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EQUIVALENT TRANSFER FUNCTION BASED
DECOUPLER FOR A 4 x 4 DISTILLATION COLUMN

MODEL
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Distillation is the most important separation method in the chemical and petrochemical industries.
Distillation Column is highly non-linear multivariable process so it is very difficult to control such
a complex process without eliminating the interactions, therefore in order to completely eliminate
these interactions a Decoupler is introduced.
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INTRODUCTION
Distillation is a process which is used in
petroleum industries for separation of products
into an overhead distillate and a bottoms
product. The distillation column is highly
interactive multivariable process, so it is very
difficult to control such a complex process
without eliminating the interactions, therefore
in order to completely eliminate these
interactions a Decoupler is necessarily
important. This paper is mainly divided into two
parts: first, to present a theoretical calculation
procedure for a distillation column which is
highly non-linear for simulation and analysis
and second, a controller design using
Decoupler.
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In this paper, a procedure for modeling and
control of distillation column based on the
energy balance (Liquid-Vapor) structure is
introduced. In this control, the reflux rate ‘L’ and
the boil-up rate ‘V’ are used as the inputs to
control the outputs of the purity of the distillate
overhead and the impurity of the bottom
products.

In this paper, the modeling and simulation
of distillation column is accomplished over
three phases:

1. The basic nonlinear model of the plant,

2. The full-order linearized model, and

3. The reduced-order linear model.
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The reduced-order linear model is then used
as the reference model for a Model-Reference
Adaptive Control (MRAC). A reduced-order
linear model is derived such that it best reflects
the dynamics of the distillation process and
used as the reference model for a Model-
Reference Adaptive Control (MRAC).A
decoupling control system design for high-
dimensional multi-input, multi-output (MIMO)
processes is discussed and solved. Based on
the Relative Normalized Gain Array (RNGA),
an Equivalent Transfer Function (ETF) for each
element in the transfer function matrix was
derived for the closed-loop control system and
was used to approximate the inverse of the
process transfer function matrix. The
decoupler could be easily determined with
each element in the First-Order-plus-Time-
Delay (FOPTD) form and resulted in a stable,
proper and causal decoupled matrix. A PI/PID
controller could then be designed to meet the
performance objectives. The main advantage
of this method was its simplicity; it did not
require extensive calculation effort.

DECOUPLER DESIGN
METHODOLOGY
In the process control industry, more than 95%
of loops are controlled by PI/PID controllers
because of their relative effectiveness and their
simple structure, which can be easily
understood and implemented by practical
engineers (Astrom and Hagglund, 1995).
Consequently, PID control-algorithm
development and application is still an actively
researched area. However, the requirements
for high product quality, material integration and
energy integration have resulted in closely
coupled variables for most modern industrial
processes. This coupling has rendered many

of the established Single-Input, Single-Output
(SISO) PID tuning techniques insufficient for
dealing with these multi-input, multi-output
(MIMO) processes (Grosdidier and Morari,
1987). Adjusting the controller parameters of
one loop affects the performance of the other
loops, sometimes to the extent of destabilizing
the entire system.

Although considerable effort has been
dedicated to this problem and many design
techniques have been proposed, multivariable
control system design and implementation is
still a difficult problem for control engineers
because of the lack of practical approaches.
Since controllers interact with each other in
MIMO processes, the performance of one loop
cannot be evaluated without information on the
controllers in other loops. To solve this
problem, a decoupling control scheme has
been proposed that introduces a decoupler to
eliminate the effect of interactions. The MIMO
process can then be treated as multiple SISO
loops, and less conservative single-loop
control design methods can be directly
applied. Therefore, when the control loops are
closely coupled and tight control is required,

Figure 1: Distillation Column
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decoupling control strategies are preferred in
engineering practice.

A general decoupling control system
contains the n-dimensional process matrix, the
decoupler matrix and the controller transfer
function matrix, respectively. GI(s) acts upon
the process, G(s), such that the transfer
function matrix GR(s) = G(s) GI(s) is a stable,
proper and causal diagonal transfer matrix.

