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Abstract—It is very challenging to design an effective 
wireless communication system. That’s because of 
numerous factors affecting the performance of a typical 

wireless communication system, such as nonlinear channel 
distortions and impairments. single carrier frequency 
division multiple access (SC-FDMA) is a multiple access 

scheme that is an important part of the long-term evolution 
(LTE) standard for uplink transmission. An advanced 
mobile radio system’s multiple access schemes should 

indeed meet stringent requirements, such as a low bit error 
rate (BER). In this article, we investigate the equalization 
problem for nonlinear channel distortions and impairments 

using deep neural networks (NN). We introduce a novel 
combined deep neural network channel equalization and 
symbol detection scheme based on a deep learning (DL) 

recurrent feedback (RF) long short-term memory (LSTM) 
neural network to achieve blind equalization and decoding 
for SC-FDMA systems without knowing the channel state 

information (CSI). To train the model efficiently, the 
training data is gathered by simulation, with channel effects 
and noise treated as a complete black box. CSI and 

constellation demapping are learned by a deep neural 
network (DNN) model. Then, the frequency-domain 
sequences that have been corrupted are implicitly equalized 

to get the broadcasted signal back. Our specified SC-FDMA 
system, which uses a quadrature phase-shift keying (QPSK) 
modulation method and the suggested Deep Learning-based 

model channel equalizer, performs better than the existing 
equalizers by an average of 1 to 4 dB at moderate signal-to-
noise (SNR) ratios, according to simulation data. A 

complexity comparison between the proposed and the 
conventional equalizers was conducted in terms of training 
time, execution time, and number of operations. On 

combined channel equalization and symbol detection, the 
suggested system delivers state-of-the-art performance.  

  

  

  

 

I. INTRODUCTION 

In recent years, the communication standards and 

innovations are driven by the eager desire of customers to 

 

 

  

elevate their access to broadband wireless communication 

service. Accordingly, mobile networks witness a huge 

demand in terms of larger data rates and massive 

connected devices. It is anticipated for global mobile data 

traffic to margin 230 exabytes (EB) per month, and the 

connected devices to pass 90 million by 2026 [1]. 

Consequently, new wireless transmission techniques 

with large data rates and resistance to radio frequency 

(RF) impairments have gotten a lot of attention as a 

response to this demand. Multicarrier orthogonal 

frequency division multiple access (OFDMA) strategies 

have become the dominant essence for wireless 

broadband applications in recent decades because of their 

superior spectral efficiency, which is achieved using a 

special set of overlapped orthogonal subcarriers, and their 

resistance to channel selectivity [2]. 

Despite of their multiple advantages, OFDMA has 

some downsides, such as a high peak-to-average power 

ratio (PAPR), which makes it hard for mobile devices to 

save energy [3]. To address this issue, a modified version 

of OFDMA, discrete Fourier transform (DFT) pre-coded 

OFDM, known as single-carrier FDMA, was investigated 

(SC-FDMA). It also has the same effectiveness and 

complexities as OFDMA but with a lower PAPR 

condition. As time passed, SC-FDMA has proven to be a 

great design and has been used for uplink transmission in 

the long-term evolution (LTE) standard. 

Because of the large amount of inter-symbol 
interference (ISI) among the transmitted symbols, the 
multipath environment of wireless communication 
channels makes it difficult to recover rapidly transmitted 
data at the receiver. As a result, overcoming the problem 
of inter-symbol interference is a critical task for wireless 
communications systems. Powerful equalization 
procedures are unavoidable in order to offset the negative 
consequences of ISI. There have been a lot of new 
equalization algorithms in the last few years that can help 
cut down the amount of interference (ISI) in fading 
channels. The ISI could indeed span hundreds of symbols 
when the data rate is extremely high, and the cost of 
designing and making these filters might be too high [4, 
5]. 

Equalizer design problem get more attentions both 
academically and in the industrial field since it is crucial 
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to deal with dynamic and rapidly varying channels. 
Linear equalizers often use transversal or lattice linear 
filters and adaptation techniques like recursive least 
square (RLS), fast RLS, least mean square (LMS), 

square-root RLS, gradient RLS, and so on. Linear 
equalizers, on the other hand, perform poorly on channels 
with profound spectral nulls. 

Artificial deep learning neural networks (ADLNN) 

algorithms in wireless communications systems have 

evolved considerably in recent years, particularly in the 

physical layer, owing to their tremendous capability to 

learn, recognize, and forecast [6]. In the next subsection, 

a brief overview for the literature of neural networks (NN) 

in equalizer design problem will be introduced. 

A. Related Work 

Modulation classification problem has been tackled in 

multiple research works. In [7–9], an effective 

modulation classifier has been developed using 

convolutional neural networks (CNN). The authors of 

[10–12] demonstrated higher performance and faster 

convergence for NN-based decoders for BCH and polar 

code channel decoding. Additionally, in [13], signal 

detection in multiple-input-multiple-output (MIMO) 

orthogonal frequency-division multiplexing (OFDM) 

systems was presented to attain highly developed 

accuracy with much less complexity while giving 

robustness under intricate channel interference. 

Additionally, [14–16] provide examples of their 

opportunities for enhancing wireless communication 

systems.  

Artificial DNNs have recently attracted attention in the 

domain of channel equalization due to their abilities to 

accomplish the mapping between input and output 

domains in a way that is not linear and because 

equalization and symbol detection might be considered as, 

classification tasks [17–19].  

In the equalization process that uses an adaptive 

technique based on a NN to recover the target signal, the 

NN minimizes the difference exist between the equalizer 

outcome and the delayed signal to recover the channel’s 

nonlinear properties from the data that was received. 

Patra et al. demonstrated in [20–22] that for signals with 

either pulse amplitude modulation (PAM) or quadrature 

amplitude modulation (QAM), NN-based nonlinear 

equalizers outperformed conventional linear equalizers in 

terms of bit error rate (BER). 

For a long time, NNs have been employed for channel 

equalization [18, 23–25], therefore it appears reasonable 

to use DNN as an end-to-end approach for optimizing 

channel equalization and decoding simultaneously. 

Numerous machine learning techniques were used to 

tackle the nonlinear equalization problem in the absence 

of accurate channel state information (CSI). Among these 

techniques are DNN [26, 27], Gaussian processes for 

classification (GPC) [28], convolutional neural network 

(CNN) [19], and support vector machine (SVM) [29, 30], 

which allow the receiver to achieve adaptive equalization. 

