
104

Int. J. Elec&Elecn.Eng&Telcomm. 2017 M Kamaraju and Y Divyasree, 2017

A SURVEY ON VVM BASED TEST PROGRAMS
FOR HYBRID RISC CONTROLLER

M Kamaraju1 and Y Divyasree2*

*Corresponding Author: Y Divyasree, yamarthidivyasree@gmail.com

Hybrid RISC Controllers are used in present day embedded systems in order to increase the
flexibility and performance. These processors requires efficient test patterns to detect faults.In
present days there are number of techniques are developed to detect the permanent faults in
different processors Software-Based Self-Test (SBST) methods are used for automatic
generation of test programs (SBST) programs. But by using these techniques test duration is
high and even if every line of code has been executed the Device Under Test (DUT) may not be
correct. VHDL Verification Methodology (VVM) provides a way of collecting the values of nodes
in the verification environment and helps to decide when verification is completed. The the code
size and test duration are measured.

Keywords: Hybrid RISC Controllers, VHDL Verification Methodology (VVM), Device Under
Test (DUT), Software-Based Self-Test (SBST)

INTRODUCTION
Mainly due to the continuous scaling in the
manufacturing process of the integrated
circuits the testability problems are occurred
in processor chips. Even during the
operational phase permanent faults may occur
due to the metal migration phenomena or
aging of the circuit.

Most of the System-on-Chip (SoC) designs
consists of one or more embedded processor
cores .It also consists of other cores which are

ISSN 2319 – 2518 www.ijeetc.com
Vol. 6, No. 2, April 2017

© 2017 IJEETC. All Rights Reserved

Int. J. Elec&Elecn.Eng&Telcomm. 2017

1 Prof & HoD, Department of E.C.E, Gudlavalleru Engineering College, Gudlavalleru , India.
2 PG Student, Department of E.C.E ,Gudlavalleru Engineering College, Gudlavalleru , India.

Research Paper

used to store and process the data and code
for execution i.e., embedded RAM or ROM
cores and to communicate with other
peripherals etc (Ulbricht et al., 2011). Testing
of the processor cores become very difficult
process. In addition to this, if the gap between
the operating frequencies of Automatic Test
Equipment (ATE) and operating frequencies
of SoC increases, the failures which appear
only testing is performed at the actual speed
of the IC (at-speed testing) will not detect.So

http://www.ijeetc.com/currentissue.php
mailto:yamarthidivyasree@gmail.com
http://www.ijeetc.com

105

Int. J. Elec&Elecn.Eng&Telcomm. 2017 M Kamaraju and Y Divyasree, 2017

that it is necessary to develop test programs
to provide high fault coverage and also to
reduce the test duration.

RELATED WORK
Many of the methodologies has been
implemented to improve the fault coverage for
processor cores and processor based
System-on-Chip (SoCs) like Built-In-Self-Test
(BIST) and Software-Based-Self-Test (SBST)
(Sabena et al., 2012).

The methodologies which requires external
hardware to perform test are infeasible this is
because of increasing gap between Automatic
Test Equipment (ATE) and SoC operating
frequencies. It will make external at-speed
testing problematic and expensive.

A. Built-In-Self-Test (BIST)

Modern day ICs may develop faults even after
manufacturing test. So additional testing is
required for assuring quality of service. Built-
In-Self-Test (BIST) is such a test procedure
which facilitates testing of circuits before every
time they start their operations. BIST is
basically same as off-line testing using ATE
where the test pattern generator and the test
response analyzer are on-chip circuitry
(instead of equipments).

BIST moves the testing task from external
resources (ATE) to internal hardware:
additional hardware and software are
integrated into the circuit to allow it to perform
self-testing. The use of this technique leads to
lower cost of test and shorter tests time,
maintaining or improving the fault coverage,
at the cost of additional silicon area. But, such
hardware-based self-test mechanisms that
seriously impact performance, design time,

cost and power consumption due to random
patterns causing high switching activity, can
be considered of limited practical value.Once
BIST finds a fault, the readjustment can done
by replacing the faulty part with a fault free one.