Decoupling Control for High-
Dimensional MIMO Processes
In the process control industry, more than 95%
of loops are controlled by PI/PID controllers
because of their relative effectiveness andtheir
simple structure, which can be easily
understood. Consequently, PID control-
algorithm development and application is still
an actively researched area. However, the
requirements for high product quality, material
integration and energy integration have
resulted in closely coupled variables for most
modern industrial processes. This couplinghas
renderedmany of the established Sngle-Input
Single-Output (SISO) PID tuning techniques
insufficient for dealing with this Multi-Input Multi-
Output (MIMO) processes. Adjusting the
controller parameters of one loop affects the
performance of the other loops, sometimes to
the extent of destabilizing the entire system.

Although considerable effort has been
dedicated to this problem and many design
techniques have been proposed, multivariable
control system design and implementation is
still a difficult problem for control engineers
because of the lack of practical approaches.
Since controllers interact with each other in
MIMO processes, the performance of one loop
cannot be evaluated without information on the

controllers in other loops. To solve this
problem, a decoupling control scheme has
been proposed that introduces a decoupler to
eliminate the effect of interactions. The MIMO
process can then be treated as multiple SISO
loops, and less conservative single-loop
control design methods can be directly
applied. Therefore, when the control loops are
closely coupled and tight control is required,
decoupling control strategies are preferred in
engineering practice.

In this paper, the normalized decoupling
control design methodology is extended from
a 2 x 2 design to a high-dimensional MIMO
design. The design is based on the concept
of Relative Normalized Gain Array (RNGA)
design. Using the gain and phase information
revealed in RNGA design, the Equivalent
Transfer Function (ETF) of each element in
the transfer function matrix is derived for the
closed-loop control system. Further, an
equivalent transfer function matrix was
approximated by the inverse of the process
transfer function matrix used for calculating
decoupling matrix. The decoupler could then
be easily determined by multiplying the
inverse of the ETF with a stable, proper and
causal ideal-diagonal transfer function.
Finally, a PI/PID controller is designed for the
diagonal transfer function to meet the control
system’s performance target. Since almost
all industry processes are open-loop stable
and exhibit non-oscillatory behavior for step
inputs, the higher order transfer function
elements in the matrix, G(s), can be simplified
either by analytical or by empirical methods
to a First-Order-Plus-Time-Delay (FOPTD)
model for interaction analysis and control
system design.
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To describe the dynamic properties of a
transfer function, the normalized gain, KN,ij, for
a particular transfer function, gij(s) and the
normalized gain matrix for the overall process,
G(s), are defined as:
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respectively. In the above expressions, is the
average residence time of loops i-j.

Based on the normalized gain, the RNGA
can be calculated as

T
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where

11 12 1

21 22 2

1 2

n

n

n n nn

  

  


  

 
 
 
 
 
 





   



...(5)

and the operator,  , is the Hadamard product.

Furthermore, the relative average residence
time, ij, which is defined as the ratio of loop yi

– uj average residence time between when
other loops are closed and when other loops
are open can be obtained by
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where ij is the element of the Relative Gain
Array (RGA)

, , 1, 2 , .. .i j

ij

i j

k
i j n

k



  ...(7)

When the relative average residence times
are calculated for all of the input/output
combinations of a multivariable process, the
results are in an array form, the Relative
Average Residence Time Array (RARTA).
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where the operator, is the Hadamard division.

Since the relative average residence time
is the ratio of the average residence times
between when other loops are closed and
when other loops are open, ij represents the
dynamic changes of the transfer function, gij(s),
when other loops are closed. Using the
definition of RARTA, It is possible to write
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for i, j = 1, 2, …, n ...(10)

By using information from RGA, RNGA and
RARTA, it is possible to uniquely determine
the gain and the phase changes of a transfer
function element when other loops closed. That
is, a transfer function element of a MIMO
process when other loops are closed can be
approximated by a transfer function element
having the same form as the open-loop
transfer function element. However, the steady
state gain, the time constant and the time delay
are scaled by RGA and RARTA, respectively.
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where ( )i jg s


 is the optimal ETF of loop i-j
when other loops are closed (under the IE

criterion). Therefore, ( )i jg s


 should resample
the dynamic response of the corresponding
true transfer function element when other loops
are closed.
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However, for ideal control it is possible to
write

1( ) ( ) ( )u s G s y s ...(14)

where the gain from ( )ju s  to ( )iy s  is 1
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when all other outputs are perfectly controlled.
Thus, the dRGA can be computed using the
formula
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Comparing Equations (12) and (15) results
in the following:
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Taking transpose of both sides of Equation
(16) obtains
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The definition of the matrix, k


 is
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Decoupling Control System Design