The DNN equalizer described in [26] requires a 

significant number of parameters and is only useful for 

short codes. In [28, 31, 32] these equalizers determine the 

channel filter coefficients of ISI using multiple training 

sequences. Additionally, these methods require prior 

knowledge of channel filter coefficient distributions and 

the variance of AWGN. In actuality, such assumptions 

may be false. As a result, without a priori information, it 

is difficult to generate correct CSI analysis results. As 

shown in [31], after the decoder, the SVM equalizer 

performs poorly. 

Given the aforementioned positive developments, DL 

(deep learning) has a lot of power and is very promising 

for dealing with more difficult situations and meeting the 

strict needs of 5G and beyond communication systems. 

B. Motivations and Contributions 

Deep learning has lately gained wide popularity in the 

areas of natural language processing, text translation, and 

computer vision [33, 34]. The application of deep 

learning in wireless communications has also experienced 

significant growth [35]. 

The basic feedforward NN only creates the weighted 

connections between the cascading layers, but in the 

recurrent neural networks (RNNs), the adjacent neurons 

in the same layer are also connected to each other. RNNs 

could be trained to learn sequential or time-varying 

patterns since they have memory or feedback connections. 

In the last few years, RNNs have been prevented from 

being a mainstream network model because of the 

challenges in training and computing complexity. Due to 

the advancement of deep learning theory, RNNs are 

growing quickly right now. 

The main feature of RNNs is that they have a hidden 

layer with memory capabilities, which provides them 

with a structural advantage when processing time-series 

data. Therefore, using an RNN as a channel equalizer can 

help the CS equalizer learn faster and work better. Deep 

learning techniques are much better for channel 

equalization than other methods because they can 

automatically find problem features without needing a lot 

of information in advance. 

Standard RNNs have the drawback of being unable to 

use information about future input [36]. In tasks like text 

translation, the content that comes after the current text 

often has a big effect on how it is understood, and it is 

evident that the standard RNN is unable to account for 

this. The bidirectional RNN (B-RNN) was suggested in 

[36, 37] as a remedy for this shortcoming. In order to 

accomplish this, the B-RNN uses two distinct hidden 

layers that analyses the data in both directions before 

feeding the results into a single output layer [33]. 

Standard RNNs also have the issue that they do not have 

much of a chance of picking up informational features 

over long distances. This is because as the time step 

increases during the training phase, they might run into 

gradient elimination and gradient explosion. A long 

short-term memory (LSTM) architecture was suggested 

in [38] as a solution to this issue. One could consider the 

LSTM network to be an improved form of the RNN’s 

simple hidden unit [33, 39]. Long-distance dependencies 

can be handled well by the LSTM [40]. A traditional 

LSTM has three gates (forget, input, and output), a 

memory cell, a block input, and an output activation 
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function (AF). Each of the gates and the block’s input are 

linked to the block’s output [39]. 

In this work, we model the channel equalization 

problem in SC-FDMA systems as a DL task, and propose 

a new idea for combined channel equalization and signal 

detection (CE-SD) based on DL recurrent feedback 

LSTM-NN. This idea takes features from the SC-FDMA 

system’s received messages and labels them based on the 

constellation map used at the transmitter. Compared to 

conventional non-neural network approaches, the neural 

network approach is more flexible since it can be used for 

various channel circumstances and does not need to 

worry about channel details. In the proposed scheme, 

channel equalization and signal detection are treated as a 

complete black box, and the box functions are 

continuously approached by a DNN model. The DNN 

model has the ability to perform equalization and symbol 

decoding simultaneously, even in the absence of channel 

state information (CSI). In terms of bit error rate (BER), 

simulation results showed that our suggested scheme 

outperforms other commonly used signal equalization 

approaches. This successful example highlights the utility 

of DL in SC-FDMA systems.  

 

 
Fig. 1. The proposed SC-FDMA scheme. 

The most significant contributions are listed below. 

1) We embed the DL strategy into the SC-FDMA system 
to equalize the channel effects and detect symbols to 
exploit the capabilities of the DNN at recognizing and 
representing things, the training process can make the 

CS equalization at data subcarriers work better. 
2) We evaluate the performance of the suggested 

framework for channel equalization under various 
conditions. The accuracy of the channel equalization is 

explicitly assessed using a simulation of the bit error 
rate (BER). Additionally, simulations and comparisons 
have demonstrated that the suggested framework is 
effective and trustworthy across a variety of channel 
circumstances. 

3) We provide a dataset that will help the research 
community to evaluate against linear equalizers (LEs), 
such as the minimum main square error (MMSE) and 
zero forcing (ZF) and  optimization algorithms as well. 

The following sections will organize the remainder of the 

paper: The second section, which follows this one, is 

devoted to describing the system. The third and fourth 

sections introduce the Deep Learning model and the 

offline training of the suggested model, respectively. The 

simulation results are then shown. Finally, to conclude 

the study. 

II. SYSTEM MODEL 

The SC-FDMA system is demonstrated in Fig. 1, as in 

[41]. The overall system subcarriers are M. From among 

those Nu users, each N subcarriers are designated to only 

one user, where M= Nu×N. All of this is accomplished 

following the N points fast Fourier transform (FFT). A 

length Lcp of cyclic prefix (CP), longer than or equal to 

the length of the channel’s transfer function Lch, will be 

added following the M points inverse fast Fourier 

transform (IFFT). The time domain (TD) transmitted 

signal that corresponds to the kth user without the Lcp in 

vector form is 𝐆𝑘 = 𝐅𝑀
𝐻𝐓𝑘𝐅𝑁𝐬𝑘 , where sk is the kth user’s 

(N×1) symbol vector, Tk is an M×N sub-carrier mapping 

matrix, and FN and 𝐅𝑀
𝐻  are the FFT and IFFT matrices, 

respectively, with dimensions N×N and M×M. Assume 

that Hk is the transfer function of the channel between the 

kth user and the base station, with maximum delay spread 

Lch less than the Lcp, to entirely remove the ISI. 

The procedure will be reversed at the receiving end. 

The CP is removed first, then the FFT transforms the SC-

FDMA symbols into FD by M points FFT accompanied 

by sub-carrier demapping to extract the FD signal 

received for the kth user. 