B. Software-Based-Self-Test
(SBST)

The basic idea of Software-Based-Self-Test
is to generate test programs to be executed
by the processor and able to fully exercise the
processor itself or other components in the
system, and to detect possible faults by
looking at the produced results. One of the
main advantages of SBST lies in the fact that
it does not require any extra hardware;
therefore, the test cost is reduced and any
performance or area penalty is avoided.
Moreover, the SBST approach allows at-speed
testing, and can be easily used even for on-
line testing. For these reasons, SBST is
increasingly applied for processors and SoC
testing, often in combination with other
approaches (Sabena et al., 2014).

The previous approaches apply functional
self-testing to processor cores and rely on the
use of pseudorandom instruction sequences
and operations/operands. The functional-
based strategies can be divided into two
subclasses. The first corresponds to methods
that rely mainly on code randomizers (possibly
oriented with suitable constraints) to obtain test
programs. The second consists of methods
that adopt a feedback based strategy,
meaning they evaluate generated test
programs according to suitable metrics (often
computed through simulation) and try to
progressively improve them (Psarakis et al.,
2010). Due to the high level of abstraction of
the approaches and their pseudorandom

http://www.ijeetc.com/currentissue.php

106

Int. J. Elec&Elecn.Eng&Telcomm. 2017 M Kamaraju and Y Divyasree, 2017

nature , structural fault coverage is usually low,
although test programs with excessively large
execution time are used.

The other approach for processor cores is
structural testing methodology structural
testing methodology for processor cores .In this
approach at the first stage, the test preparation
stage, pseudorandom pattern sequences are
developed for each processor component in
an iterative method taking into consideration
the constraints imposed by its instruction set.
Subsequently, test sequences are
encapsulated into self-test signatures that
characterize each component and consist of
the seed and the configuration of the
pseudorandom TPG, along with the number of
test patterns. At the second stage, the test
application stage, the component self-test
signatures are first expanded on-chip by a
software emulated LFSR (test generation
program) into pseudorandom test patterns,
then stored in embedded memory and finally
applied to the component by software test
application programs (Koal et al., 2005).

The structural methods are subdivided into
two major subcategories. Methods in the first
group are called hierarchical because they
adopt a hierarchical approach. Such methods
focus on a processor’s modules one at a time,
generating stimuli for each module and then
extending those stimuli to the processor level.
The second group, called RTL, includes
methods in which the test program generation
process exploits structural RTL information
along with ISA information to generate
instruction sequence templates for justifying
and propagating faults of the module under
test. These templates are then adjusted
according to the module’s testabil ity
requirements.

The SBST methodology for complex
embedded processors previously proposed
is consists of the three phases shown in
Figure 1

Phase A: Identi fication of processor
components and component operations, as
well as instructions that excite component
operations and instructions (or instruction
sequences) for controlling or observing
processor registers.

Phase B: Categorization of processor
components in classes with the same
properties and component prioritization for test
development.

Phase C: Development of self-test routines
emphasizing using compact loops of
instructions, based on reusing a library of test
algorithms for generic functional components
in pseudocode tailored to the processor under
test ISA that generate small precomputed test
sets. These algorithms provide very high fault
coverage for most types and architectures of
the processor components independently of
word length (Sabena et al., 2012).

Figure 1: The Phases
in SBST Methodology

http://www.ijeetc.com/currentissue.php

107

Int. J. Elec&Elecn.Eng&Telcomm. 2017 M Kamaraju and Y Divyasree, 2017

In this paper we proposed the development
of test programs for Hybrid RISC controllers.