By substituting ( )
T

G s
 , the design of an ideal-

diagonal decoupler problem is transformed to
determine the decoupler, GI(s)
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A diagonal matrix, GR(s), is specified such
that Equation (26) holds. Consequently, the
design of the normalized decoupler started

from the obtained ( )
T
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diagonal forward transfer function matrix,
GR(s), such that the decoupler, GI(s), from
Equation (19) satisfied realizable conditions.
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To see how the problem’s definition and the
design procedure of a normalized decoupling
control system is different from the existing
methods, each element of the process transfer
function matrix, the ETF, and the desired
forward transfer function elements were of the
form
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where ,R ii  and ,R ii  are the adjustable time
constant and the dead time of ,R iig (s),
respectively.

By substituting Equation (22) into (21), the
element in the ideal decoupler matrix has the
form
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CONTROL SYSTEM DESIGN
The dynamics of the Distillation Column
process is modeled by using the closed-loop
identification method as 2 x 2, 3 x 3, 4 x 4 MIMO
process in the literature [6]. In this paper we
considered the mathematical model of a 4 x 4
MIMO process for the decoupler design [2].
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where u1, u2, u3 and u4 are the manipulated
variables, and T1, T2, T3 and T4 are the
controlled variables.



289

Int. J. Elec&Electr.Eng&Telecoms. 2015 Anshuman Kumar Jha et al., 2015

Using the formulas provided above, the
normalized gain matrix (K), the RGA ( ), the
RNGA () and the RARTA () could be
calculated as:

0.7050 0.2045 0.0737 0.0919

0.2500 0.6301 0.0582 0.0628
K=1.0e-003

0.0625 0.0865 0.7612 0.1919

0.0691 0.0789 0.1716 0.7397

    
     
    
 
    

...(25)

1.22 07 0 .20 51 0 .0 05 3 0 .01 03

0.19 47 1 .2 19 8 0 .0 13 6 0 .0 11 6

0.01 06 0.0 08 5 1 .1 09 5 0 .0 90 4

0.01 54 0.0 062 0.0 907 1 .112 4

   
     
   
    

...(26)

1.1389 0.1287 0.0036 0.0067

0.1238 1.1389 0.0078 0.0073

0.0057 0.0055 1.0710 0.0597

0.0094 0.0046 0.0596 1.0737

   
    
   
    

...(27)

and

0.9330 0.62 74 0.6821 0.6461

0.6361 0.93 36 0.5731 0.62 69

0.5404 0.65 32 0.9653 0.66 04

0 .6083 0.74 60 0 .6575 0.96 52

 
 
  
 
 
 

...(28)

The ETF parameters were

0.0803 0.1755 2.6653 1.6468

0.2209 0.0754 0.8097 1.0363

1.1315 1.8867 0.0919 0.3648

0.8420 2.4132 0.3197 0.0971

K


 
  
 
  

...(29)

113 .8299 93 .4854 107 .7763 100 .1438

93 .5129 121 .3735 89 .4106 98 .4299

82 .6888 98 .6274 113 .9022 96 .4196

94 .8909 118 .6090 94 .6824 123 .5480

T


 
 
 
 
 
 

...(30)

15 .8615 16 .9403 21 .8181 19 .3827

15 .9036 14 .9383 1 8 .9138 21 .3160

16 .7539 22 .2075 15 .4 444 17 .17 06

19 .4648 23 .1 250 16 .4 379 17 .37 39

L


 
 
 
 
 
 

...(31)

Which gives

15.8615 15.9036 16.7539 19.4648

16.9403 14.9383 22.2075

113.8299 1 93.5129 1 82.6888 1 94.8909 1

0.0803 0.2209 1.1315 0.8420
93.4854 1 121.3735 1 98.6274 1 118.6090 1

0.1755 0.0754 1.8867 2.4( )

s s s s

s s s

T

s s s s
e e e e

s s s s
e e e

G s


   


   


23.1250

21.8181 18.9138 15.4444 16.4379

19.3827 21.3160 17.1706

132
107.7763 1 89.4106 1 113.9022 1 94.6824 1

2.6653 0.8097 0.0919 0.3197
100.1438 1 98.4299 1 96.4196 1 123.5480

1.6468 1.0363 0.3648

s

s s s s

s s s

e

s s s s
e e e e

s s s s
e e e

   