The TD signal received relating to all Nu users for the 

tth SC-FDMA symbol presented by 

𝐫𝑡 = ∑ 𝐇𝑙
𝑡𝑁𝑢−1

𝑙=0 𝐆𝑙
𝑡 + 𝐧𝑡 ,                           (1) 

where 𝐇𝑙
th  is the (M×M) channel circular convolution 

matrix where the first column contains the impulse 

response of the channel between the lth user and the BS, 

and nt is an (M×1) AWGN vector with variance 𝜎𝑛
2. After 

M FFT, the transform of the received signal is expressed as 

𝐑𝑡 = ∑ 𝐅𝑀𝐇𝑙
𝑡𝑁𝑢−1

𝑙=0 𝐆𝑙
𝑡 + 𝐅𝑀  𝐧𝑡  .                    (2) 

It will be easier to follow if we remove the symbol index 

from Eq. (2), as shown below: 

𝐑 = ∑ �̂�𝑙
𝑁𝑢−1
𝑙=0 𝐓𝑘𝐅𝑁𝐬𝑘 + 𝐅𝑀 𝐧                    (3) 

where 𝐅𝑀𝐇𝑙𝐅𝑀
𝐻 = diag(𝐅𝐅𝐓(ℎ𝑙)) = 𝐇�̂� . 

The FD signal received for the kth user is calculated 
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after demapping as:  

𝐓𝑘
𝐻𝐑 = 𝐓𝑘

𝐻 ∑ �̂�𝑙
𝑁𝑢−1
𝑙=0 𝐓𝑘𝐅𝑁𝐬𝑘 + 𝐓𝑘

𝐻𝐅𝑀  𝐧 .          (4) 

Because of the mapping matrix’s orthogonality property, 

𝐓𝑘
𝐻𝐓𝑙 = {

𝐈𝑁 ,           𝑘 = 𝑙
𝟎𝑁, 𝑘 ≠ 𝑙

 

The FD signal received for the kth user could well 

resemble 

𝐑𝑘 = 𝐓𝑘
𝐻�̂�𝑘𝐓𝑘𝐅𝑁𝐬𝑘 + 𝐓𝑘

𝐻𝐅𝑀 𝐧 = �̅̂�𝑘𝐅𝑁𝐬𝑘 + 𝐓𝑘
𝐻𝐅𝑀 𝐧   (5) 

where �̅̂�𝑘 = 𝐓𝑘
𝐻�̂�𝑘𝐓𝑘  is a N×N diagonal sub-matrix of 

the M×M �̂�𝑘 matrix. 

The signal received can be expressed using the bth 

frequency bin as follows: 

𝑅𝑘,𝑏 = �̂̅�𝑘,𝑏𝑆𝑘,𝑏 + 𝑁𝑏 ,   𝑏 = 0,1, … 𝑁 − 1.      (6) 

Then perform frequency domain equalization by any 

traditional linear techniques (ZF or MMSE) like in [41] to 

counteract the ISI’s effects. Where the frequency domain 

channel equalization is carried out on a sub-carrier basis. 

The FD-LE is conducted through multiplying W, to the 

signal received. The signal equalized in FD domain is 

given by 

�̂�𝑘 = 𝐖𝑘 𝑹𝑘 = �̃�k
−1

𝐑𝑘                         (7) 

where 𝐖𝑘 = �̃�k
−1

 and �̃�k  represent the diagonal matrix 

used for channel equalization. The bth entry along the 

diagonal is given by 1 𝐻𝑘,𝑏⁄  for the ZF criterion and 

𝐻∗
𝑘,𝑏 (|𝐻𝑘,𝑏|

2
+ 1 𝑆𝑁𝑅⁄ )⁄  for the MMSE criterion [42]. 

Then perform FD equalization by any traditional 

technique like in [41] to counteract the ISI’s effects. Then 

demodulate and detect the kth user original transmitted 

symbols after N points IFFT TD transformation. However, 

in the suggested method, a DNN is used instead of 

conventional channel equalization techniques, which 

results in an end-to-end scheme that can get back the 

original information from the information that was sent. 

III. DEEP LEARNING MODEL 

Due to deep learning’s powerful capabilities, it has 

been successfully applied in a wide variety of 

applications, including natural language processing [43], 

computer vision [44], speech recognition [33], and others. 

Here, we will discuss the most fundamental theories and 

concepts underlying deep learning and how they apply to 

our model. For a detailed explanation of deep learning 

and machine learning, please see [45]. 

LSTM NNs are discussed in this section for combined 

channel equalization and symbol detection. Offline 

training with simulated data is used to train the proposed 

DL-LSTM-based channel equalizer. 

The LSTM network is a form of RNN that is smart 

enough to learn long-term correlations between time step 

sequences [38]. Numerous LSTM-based systems have 

been developed to address issues such as speech 

recognition [46], handwriting recognition [47], and online 

translation with tools like Facebook translation systems 

[48], and Google neural machine translation [49]. 

Input, output, and forget gates, as well as a memory 

cell, comprise the LSTM-NN structure. The LSTM-NN 

properly stores the long-term memory via the forget and 

input gates. The LSTM cell’s primary structure is 

depicted in Fig. 2 in [38]. The forget gate allows the 

LSTM-NN to eliminate the unwanted data from the last 

process by using the present used input xt and the cell 

output ht. On the basis of the preceding cell output ht-1 

and the present cell’s input xt, the input gate determines 

the data that will be utilized in conjunction with the 

preceding LSTM cell state ct-1 to generate a new state of 

the cell ct. LSTM may decide which data is discarded and 

which is maintained by using the forget and input gates. 

The output gate determines the present cell output ht 

by utilizing the preceding cell’s output ht-1 at the present 

state of the cell ct and input xt. 

 
Fig. 2. LSTM neural network architecture. 

The mathematical formulation for the LSTM-NN 

configuration is given by (8) to (13) as in [50]. 