PROPOSED METHODOLOGY
The Hybrid RISC Controllers are used in
embedded systems to improve the
performance and flexibility. RISC (reduced
instruction set computer) is a microprocessor
that is designed to perform a smaller number
of types of computer instructions so that it can
operate at a higher speed (perform more
millions of instructions per second, or MIPS).
Since each instruction type that a computer
must perform requires additional transistors
and circuitry, a larger list or set of computer
instructions tends to make the microprocessor
more complicated and slower in operation.
RISC processor, computer arithmetic-logic unit
that uses a minimal instruction set,
emphasizing the instructions used most often
and optimizing them for the fastest possible
execution. Software for RISC processors must
handle more operations than traditional CISC
processors, but RISC processors have
advantages in applications that benefit from
faster instruction execution, such as
engineering and graphics workstations and
parallel-processing systems.

Besides performance improvement, some
advantages of RISC and related design
improvements are:

• A new microprocessor can be developed
and tested more quickly if one of its aims is
to be less complicated.

• Operating system and appl ication
programmers who use the
microprocessor’s instructions will find it
easier to develop code with a smaller
instruction set.

• The simplicity of RISC allows more freedom
to choose how to use the space on a
microprocessor.

• Higher-level language compilers produce
more efficient code than formerly because
they have always tended to use the smaller
set of instructions to be found in a RISC
computer.

Standard VHDL has all the features
necessary to code randomization of stimulus
and functional coverage – both very important
while verifying larger, system-level designs.
The problem is that those features are quite
advanced and require high coding skills. So
that VHDL Verification Methodology is used
for generating test programs for Hybrid RISC
Controllers. It creates a couple of easily
accessible VHDL packages that hide quite
arcane implementation details from the
average user, making generation of random
stimulus and intelligent functional coverage.

CONCLUSION
In this paper different existing methods are
explained along with their advantages and
disadvantages but by using those methods the
fault coverage is not up to the extent. For this
proposed VVM based test programs for
Hybrid RISC Controllers. And by using this the
test program generation time is reduced which
reduces the overall testing time.

REFERENCES
1. Koal T and Vierhaus H T, Kranitis N,

Paschalis A, Gizopoulos D and Xenoulis
G (2005), “Softwarebased Self-Testing of
Embedded Processors”, IEEE Trans.
Comput., Vol. 54, No. 4, April, pp. 461-
475.

http://www.ijeetc.com/currentissue.php

108

Int. J. Elec&Elecn.Eng&Telcomm. 2017 M Kamaraju and Y Divyasree, 2017

2. Psarakis M, Gizopoulos D, Sanchez E
and Sonza Reorda M (2010),
“Microprocessor Software-Based Self-
Testing,” IEEE Design Test Com-put.,
Vol. 2, No. 3, pp. 4-19, May-June.

3. Sabena D, Sonza Reorda M and
Sterpone L (2012), “A New SBST
Algorithm for Testing the Registernle of
VLIW Processors”, in Proc. IEEE Int.
Conf. Design, Autom. Test Eur., March,
pp.412-417.

4. Sabena D, Sonza Reorda M and
Sterpone L (2012), “On the Development
of Software-Based Self-Test Methods for
VLIW Processors”, in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst., October, pp. 25-30.

5. Sabena D, Sonza Reorda M and
Sterpone L (2012), “On the Optimized
Generation of Software-Based Self-Test

Programs for VLIW Processors”, in Proc.
IFIP/IEEE 20th Int. Conf. Very Large
Integr. Syst. Chip, October, pp. 129-134.

6. Sabena D, Sonza Reorda M and
Sterpone L (2014), “On the Automatic
Generation of Optimized Software-
Based Self-Test Programs for VLIW
Processors,” in Proc. IEEE Trans.VLSI.
Vol. 22, April.

7. Ulbricht M, Scholzel M, Koal T and
Vierhaus H T (2011), “A New Hierarchical
Built-in Self-Test with On-Chip Diagnosis
for VLIW Processors”, in Proc. IEEE
Symp. Design Diag. Electron. Circuits
Syst., April, pp. 143-146.

8. Wong S, Anjam F and Nadeem F (2010),
“Dynamically Recongurable Register File
for a Softcore VLIW Processor”, in Proc.
IEEE Int. Conf. Design, Autom. Test Eur.,
Marc, pp. 962-972.

http://www.ijeetc.com/currentissue.php

