Int. J. Elec&Electr.Eng&Telecoms. 2016

i |
@
JUEET

) Interafional Joumal of Elecfical and Hiechronic Enginegring & Telecommunications

Research Paper

ISSN 2319 - 2518 www.ijeetc.com
Vol. 5, No. 2, April 2016
© 2016 IJEETC. All Rights Reserved

ANALYTICAL METHOD FOR PATTERN

GENERATION
H-BRIDGE

IN NINE-LEVEL CASCADED
INVERTER USING SELECTIVE

HARMONIC ELIMINATION

Shaik Mastanbi'* and Praveen Kumar?

*Corresponding Author: Shaik Mastanbi, < sk.mastani786@gmail.com

This paper proposes an analytical procedure for computation of all pairs of valid switching angles
used in pattern generation in nine-level H-bridge cascaded inverters. The proposed procedure
eliminates harmonic components from inverter output voltage and, for each harmonic, returns
the exact boundaries of all valid modulation index intervals. Due to its simple mathematical
formulation, it can be easily implemented in real time using a digital signal processor or a field-
programmable gate array. In this paper, after a detailed description of the method, simulation
and experimental results demonstrate the high quality of achievable results.
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INTRODUCTION

Selective Harmonic Elimination (SHE)
methods, originated by the harmonic
elimination technique early pro-posed by Patel
for high-power inverters, offer enhanced op-
erations at low switching frequency while
reducing size and cost of bulky passive filters
[1], [2]. They have been suc-cessful adopted
in different converter topologies, including
cascaded H-bridge multilevel converters,
whose N-level ac voltage outputs already

improve the Total Harmonic Distortion (THD)
[3]-[11].

SHE equations are nonlinear; moreover,
simple, multiple, or even no solutions could be
accomplished for each modulation index [11].
Moreover, it is necessary to know how to obtain
all possible sets of solutions and where they
exist [12], [13]. Once a set has been obtained,
some selection criteria should be adopted. For
instance, the lowest THD could be early
identified and then selected [14]; another
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possible criterion could be minimization of
mutations in solution sets [15], [16].

Many authors dealt with the SHE problem.
The au-thors in [17]-[21] proposed iterative
numerical techniques. The authors in [22]
proposed a generalized formulation for half-
cycle symmetry SHE—pulsewidth-modulation
problems in multilevel inverters, solving the
eguations by using a Matlab function (fsolve).
Authors in [20] proposed a harmonic suppres-
sion technique for double-cell inverters called
“mirror surplus harmonic method” and using
an unconstrained optimization, and in [23], the
Walsh function-based analytical technique is
adopted, where the harmonic amplitude is
expressed directly as a function of switching
angles, the latter obtained solving linear
algebraic equations rather than nonlinear
transcenden-tal equations. In [24] and [25],
theories of resultants and of symmetric
polynomials were used to characterize, for
each modulation index, the existence of the
solution and then to solve polynomial
eguations obtained from transcendental equa-
tions. Many authors use Genetic Algorithms
(GASs) ([26]-[28]). In [29], the bee algorithm is
applied and compared with a GA; in [30] and
[31], a solution has been obtained by using
particle swarm optimization (PSO). Paper [32]
proposes a PSO-algorithm-based staircase
modulation strategy for mod-ular multilevel
converters. Bacterial foraging algorithm and
ant colony method were adopted in [33] and
[34], respec-tively. Another approach, based
on homotopy and continua-tion theory, was
proposed in [35]-[37] for determination of one
set of solutions. Minimization techniques were
proposed in [38] and [39].

The main drawbacks of existing SHE
methods are their mathematical complexity

and the heavy computational loads, resulting
high cost of the hardware needed for real-time
imple-mentation [10]. The last problem is
commonly circumvented by preliminary off-line
computation of the switching angles and the
subsequent creation of lookup tables to be
stored in the microcontroller’s internal memory
for real-time fetching. This approach, even if
effective, in some cases could lead to some
drawbacks, particularly the use of discrete
modula-tion indices, resulting in nonoptimum
commutations and the need of significant
amounts of the microcontroller’'s memory.
Some requirements cannot be fulfilled by
current microcon-trollers/DSPs specifically
designed for energy management and motion
control [the so-called digital signal controllers
(DSCs)], due to their limited amount of RAM
and the rela-tively high speed of their internal
FLASH memory [42], [43]. Moreover,
implementation of feedback control requires
distinct lookup tables for each modulation
index and limits achievable