𝐢𝑡 = 𝛔𝑔(𝐰𝑖𝐱𝑡 + 𝐑𝑖𝐡𝑡−1 + 𝐛𝑖)                 (8) 

𝐨𝑡 = 𝛔𝑔(𝐰𝑜𝐱𝑡 + 𝐑𝑜𝐡𝑡−1 + 𝐛𝑜)               (9) 

𝐠𝑡 = 𝛔𝑐(𝐰𝑔𝐱𝑡 + 𝐑𝑔𝐡𝑡−1 + 𝐛𝑔)            (10) 

𝐟𝑡 = 𝛔𝑔(𝐰𝑓𝐱𝑡 + 𝐑𝑓𝐡𝑡−1 + 𝐛𝑓)             (11) 

𝐜𝑡 = 𝐟𝑡⨀𝐜𝑡−1 + 𝐢𝑡⨀𝐠𝑡                          (12) 

𝐡𝑡 = 𝐨𝑡  ⨀ 𝛔𝑐(𝐜𝑡)                                  (13) 

where 𝐱𝑡 ∈ ℝ𝑛𝑖  is the input vector at time t with 𝑛𝑖 

entries. 𝐡𝑡  , 𝐡𝑡−1 ∈ (1, −1)𝑛ℎ  are the hidden layer states 

vectors of the LSTM at time t and t1, respectively. wi, 

wf, 𝐰𝑔, 𝐰𝑜 ∈  ℝ𝑛ℎ×𝑛𝑖  are the forward or the input 

trainable weight matrices. 𝐑𝑖 , 𝐑𝑓 , 𝐑𝑔, 𝐑𝑜  ∈  ℝ𝑛ℎ×𝑛𝑖  are 

the recurrent trainable weight matrices. 𝐛𝑖  , 𝐛𝑓 , 𝐛𝑔 , 𝐛𝑜 ∈

 ℝ𝑛ℎ  are the biases vectors. i, o, and f represent the input, 

output, and forget gates, respectively. 𝐠𝑡 , 𝛔𝑔, and 𝛔𝑐 

represent the cell candidate, the gate activation function 

(sigmoid function), and the state activation function (tanh 

function), respectively. ⨀ denote the Hadamard Product 

(Elementwise Multiplication). LSTM-NN evaluates only 

the prior sequence’s impact on the present sequence, 

neglecting the subsequent information. 

The DL LSTM-NN was constructed using an array of 

the following five layers as shown in Fig. 3, to perform 
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combined channel equalization and symbol detection: A 

layer for the sequence input (with a size equal to the 

amount of features in the input data, which is 128), an 

LSTM layer (with 128 hidden units), and eventually, 256 

classes are accomplished by the use of a 256 fully 

connected layer, accompanied by a SoftMax layer and a 

classification layer. 

 
Fig. 3. DL LSTM-NN framework for the proposed joint channel equalizer and symbol detector. 

In the current work each user is assigned four 
subcarriers from the SC-FDMA frame, and each 
subcarrier can be one of four QPSK constellation points. 

The number of labels in the training equals 𝑀𝑠
𝑁, where Ms 

is the constellation (modulation) order and N is the 
subcarriers that are assigned to only one user. Therefore, 
the number of labels in the training equals 44=256, so the 

number of classes is 256. Consequently, the size of the 
fully connected layer in the LSTM-NN should be 256 to 
match the number of classes. If we use higher-order 
modulations or give each user more subcarriers, the 

number of labels will also go up. This will make the 
system harder to use, take longer to train, and lead to an 
impractical system. As a result, we recommend using 
QPSK. 

As the proposed DL LSTM-based channel equalizer 
and symbol detector is created, the weights and biases of 
the recommended equalizer must be adjusted (tuned) 
before deployment, using the appropriate optimization 
algorithm. The optimal parameters (weights and biases) 

are learned on a training set with predefined outputs. To 
figure out the best parameters, a loss function is used to 
figure out how far the network output is from the desired 
output, and then three different DLNN optimization 

methods are used to change the parameters. A number of 
different optimization methods are used to get the best 
possible channel equalization and symbol detection for 
the SC-FDMA wireless communication system. Some of 

them are stochastic gradient descent with momentum 
(SGDm), root mean square propagation (RMSProp), and 
adaptive moment estimation (Adam). 

A. Optimization Algorithms 

The method of back-propagation (BP) is frequently 
utilized to train NNs. The training method repeats two 
phases: propagation and weight update. The error 
propagates from the output layer backward to the rest of 
the nodes. Using these errors, we can determine the 
gradient of the loss function relative to the network 
weights. In order to minimize the loss function, the 
optimization method takes the gradient and uses it to 
make adjustments to the weights [51]. 

Learning processes are greatly aided by optimization 
algorithms. By adjusting the model’s weights and biases 
to minimize the loss function, the learning process seeks 
to find a model that will yield improved results. Learning 
deep neural networks is analogous to solving an 
optimization problem, with the goal of achieving global 
optimization via a stable training trajectory and rapid 
convergence with gradient descent algorithms [52]. 

It is generally usual to use a gradient descent 
optimization algorithm to seek the minimum loss function. 

The gradient descent method changes the weights and 
biases incrementally in small steps in the direction of the 
negative gradient of the loss function. 

𝑤𝑙(𝑡 + 1) = 𝑤𝑙(𝑡) − 𝛼 ∇𝐿(𝑤𝑙(𝑡))          (14) 

𝑏𝑙(𝑡 + 1) = 𝑏𝑙(𝑡) − 𝛼 ∇𝐿(𝑏𝑙(𝑡))            (15) 

where t is the iteration number, l and α represents the 
layer number and learning rate, respectively. The learning 

rate, α ∈  [0,1], determines how much the weights is 

updated each time. When this parameter’s value is too 
large, the output does not converge to the solution but 
instead floats around it. To the contrary, if it is set too low, 
the calculation will take too long to arrive at a solution. 

In the typical gradient descent approach, the gradient 
of the loss function is evaluated using the complete 
training set at once and updates the parameters (w, and b) 
after scanning the whole training set, this method is 
referred to as “batch gradient descent”.  

In the case of a convex problem, batch gradient 
descent is ensured to converge to the global minimum, 
while in the case of a non-convex problem, it is 
confirmed to converge to a local minimum. However, in 
deep learning-related tasks, the training set typically 
contains thousands or even trillions of samples, making it 
impractical to calculate the gradient via a quick scan. 
This makes even a single update to the parameters too 
time-consuming. It is also challenging to feed all the data 
into the model at once due to the computation memory’s 
capacity limitations. As a result, the batch gradient 
descent method for solving the optimization problem is 
rarely used in deep learning models. 