   17.37391

0.0971
se

 
 
 
 
 
 
 
 
 
 

 

...(32)

Using the normalized decoupling control
system design rules proposed earlier, the
decoupled forward transfer function is selected
as

21.8181

21.3160

22.2075

23.1250

113.8299 1

121.3735 1( )

113.9022 1

123.5480 1

s

s

R s

s

e

s
e

sG s
e

s
e

s









 
  
 
   
 
  
 
  

...(33)

This gives a stable, causal and proper
decoupler

( ) ( ) ( )T
I RG s G s G s





=

5.9666 5.4125 5.4535 3.6602

4.8878 6.3777

423.3268 4.5269 73.0789 0.8838 112.6970 1.1876
12.4533

121.3735 1 113.9022 1 123.5480 1
532.6803 5.6980 52.2751 0.5300

13.2626
113.8299 1 113.902

s s s s

ss s

s s s
e e e e

s s s
s s

e e
s

   

 

  
  

 



2.4022 6.7631 6.6871

2.4454

49.1501 0.4144

2 1 123.5480 1
40.4368 0.3752 110.4244 1.2350 296.1062 3.1279

10.8814
113.8299 1 121.3735 1 123.5480 1

60.8111 0.6072 94.9821 0.9650

113.8299 1 121.3

s s s

s

s

s s
s s s

e e e
s s s

s s
e

s

  




 

  
  

 


5.0369 5.7511264.3081 2.7412
10.2987

735 1 113.9022 1
s ss

e e
s s

 

 
 
 
 
 
 
 
 
 
 

  

...(34)
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By selecting a gain margin of 5db and a
phase margin of 2/5, the diagonal controller,
GC(s), is designed as

0.0144
1.639 0 0 0

0.01474
0 1.789 0 0

( )
0.01415

0 0 1.611 0

0.0136
0 0 0 1.6784

C

s

sG s

s

s

  
 
  
 
 
 
 
 
 

...(35)
Thus, the final decoupling controller is

obtained as
( ) ( ) ( )I CC s G s G s

=

2 2 2
5.9666 5.4125 5.4535 3.6602

2 2 2

2

20.4110 0.1793 757.3316 14.4711 0.0667 117.7301 2.4579 0.0125 189.1506 3.5259 0.01615
121.3735 113.9022 123.5480

873.0630 17.0096 0.0821
113.8299

s s s ss s s s s s s
e e e e

s s s s s s s
s s

          
  

  2 2
4.8878 6.3777

2 2 2

2 2
2.4022

2 2

23.7268 0.1955 84.2152 1.5935 0.0075 82.4935 1.3640 0.0056
113.9022 123.5480

66.2759 1.1972 0.0054 119.5492 3.8371 0.0182 17.529
113.8299 121.3735

s s

s

s s s s s
e e

s s s s s s s
s s s s

e
s s s s

 



     
  
    
 

2
6.7631 6.6871

2

2 2 2
2.4454 5.0369

2 2 2

9 0.1540 496.9846 9.2769 0.1425
123.5480

99.6694 1.8709 0.00874 169.9230 3.1264 0.01820 425.8003 1.5935 0.0388 17.2
113.8299 121.3735 113.9022

s s

s s

s s s
e e

s s s

s s s s s s
e e

s s s s s s

 

 

  


      
  

5.7511853 0.1401 ss
e

s


 
 
 
 
 
 
 
 
 

 
  

...(36)

SIMULATION RESULTS
Figure 2 shows the Simulink diagram of the 4
x 4 Decoupled system with the servo and

regulatory inputs. Figure 3 shows the output
response of the servo and regulatory
responses with various inputs as 2, 1.5, 1 and
0.5 in the step inputs and with the disturbance
magnitude of 0.1 at 7000 sample.

CONCLUSION
In this paper we have designed and
implemented the RGA based decoupler for the
4 x 4 MIMO process and obtained the
satisfactory servo and regulatory responses
as shown in Figure 4. Further the design of
Model Reference Adaptive Controller needs
to be designed for the MIMO process to get
the top and bottom product with the specified
purity rate.
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