, 0.63) (0.59, 0.57) (0.54, 0.51) (0.53, 0.48) 

2.0 (0.28, 0.18) (0.28, 0.18) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

0.76862 3.0 

0.5 (19.56, 228.99) (8.35, 15.32) (7.70, 10.38) (7.55, 8.73) (7.17, 7.17) 

1.0 (1.42, 2.44) (1.47, 1.54) (1.38, 1.42) (1.31, 1.32) (1.28, 1.26) 

1.5 (0.53, 0.59) (0.63, 0.65) (0.57, 0.56) (0.51, 0.49) (0.51, 0.46) 

2.0 (0.28, 0.18) (0.27, 0.17) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

2.5 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

3.0 (0.27, 0.16) (0.27, 0.15) (0.27, 0.16) (0.27, 0.16) (0.26, 0.15) 

 

In future research, it would be valuable to modify the 

GICP method so that the designed SPRT control chart is 

more robust towards skewed distributions. Other possible 

future works include devising a non-parametric SPRT 

chart with estimated process parameters, or designing 

specific parametric SPRT charts for the Gamma, 

Lognormal, and Weibull distributions, etc. 
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