Stochastic gradient descent (SGD) is a technique that 
can be used to calculate the gradient and update the 
parameters for each training sample rather than using the 
entire set of training data. However, due to the large 
variation between the training samples, updating 
parameters often results in significant fluctuations in the 
objective function. However, while a low learning rate 
allows SGD to converge to a great point, it also slows 
down training. The frequent data transfers between GPU 
memory and local memory also reduce efficiency when 
we are employing GPUs to carry out the computation. 

Iterations utilize a different subset of the data, referred 
to as a “mini batch”. The benefits of both batch gradient 
descent and stochastic gradient descent are combined in 
mini-batch gradient descent, which also updates the 
parameters after obtaining the gradient of a small group 
of samples. Unfortunately, good convergence is not 
guaranteed by mini-batch gradient descent, and tuning the 
learning rate also requires some expertise. So, to further 
enhance the convergence, some researchers have added 
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additional helpful tricks and techniques. All mini batches 
of the entire training dataset are processed by the training 
algorithm during one epoch. 

Algorithms using stochastic gradient descent permit 
oscillations along the path taken by the steepest fall to 
reach the ideal. One mechanism for stabilizing this 
oscillation is the use of momentum [53]. The weights and 
biases of a neural network can be adjusted using 
stochastic gradient descent with momentum (SGDm) in 
the following manner: 

𝑤𝑙(𝑡 + 1) = 𝑤𝑙(𝑡) − 𝛼 ∇𝐿(𝑤𝑙(𝑡)) + 

𝜖(𝑤𝑙(𝑡) − 𝑤𝑙(𝑡 − 1))            (16) 

𝑏𝑙(𝑡 + 1) = 𝑏𝑙(𝑡) − 𝛼 ∇𝐿 (𝑏𝑙(𝑡)) 𝜖 (𝑏𝑙(𝑡) − 𝑏𝑙(𝑡 − 1))   (17) 

where the contribution of the prior gradient step to the 

current iteration is given by ϵ. 

All of SGDm’s parameters are learned at the same rate. 

By implementing learning rates that vary according to 

parameters and can automatically adapt to the loss function 

being utilized, network training can be made better. Root 

mean square propagation (RMSProp) is one such approach. 

To do this, it calculates the squares of the gradients of the 

parameters at each element using the formula: 

𝑞𝜃(𝑡) = 𝜇2𝑞𝜃(𝑡 − 1) + (1 − 𝜇2) (∇𝐿(𝑤𝑙(𝑡)))
2

    (18) 

𝑞𝑏(𝑡) = 𝜇2𝑞𝑏(𝑡 − 1) + (1 − 𝜇2) (∇𝐿(𝑤𝑙(𝑡)))
2

    (19) 

where µ2 is the rate of decay of the moving average. 

Overall, the rate of decay seems to be 0.9, 0.99, or 0.999. 

The associated squared gradient averaging lengths are 

equivalent to 1/(1µ2), particularly, 10, 100, or 1000 

parameter updates, respectively. 

With the help of a moving average, the RMSProp 

method normalizes the updates of the weights and bias 

parameters, as shown below:  

𝑤𝑙(𝑡 + 1) = 𝑤𝑙(𝑡) −
𝛼 ∇𝐿(𝑤𝑙(𝑡))

√𝑞𝜃(𝑡)+𝜑
             (20) 

𝑏𝑙(𝑡 + 1) = 𝑏𝑙(𝑡) −
𝛼 ∇𝐿(𝑏𝑙(𝑡))

√𝑞𝑏(𝑡)+𝜑
              (21) 

This allows RMSProp to increase learning rates for 

parameters with small gradients while decreasing learning 

rates for parameters with large gradients. A minor constant 

𝜑  is added to prevent a division by zero. where an 

element-by-element division is used. 

Momentum terms have been added to the parameter 

updates in Adam, similar to RMSProp. When it comes to 

deep learning, Adam is one of the most popular 

optimization algorithms used. The term “Adam” comes 

from the term “adaptive moment estimation”, which 

describes how Adam calculates first and second moment 

estimates of gradients to determine individual adaptive 

learning rates for various parameters [54]. An element-

wise moving average of both the parameter gradients and 

their squared values is retained by the algorithm. The 

moving average of the parameter gradients can indeed be 

described as follows: 

𝑐𝜃(𝑡) = 𝜇1𝑐𝜃(𝑡 − 1) + (1 − 𝜇1) (∇𝐿(𝑤𝑙(𝑡)))      (22) 

𝑐𝑏(𝑡) = 𝜇1𝑐𝑏(𝑡 − 1) + (1 − 𝜇1) (∇𝐿(𝑤𝑙(𝑡)))      (23) 

where 𝜇1  is rate of decay. Adam updates the network 

parameters utilizing moving averages as follows: 

𝑤𝑙(𝑡 + 1) = 𝑤𝑙(𝑡) −
𝛼 𝑐θ(t)

√𝑞𝜃(𝑡)+𝜑
               (24) 

𝑏𝑙(𝑡 + 1) = 𝑏𝑙(𝑡) −
𝛼 𝑐θ(t)

√qb(t)+φ
                 (25) 

If the gradients over multiple iterations are consistent, 

a moving average of the gradient can be used to gain 

momentum with parameter updates in a particular 

direction. If the gradients are noisy, the moving average 

of the gradient will be smaller, leading to smaller 

parameter updates. 

IV. OFFLINE TRAINING OF THE SUGGESTED DL MODEL 

While DLNNs are the state-of-the-art approach for 

wireless communication systems, they have a huge 

amount of computational complexity and a lengthy 

training period. GPUs have become the most effective 

training equipment for DLNNs. 

Due to the lengthy training period required for the 

proposed DL model and the large number of parameters 

that must be tuned during training, like weights and 

biases, training must be conducted offline. The trained 

model is utilized to extract the transmitted data during 

online implementation.  

Because machine learning-based models aren’t built by 

experts, they learn from data instead of being made by 

them. For the bulk of machine learning tasks, obtaining a 

huge amount of labeled data for training is a difficult 

challenge. Alternatively, training data for channel 

equalization issues can be easily gotten by simply 

conducting a simulation. Obtaining the training data is 

straightforward once the channel parameters and model 

are known. 