This paper considers five-level cascaded
H-bridge inverters and proposes a procedure
allowing fully analytical calculation (i.e., without
any lookup table) of those switching angles al
and a2, eliminating one harmonic hi (i=3, 5,
7, ...). The procedure uses Chebyshev
polynomials and Waring formulas [40], [41]
and, due to its limited complexity, can be easily
im-plemented in real time using DSC,
programmable logic device, or Field-
Programmable Gate Array (FPGA) [42].
Moreover, it is almost general and can be
extended to different topologies and, for the
considered topology, to higher number of
levels. Specific sets of equations have to be
determined for each case. The proposed
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Figure 1: Three-Phase Five-Level Cascaded Inverter (a) Schematic Diagram
of a Three-Phase Five-Level Cascaded Inverter, (b) (A) Phase A and [(B) and (C)]
Individual H-Bridge Output Waveforms Performance and/or Introduces Programming
Complexity and/or Potential Problems in Closed-Loop Systems

Bl

method can be implemented both off-line and
online, i.e., in real time. Its most important
advantages are the possibility to obtain exact
solution in real time and that it is possible to
obtain all possible solutions.

The described features are very useful in
implementation of closed-loop control and,
due to limited algorithm complexity, do not
require specific hardware [44].

In the following, Section Il deals with
problem formulation, Section Il describes the
determination of modulation index interval, and
Section IV describes the procedure for the
deter-mination of switching angles. Section V
shows some simulation results and deals with
some analysis, while Section VI reports
experimental results and their comparison with
simulations. Good agreement is noted among
experimental and simulation results,
confirming the accuracy of the proposed
technique. Finally, Section VIl draws some
conclusions.

MODEL DESCRIPTION
Athree-phase five-level cascaded inverter is

considered. Its basic schematic diagram is
shown in Figure la.

Each phase consists of two H-bridges fed
by separate and balanced dc sources VAl =
VA2 =Vd..

Considering, for instance, phase A
multilevel voltage: VAN = VAl + VA2, its
Fourier series expansion resultsthe following
[45]:

. 4V : : .
van (wt) = — Z |cos(nay ) + cos| rmg}] sm(nwt) /n
iy n

i =1.3:5. 7. ... (1)

where a, and a, are the switching angles
necessary for mod-ulation. Figure 1b also
shows modulation signals (b) and (c), which
are necessary for obtaining the desired output
waveform vVAN(wt).

The following condition has to be verified:
..(2)
In order to eliminate a specific harmonic,

the following condition must be imposed to find
out the unknown switching angles a, and a,;

.(3)

0<a €ag <7/2

Fla)=0
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where F=(F,F,)anda=(a,, a,) yield

(4

f Fi(ay,a9) = cos(ay) + cos(an) — 2my
Falay,as) = cos(kay) + cos(kas)

and k=3,5, 7, ..., is the harmonic order to be
eliminated.

As shown in (4), the first equation in (3) is
used to control the magnitude of the
fundamental voltage, while the second one is
used for harmonic order elimination. It is worth
noticing from (4) that the number of equations
corresponds to the number of existing H-
bridges. The term m, represents the
modulation index defined as m1 =V /V, __,
where V, is the fundamental output peak
voltage and V, __ is the maximum obtainable
fundamental peak voltage expressedas V1 __
= 8Vvd /p.

SEARCH OF MODULATION
INDEX INTERVALS

Odd Chebyshev polynomials of firsttype T, are
introduced for the previously described problem
and defined by recursive relationship [40]

|

or Tj(x) = cos(j arc cos(x)),j =1, 2, .... The
expressions T, (x) for k = 3, 5, 7, 9, 11,
respectively, are described in the Appendix.

{

where x, = cos(a,), X, =cos(a,), and k=3, 5,
7, .... Proposition 1: Let D =0, 1] x [0, 1], zi =
cos(((2i—1)/2k)p),i=1, ..., (k=1)/2,i.e., all
positive zeros of the Chebyshev polynomial
T () withk=21+1,1>1.