Offline training of the neural networks is carried out 

using simulated data. When you run a simulation, you 

start with a random message s and send the SC-FDMA 

frames to the receiving end through a simulated channel 

model. Each frame has one SC-FDMA symbol in it. To 

retrieve the received SC-FDMA signal, SC-FDMA 

frames with varying channel defects are used. After 

undergoing the distortion of the channel and removing 

the CP, the incoming signals y are gathered as training 

samples. As shown in Fig. 1, the network’s input data are 

the signals that are received y, and the actual information 

messages s. These signals act as the supervision labels. 

By minimizing the loss function and updating the 

weights and biases, the optimization algorithms train the 

model. The loss function, in its simplest form, is the 

difference between the network’s output and the original 

messages, which can be expressed in a variety of ways. 

The neural network toolbox in MATLAB gives the user 

the option of selecting a loss function from a list of 

possible options (i.e., MAE, crossentropyex, and MSE). 
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The loss function that we used in our experiments is the 

crossentropyex, and it can be expressed as: 

𝐿𝑜𝑠𝑠 = − ∑ ∑ 𝑠𝑖𝑗(𝑘) log log (�̂�𝑖𝑗(𝑘))𝑐
𝑗=1

𝑁
𝑖=1        (26) 

where c is the class number, N is the sample number, 𝑠𝑖𝑗  

is the ith transmitted data sample for the jth class and �̂�𝑖𝑗  

is the DLLSTM model response for sample i class j. 

Because the activation function (AF) is a sigmoid 

function, each output element has been compressed into 

the range [0, 1], which can be understood as the 

likelihood that the output bit is 1. 

All classical equalizers are heavily reliant on tractable 

channel models that are believed to be stationary, linear, 

and Gaussian in nature. Practical wireless communication 

systems, on the other hand, contain additional defects and 

unknown environmental influences that precise channel 

models are incapable of adequately addressing. As a 

result, researchers have devised numerous channel 

models capable of accurately describing practical channel 

statistics. In this way, it is possible to get reliable and 

relevant training datasets by modelling with these channel 

models. 

Pilot symbols can be used to figure out the channel 

models in the wireless communication systems. Then, the 

data broadcasted can be found by using the channel that 

was figured out. The vehicular A channel model is being 

used in this work to figure out how a real wireless 

channel works and how this can hurt the performance of 

the suggested model and the whole SC-FDMA wireless 

communication system. 

Finally, the model can recover data automatically, 

without the need for explicit channel estimation and 

symbol detection processes. These processes are 

accomplished together. Fig. 4 shows how to train offline 

to get a learned model based on LSTM-NN. 

 
Fig. 4. Offline training of the DLLSTM-NN. 

V. SIMULATION RESULTS 

Several experiments were carried out to demonstrate 

the efficiency of the proposed DLNN-based channel 

equalizer and symbol detector technique for the SC-

FDMA wireless communication system. The proposed 

DLNN-based equalizer was trained and compared to the 

conventional Zero-Forcing (ZF) and Minimum Mean 

Square Error (MMSE) equalizers in terms of bit error 

rates (BERs) at different signal-to-noise ratios (SNRs) 

using the collected data sets. The training dataset is 

gathered for four subcarriers. The transmitter sends the 

SC-FDMA packets to the receiver, each containing one 

SC-FDMA data symbol. The SC-FDMA system and 

channel specifications are listed in Table I. The employed 

DL LSTM-NN architecture parameters and training 

settings are summarized in Table II. 

TABLE I: SC-FDMA SYSTEM SPECIFICATIONS 

Parameter Value 

No. of Subcarrier = M-IFFT 64 
Subcarriers allocated to each 
user = N-IFFT 

4 

Subcarrier spacing 15KHz 
Cyclic prefix length 20 
Modulation Format QPSK 
Channel model Vehicular A 
Channel estimation Perfect 
Equalization ZF, MMSE, and proposed DL Model 

TABLE II: DL MODEL ARCHITECTURE 

Parameter Value 

Sequence input t size 128 
LSTM layer size  128 
Fully connected layer size (No. of Classes) 256 
Loss function Crossentropyex 
Mini-batch size 1000 
Numbers of Epochs 3 

Optimization approaches 
Adam, RMSProp, 

and SGdm 
Gate Activation Function (GAF) Sigmoid 
State Activation Function (SAF) Tanh 

Training Options 
Initial learning rate 0.05 
Learning rate drop factor 0.45 

Also, in the present simulations, several learning 
optimizers namely: The SGdm, RMSProp, and Adam  
will be used to train the proposed equalizer to investigate 
how well it performs under these optimization techniques 
[55]. Also, the learning rate has been chosen after an 
enormous number of trials to ensure convergence for all 
learning algorithms, and it is fixed for all channel 
conditions. 

In the case of deep fading channels, it is well known that 
the linear equalization may amplify the noise at the spectral 
null, which has a negative impact on the performance of 
the SC-FDMA system. So, it is clear from Fig. 5, that the 
proposed equalizer using the Adam learning algorithm and 
crossentropyex loss functions outperforms both the ZF and 
the MMSE equalizers at SNRs ranging from 7 to 20 dB. 
The proposed equalizer can achieve BER=10−4 at 13 dB 
compared to 16 dB by MMSE and 20 dB by ZF, 
respectively. Additionally, for higher SNR (i.e., >14 dB) 
the DL model was successfully able to detect the signal 
perfectly such that the BER is zero for these SNR values, 
which reflects the capabilities of our DL model. 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 13, No. 1, 2024

73



 

Fig. 5. BER curves of the proposed DL LSTM-based equalizer and the 
traditional linear equalizers using the Adam learning algorithm and the 

crossentropyex loss function. 

 
Fig. 6. BER curves of the proposed DL LSTM-based equalizer and the 
traditional linear equalizers using the RMSProp learning algorithm and 

the crossentropyex loss function. 

 
Fig. 7. BER curves of the proposed DL LSTM-based equalizer and the 
traditional linear equalizers using the SGdm learning algorithm and 

crossentropyex loss functions. 

On the other hand, the MMSE outperforms the 
proposed model when the SNRs drop by less than 7 dB, 
and both linear equalizers outperform the proposed model 
when the SNRs drop by less than 3 dB. 

Moreover, it is clear from Fig. 6 that the proposed 

equalizer using the RMSProp learning algorithm and the 

crossentropyex loss functions outperforms both the ZF 

and the MMSE equalizers at SNRs ranging from 7.5 to 20 

dB. The proposed equalizer can achieve BER=103 at 10 

dB compared to 11 dB by MMSE and 14 dB by ZF, 

respectively. Additionally, for higher SNR (i.e., >12 dB) 

the DL model was successfully able to detect the signal 

perfectly such that the BER is zero for these SNR values, 

which reflects the capabilities of our DL model. However, 

when the SNRs decrease by less than 7.5 dB, the MMSE 

outperform the suggested model, and when the SNRs 

drop by less than 4 dB, both linear equalizers beat the 

suggested model. 

Furthermore, it is obvious from Fig. 7 that the 

proposed equalizer using the SGdm learning algorithm 

and the crossentropyex loss function have approximately 

comparable performance to the MMSE equalizer at SNRs 

ranging from 8.5 dB to 14.25 dB. After SNR = 18 dB, the 

proposed equalizer produces zero BER, while the MMSE 

and ZF produce a specific value of error, which reflects 

the capabilities of our DL model to detect the signal 

perfectly. On the contrary, the MMSE outperforms the 

suggested model when the SNRs decrease by less than 

8.5 dB, and both linear equalizers outperform the 

suggested model when the SNRs drop by less than 4.25 

dB. 

Also, it is obvious from Fig. 5, Fig. 6, and Fig. 7 that 

the MMSE equalizer outperforms the ZF equalizer at all 

SNR examination ranges because it uses the channel 

second-order statistics in the equalization process. 

It is obvious from Fig. 8 that all models have 

approximately comparable performance at SNR from 0 to 

6 dB. After SNR = 6 dB, the SGDm model begins to have 

the worst performance, while both the Adam and 

RMSProp models were almost the same until SNR=12 

dB. After SNR=12 dB, the RMSProp model outperforms 

both the Adam and SGDm models. Finally, we can say 

that the SGDm models have the worst performance in all 

SNR ranges. 

Optimization techniques are critical for the 

improvement of deep learning systems. DNN training can 

be viewed as an optimization issue, with the objective of 

achieving a global optimum via a trustworthy training 

trajectory and rapid convergence via gradient descent 

techniques [55]. The goal of the DL method is to develop 

a model that produces more accurate and faster outcomes 

by modifying the biases and weights to minimize the loss 

function. Selecting the best optimizer for a certain 

scientific issue is a difficult task. By selecting an 

inadequate optimizer, the network may remain in the 

local minima (stay in the same place) during training, 

resulting in little progress in the learning process. As a 

result, the inquiry is required to look at how different 

optimizers perform based on the model and dataset used 

to make the best DL model. 
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This section compares the performance of three 

optimization algorithms: Adam, RMSProp, and SGDm, 

using an experimental approach. 

 
Fig. 8. Performance comparison of the proposed DL Equalizers using 

different optimization algorithms. 

 
Fig. 9. Loss function comparison of the DL equalizers using different 

optimization algorithms. 

 

Fig. 10. Accuracy curves comparison of the DL equalizers using 

different optimization algorithms. 

It is beneficial to monitor the training processes of the 

DL equalizers during the training process. By plotting 

loss and accuracy measures during the training process, 

we can monitor how the training is proceeding. Fig. 9, 

and Fig. 10 show that the sgdm optimization approach 

achieves the highest loss (worst performance) when 

compared to the Adam and rmsprop optimization 

strategies and takes a long time to converge to 100% 

accuracy as compared to both Adam and rmsprop, which 

is supported by Fig. 8, which shows that the trained DL 

equalizer using the sgdm algorithm has the greatest BER 

values. Furthermore, the loss and accuracy curves of both 

the Adam and rmsprop optimization techniques 

emphasize the obtained results in Fig. 8. 

A. Computational Complexity Comparison 

The computational complexity of the proposed LSTM-

based channel equalization and symbol detection deep 

learning models in the SC-FDMA is provided empirically 

in terms of the training time which is performed offline. 

Then these models’ computational complexity is 

compared to the conventional models during the online 

deployment in terms of the execution time and number of 

operations (complex multiplications) of each model. 

1) Training time 

Training time can be defined as the amount of time 

expended to get the best NN parameters (e.g., weights 

and biases) that will minimize the error using a training 

dataset. Because it involves continually evaluating the 

loss function with multiple parameter values, the training 

procedure is computationally complex. 

Table III lists the consumed training time for LSTM-

based channel equalization and symbol detection deep 

learning models. The used computer is equipped with 

Windows 10 operating system and an Intel(R) Core(TM) 

i5-2450M CPU @ 2.50GHz, and 8 GB of RAM. 

TABLE III: COMPARISON OF OFFLINE TRAINING TIME  

LSTM-based CE-SD 

Adam (Min: Sec) 

LSTM-based CE-SD 

RMSprop (Min: Sec) 

LSTM-based CE-SD 

SGDm (Min: Sec) 

14:06 14:29 15:25 

 

From Table III, the LSTM-based CE-SD trained with 

Adam optimizer consumes the lowest training time, 

followed by LSTM-based CE-SD trained with RMSprop 

optimizer, while the highest training time is consumed by 

LSTM-based CE-SD trained with SGDm optimizer, at 

the same training options. The LSTM-based  CE-SD 

trained with SGDm optimizer training time indicates its 

high computational complexity in comparison to its peers. 

The conventional models have no computational 

complexity in the offline phase since they do not need 

training. 

2) Execution time 

Here we will compare the execution time that is 

necessary for our proposed model and that is necessary 

for the conventional ways that use ZF or MMSE 

equalizers, based on MATLAB MathWorks execution 

time measurement functions. 

At this point, the proposed model and the traditional 

methods will be compared based on how long it takes for 

each to run on the same computer settings as in offline 

training. 

From Table IV, the proposed LSTM-based CE-SD 

consumes the highest execution time, while the 
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conventional ways that use conventional equalizers such as 

ZF or MMSE consume lower execution time. The 

execution time of the ZF equalizer is the lowest one as well. 

All of this is because of the number of operations 𝒪(𝑁) 

(complex multiplications and complex additions) in the 

proposed LSTM-based CE-SD function in the input size, 

hidden units’ size, and the fully connected layer size. 

While the number of operations 𝒪(𝑁) in the ways that use 

conventional equalizers (ZF or MMSE) is linearly 

dependent on the input size only. Therefore, the 

computational complexity of the proposed LSTM-based 

CE-SD will be the highest. Also, the number of operations 

𝒪(𝑁) in the conventional way that use the ZF equalizer is 

lower than that used with the MMSE equalizer. 