ﬂ](.?‘} =]
TNi(x)y=x

..(5
T‘H.[[J':]:j,f’rji.l‘)—'rj_]{,f‘] ( )

Ti(x1)+Ti(x2) —2m1 =0
: .(6)

Ty (1) + Ti(z2) = 0

Figure 2: Graphical Analysis for the
Third-Harmonic Elimination
: > , -
09- x1+x2—221=0(z 23
? i 12N
07| \
06 * $
x1+x2-—'21=\6\_
%' 05
04 !
03|
02 :
01
% 02 04" < 06 0.8 1
1
21,"2 z,
T1+To—2my =0
{ 1 —1T90 =0 (7)
Ti(xy) + Tr(x2) =0

To better clarify the previous proposition,
Figures 2 and 3d show the graphical
representation of (7). The straightline x, + x, —
2m, =0isdrawnatm, =zi/2and ml=z,i=
1, ..., (k= 1)/2, fork =3,5, 7,09, 11,
respectively.

Theorem 1: The system (6) has real solutions
in D if and only if m, E[(1/2) cos(((k —2)/2K)p),
cos(p/2k)] c [0, 1].

Figures 2 and 3 show the whole set of
solutions for (6) in D within different
subintervals of modulation index m, .

Considering, for instance, Figure 3a, the
straight line x, + x, = 2m_ obtained for the
following.

1) z2/2 <m, < z1/2 intersects the curve T5(x,)
+ T5(x,) = 0 in two distinct symmetrical
points (x,, X,) and (x,, X,), representing a
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Figure 3: Graphical Analysis for the Harmonic Elimination, (a) Fifth Harmonic,
(b) Seventh Harmonic, (c) Ninth Harmonic, (d) Eleventh Harmonic
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Figure 4: Valid Modulation Index Intervals to Vary Harmonic Order k to Eliminate
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unique solution (for the symmetry) for the
electrical problem;

2) z1/2 <m, < z2intersects the curve T5(x,) +
T5(x,) =0infour distinct symmetrical points,
representing two solutions for the electrical
problem;

3) z2 <m_ <zl intersects the curve T5(x,) +
T5(x,) =0 in two distinct symmetrical points,
representing a unique solution for the
electrical problem.

Similar considerations arise with any other
harmonic.

Figure 4 shows valid modulation index
intervals given by Theorem 1 at different k
values (rows) and subintervals where different
m,’s produce a different number of valid
solutions N, (m,). In the same figure, the ends
of each subinterval are highlighted, and each
dot within an interval represents a valid solution.
The graphs in Figure 5 represent the functions
N.(m,), k =3, 5, 7, 9, 11. Notice that the
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maximum number of solutions in a subinterval
foreachm_ is (k—1)/2fork=3, 5, anditis (k
—3)/2 fork =7, 9,11; hence, it is possible to
know the number of solutions achieving the kth
harmonic elimination (k=3, 5, ...,).

DETERMINATION OF
SWITCHING ANGLES

In order to explain the method in a simple way
and without any loss of generality, in this paper,
eliminations of third, fifth, and seventh
harmonics are considered.

From (6), by applying the Chebyshev
polynomials (see the Appendix), the following
systems are obtained.

) k=3
T + o = 2my @
] : s 8)
4 {rf - .r':_f,] —3(x1 + x22) = 0.
2) k=5
T + 9 = 2my 9
16 (25 4+ 23) — 20 (23 + 23) + 5(zy + 22) =0.
3 =T
Ty + Ty = ;F!J;
{ 64 (x{ +x3) — 112 (27 +23) +56 (27 +x5) +  (10)
~-T(x1 +x2) = 0.

Assuming that s = x1 + x2 and p = x1x2
and applying Waring’s formula (see the
Appendix) to previous systems, for each
harmonic, the following equations in p with
degree | = (k “ 1)/2 can be obtained,
respectively, with s =2m1.

1} . E=3
12p — (48 = 3) = 0. (1)

2) k=5
80p® +20(3 —4s%)p+ (16s* —20s> +5) =0.  (12)

3N k=T

.l.zh'j,‘ — 112(8s2 — ,'._U:ﬂ 1 56(8s* — 10524+ 3 )p +

(64s% — 11251 + 5652 —7) =0. (13)

In the following, the acceptability of each
solution for previ-ous equations is
investigated.

In order to guarantee real solutions (x,, X,)
E [0, 1] x [0, 1], for each valid modulation index,
the following condition must be verified:

0<p<m? ..(14)

{

The above function P2(x) = x2— sx + p;
hence, the modulator’s angles a, and a, are
computed by using inverse cosine function.
No-tice that, regarding (14) with m_given by
Theorem 1, condition p < m? is obtained,
imposing discriminant s2—4p > 0 to solutions
of x¥2—sx+ p =0. Itis worth noticing in Figures
2 and 3 that a relationship between m, and
(a,, a,) holds at the borders of each
modulation index subinterval: when m, =zi, it
fol-lows that (a,, a,) = [arccos(zi), arccos(zi)],
and when m, = zi/2, it follows that (a,, a,) =
[arccos(zi), p/2]. Table 1 sum-marizes this
relationship for the case shown in Figure 3a.

T1 + 9 = 2my
1o =p

SIMULATION RESULTS

The proposed modulation technique was
preliminarily ver-ified by means of

Table 1: Relationship Between m, and
(a,, a,) for the Fifth-Harmonic Elimination

Iy X7 X2
z0/2  arccos(z3) /2
21/2 arccos(z1) /2

arccos (z2) arccos (zz)

2 e =
by~

1 arccos (z1) arccos (zp )
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Figure 5: Valid Modulation Index Intervals with the Solution (Switching Angle) Number
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simulations and then implemented using a
low-power simulation model. A complete
converter with load was modeled using
Matlab/Simulink [46]. SHE is typical of high
power; therefore, simulations were carried
out choosing a setup operating at medium
voltage (Vd, = 3 kV) and with rated power
equal to 300 kVA. Load was simulated by
an R — L network consisting of a set of

resistances R = 108 Q in series with
inductances L = 15 mH. Output phase
voltage and corresponding Fast Fourier
Transformation (FFT) spectrum are shown
in Figure 6 for the third-, fifth-, and seventh-
harmonic eliminations and modulation index
equaltom, =0.8, m =0.9, and m = 0.8,
respectively. It can be noticed that, in all
cases, the desired harmonic is eliminated.

Figure 6: Three Phase Nine Level Output Voltage
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Figure 7: 3@ Harmonic
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Figure 10: 9" Harmonic

CONCLUSION

In this paper, the problem of harmonic
elimination in mul-tilevel converters has been
addressed considering a five-level cascaded
H-bridge inverter and proposing a new
analytical algorithm for the computation of the
switching angles a, and a, capable of
elimination of harmonic signals. Since, in order
to obtain these angles, it is necessary to find
all valid intervals of the modulation index for
which they exist, a new analytical procedure
has been proposed, which returns the desired

intervals splitinto subintervals and dependent
on the number of pairs of switching angles
capable of elimination of the selected
harmonic. As an example, procedures for
obtaining correct switching angles for third-,
fifth-, and seventh-harmonic eliminations have
been shown. The obtained simulation and
experimental results confirm the accuracy of
the proposed procedure. Work is in progress
in order to extend the method to multiple
harmonic elimination and to take into account
multilevel voltage imbalances.
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APPENDIX

The T,(x) expressions, k = 3, ..., 11, are as follows.

1) T,(x)=4x3-3x.

2) T.(x)=16x°-20x3+ 5X.

3) T,(x) =64x" - 112x° + 56X° - 7x.

4) T,(x) =256x°- 576X + 432x° - 120x* + Ox.

5) T,(x) =1024x™" - 2816x° + 2816x" - 1232x° + 220%° - 11x.
Proof of Proposition 1

The straight line x, + x, =2m, with m, =zi/2,i=1, ..., (k- 1)/2, intersects boundaries x, = 0 and x, = 0 of Din (zi, 0) and
(0,zi)fori=1, ..., (k—1)/2. These points (zi, 0) and (0, zi) are also solutions of the equation T,(x,) + T (x,) = 0. If (x , x,) D,
it is easy to verify that the intersection of curve T, (x,) + T,(x,) = 0 with straight line x, \2 X, = 0 is the point (zi, zi) satisfying
also equation x, + x, ¥ 2zi = 0.

Proof of Theorem 1
Considering thatmin {zi} = z(k-1)/2 = cos(((k - +
15d(k-1)/2

2)/2k)r) and max13id(k — 1)/2{zi} = z1 = cos(n/2k), by Proposition 1 and graphical analysis results, the thesis follows.
The Waring formulas for the considered harmonics with s = x, + x, and p = x,x, are as follows:

X3, +x2=s%! 3ps
X5, + %52 = s° | 5ps® + 5p?s

X7, + X7, =s"{ 7ps® + 14p’s® — 7p’s
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