TABLE IV: COMPARISON OF EXECUTION TIMES 

LSTM-based CE-SD With MMSE Equalizer With ZF Equalizer 

0.172989 s 0.011331 s 0.009307 s 

 

3) Number of operations: 

The computational complexity of our proposed model 

can be computed in terms of the number of operations 

(multiplications). 

The goal of this high-level metric is to solely take into 

account multipliers, neglecting additions, because the 

latter can be implemented in hardware or software for a 

lower cost, whereas multipliers are typically the slowest 

component in the system and take up the most chip space 

[56, 57]. 

According to the mathematical formulations and the 

structure of our proposed deep learning model, mainly 

depending on the LSTM-NN in Fig. 3, we can drive the 

computational complexity. As in [58], the total number of 

operations in a standard LSTM network can be calculated 

as follows: 

Number of OperationsLSTM = 𝑛ℎ(4𝑛𝑖 + 4𝑛ℎ + 3) (27) 

where 𝑛ℎ is the number of hidden (memory cells) units in 

the LSTM cell. 𝑛𝑖, is the dimensional or the number of 

features in the input vector at time t. 

Then we have to compute the number of operations of 

the fully connected layer to compute the overall 

computational complexity of the proposed model. 

Also as in [58], the size of the fully connected layer is 

equal to the number of the classes we have to classify, let 

us symbolize it with 𝑛𝑘. The input to the fully connected 

layer equal to the number of hidden states 𝑛ℎ  from the 

LSTM layer. Hence, the number of operations of  the 

fully connected layer  equal: 

Number of Operations FC = 𝑛𝑘 𝑛ℎ             (28) 

By ignoring the SoftMax layer computational complexity 

for simplicity, the overall complexity of the proposed 

model will be 

 

LSTM

FC

Number of Operations Number of Operations

                                       Number of Operations

                                    4 4 4h i h k hn n n n n

 

   

 (29) 

As we can see, the computational complexity depend 

on the input size, the hidden state size, and the number of 

classes we have to classify. 

Now we will find the computational complexity of 

both ZF and MMSE equalizers. Since the inverse of �̃�k 

N×N diagonal matrices in (7) require, a complexity of 

𝒪(𝑁) [59]. And the FFT and IFFT require, a complexity 

of 𝒪(𝑀 2⁄ log2 𝑀) and 𝒪(𝑁 2⁄ log2 𝑁) , respectively, the 

overall complexity will be [60]: 

   

 
LE 2

2

Overall complexity / 2log

                                           / 2log

N M M

N N

 
 (30) 

Therefore, the overall computational complexity of the 

proposed and conventional models as a function of the 

number of operations (mainly the complex 

multiplications) can be summarized in Table V. 

The number of addition operations in the denominator 

of MMSE is more than that in ZF, so the execution time 

for MMSE will be more than ZF, which confirms our 

findings in Table IV. 

TABLE V: COMPLEXITY COMPARISON OF THE PROPOSED AND 

CONVERSATIONAL MODELS 

LSTM-based CE-SD 𝑛ℎ(4𝑛𝑖 + 4𝑛ℎ + 4) + 𝑛𝑘  𝑛ℎ 

With MMSE equalizer 𝒪(𝑁) + 𝒪((𝑀/2)log2𝑀) +  𝒪((𝑁/2)log2𝑁) 

With ZF equalizer 𝒪(𝑁) + 𝒪((𝑀/2)log2𝑀) +  𝒪((𝑁/2)log2𝑁) 

 

 
Fig. 11. BER curves of the proposed DL LSTM-based equalizer and the 

traditional linear equalizers under ITU Indoor channel model. 

 

Fig. 12. BER curves of the proposed DL LSTM-based equalizer and the 

traditional linear equalizers under ITU Pedestrian channel model. 
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B. Generalization Ability and the Robustness 

In these experiments, several practical channel models 

have been adopted. These channel models have been 

established based on lots of measurements (such as the 

indoor and pedestrian models) released by ITU [61, 62]. 

Fig. 5, Fig. 6, Fig. 7, Fig. 11, and Fig. 12 illustrate the 

BER performance versus the SNR of the proposed 

scheme and linear MMSE and ZF equalizers under three 

different ITU channel models. It can be noted that the 

proposed equalizer provides stable performance where it 

outperforms the ZF equalizer in all studied channel 

models. Also, it strongly competes with the MMSE 

equalizer and beats it in most of the studied channel 

models. The obtained results emphasize the 

generalization ability and robustness of the proposed 

equalizer as it has been tested using datasets (corrupted 

by the 3 different ITU channel models) that it has not 

used in the training process before. 

VI. CONCLUSION 

In conclusion, an online DL-LSTM-CE-SD-based SC-

FDMA system is proposed. The suggested equalizer is first 

trained offline, then used in the communication system to 

keep track of the channel statistics. Finally, the channel is 

equalized, and the transmitted symbol is recovered from 

the transmitted data stream. The suggested equalizer’s 

performance is studied and compared to other standard 

equalizer approaches, such as ZF and MMSE. The 

proposed equalizer beats both the ZF and MMSE 

equalizers in terms of BER, exhibits significant 

enhancements, and is adaptable for various channel 

conditions. In addition, a comparison of three different 

optimization methods for DL was done to study how the 

proposed equalizer performs at each. A complexity 

comparison between the proposed and conventional 

equalizers was investigated. Since recovering the 

transmitted signal and delivering the information to the 

receiving end is crucial in most cases, the focus of such 

applications is on good performance rather than 

mathematical complexity. Even though the computational 

complexity of the proposed DL model is higher than that of 

traditional models, the fast growth of technology in 

designing and manufacturing high-speed GPUs gives 

priority to the proposed model. Due to the exceptional 

learning and generalization characteristics of the proposed 

DL LSTM-CE-SD model, the suggested equalizer seems 

promising for channel equalization in SC-FDMA 

communication systems, especially in worse channel 

circumstances. 

Here are some suggestions for future research: 

 Evaluating the performance of the proposed 

equalizer utilizing multiple optimization techniques, 

including Adagrad, AdaMax, and Nadam. 

 Evaluating the efficacy of the proposed equalizer 

with different states and gate activation functions. 

 Developing and employing loss functions that are 

more robust than the cross-entropy function to 

enhance the efficacy of the proposed model. 
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