
22

Int. J. Elec&Electr.Eng&Telecoms. 2014 Chayanika Baruah and Dipankar Chanda, 2014

A COMPARATIVE STUDY OF WAVELET
TRANSFORM TECHINQUE AND SVD IN THE

ESTIMATION OF POWER SYSTEM HARMONICS
AND INTERHARMONICS

Chayanika Baruah1* and Dipankar Chanda1

*Corresponding Author: Chayanika Baruah,baruahchayanika6@gmail.com

This paper presents a comparison of Wavelet Transform technique and Singular Value
Decomposition technique in the estimation of power system harmonics and interharmonics.
Singular Value Decomposition technique based method has been used to estimate the harmonics
and Interharmonics by calculating the amplitudes of the frequencies under consideration. Now-
a-days, Wavelet Transformation is one of the most popular candidates of time-frequency
transformation. Because Wavelet Transformation can provide time and frequency information
simultaneously and it is suitable for the analysis of non-stationary signal. To investigate these
methods, a number of studies have been performed using simulated signals. The analysis of
the voltage waveform of a PWM converter supplying an Induction motor has been investigated
employing these two methods with the same sampling period.
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INTRODUCTION
An ideal power system is defined as the
system where a perfect sinusoidal voltage
signal is seen at load-ends. In reality, however,
such idealism is hard to maintain (Arumugam
et al., 2011). It is because, the widespread
applications of electronically controlled loads
have increased the harmonic distortion in
power system voltage and current waveforms.
As power semiconductors are switched on and
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off at different points on the voltage waveform,
damped high-frequency transients are
generated. If the switching occurs at the same
points on each cycle, the transient becomes
periodic (Adley Girgis et al., 1991). Harmonic
frequencies in the power grid are a frequent
cause of power quality problems. Harmonics
in power systems result in increased heating
in the equipment and conductors, misfiring in
variable speed drives, and torque pulsations
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in motors. So, estimation and reduction of
harmonics is very important. Many algorithms
have been proposed for the evaluation of
harmonics. The design of harmonic filters relies
on the measurement of harmonic distortion
(Adley Girgis et al., 1991). Harmonics State
Estimation (HSE) techniques have been used
since 1989 for harmonics analysis in power
systems. Many mathematical methods have
been developed over the years. It is proved that
by using only partial or selected measurement
data, the entire harmonic distortion of the actual
power system can be obtained effectively. In this
paper, the performances of Singular Value
Decomposition (SVD) and Wavelet Transform
technique have been compared in estimation
of power system harmonics.

In WT method, Continuous Wavelet
Transform (CWT) is applied to the signal. The
Morlet wavelet is applied as the mother
wavelet to estimate the frequencies of the
signal. It is suitable for the analysis of non-
stationary signal.

Singular Value Decomposition (SVD)
technique is a higly reliable, computationally
stable mathematical tool to solve the
rectangular overdetermined system of
equations (Osowski, 1994). By solving the
equations, the amplitudes of the frequencies
present in the signal are determined.

The principles of these two methods are
explained in 2nd and 3 rd sections, the
experimental results are given in 4th and 5th

sections respectively and conclusion is given
in the final section.

WAVELET TRANSFORM
TECHNIQUE
In this approach the signal is subjected

Continuous Wavelet Transform to estimate the
harmonics and interharmonics.

Continuous Wavelet Transform
The CWT of a continuous, square-integrable
function x(t) at scale a > 0 and translational
value b € R is expressed by the following
integral-
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where ||
1
a  is the normalization factor,(t) is

called mother wavelet which is a continuous
function both in time domain and frequency
domain. The main purpose of the mother
wavelet is to provide a source function to
generate the daughter wavelets which are
simply the translated and scaled version of
mother wavelet.

Harmonics and Interharmonics
Estimation
To estimate the harmonics and interharmonics,
CWT is applied to the signal. The Morlet
wavelet is selected to be the mother wavelet.
It is defined in time domain as follows
(Keaochantranond and Boonseng, 2002):

   25.0exp ttjt ow   ...(2)

where ow = 2 fow;fow is frequency of Morlet
wavelet. The relationship between scale and
frequency in CWT is given by:




a
ff ow

a ...(3)

where a = scale, fa = frequency corresponding
to the scale a,  = sample. The table showing
the scales and their corresponding frequencies
is first determined and then the scalograms
are obtained for the signal at different scales
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for the estimation. The maximum energy points
represent the scales corresponding to the
frequencies present in the signals. Order of
harmonics and interharmonics can be found
from the following expression as
(Keaochantranond and Boonseng, 2002):

frequencySystem
frequencyHarmonicharmonicsofOrder 

...(4)

SINGULAR VALUE
DECOMPOSITION
TECHNIQUE
Let the waveform of the voltage or current be
represented as the sum of harmonics of
unknown magnitudes and phases as:

    


N

k kk ktXtx
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sin  ...(5)

or,
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where Xk = unknown amplitude of kth harmonic,
 = fundamental angular frequency, k = phase
of the kth harmonic, N = total no. of harmonics.

From Equations (5) and (6), the following
relations are obtained:
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Now, let us consider n measured samples
x1, x2,…, xn of the waveform. The number of
measurements are usually higher than the
number of harmonics. Estimation of harmonics
is equivalent to solving an overdetermined
system of algebraic equations expressed as
(Osowski, 1994):

Ah = b ...(9)

where

b = [x1, x2, x3, …, xn]t

h = [A1, B1, A2, B2, …, AN, BN]t ...(10)

So, h is a vector of unknown components
Ak, Bk of harmonics under consideration. A is
an n x 2N matrix correlating vectors h and b
as shown below.
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For solution of vector h, the most suitable
offline method is SVD (IEEE Working Group
on Power System Harmonics, 1983; and
Osowski, 1994). In this method the rectangular
n x 2N matrix A is represented as the product
of three matrices:

A = USVt ...(12)

where U and V are orthogonal matrices of the
dimensions n x n and 2N x 2N respectively. S
is quasidiagonal n x 2N matrix of singular
values S1, S2, ..., Sp ordered in a descending
way. The essential information of the system
is contained in the first nonzero singular values
and first p singular vectors, forming the
orthogonal matrices U and V. Reducing the
appropriate matrices to this size and denoting
them by Ur, Sr and Vr respectively, the solution
of (9) will lead to

h = VrSr
–1Ur

tb ...(13)

The reduced size matrices, Ur and Vr are
created from the original matrices by taking
the first p columns from the matrix U and the
first p rows from the matrix V, respectively. The
diagonal matrix Sr, is formed from the original
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matrix S by the nonzero diagonal entries,
hence


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As seen from Equation (13), the only
operations that should be performed to solve
the overdetermined system of eqns. 9, by using
SVD, is the multiplication of the appropriate
reduced-size matrices. If matrix C is constant,
then SVD is performed only once and the
solution in the form of eqn. 13 may be repeated
many times at the presentation of different
measurement vectors d (Osowski, 1994). The
values of vector h provide the amplitudes of
harmonics and Interharmonics present in the
signal and thus estimate the frequencies
present in the signal. A prior knowledge of the
power system under consideration is needed
to estimate the frequencies by using SVD.

EXPERIMENTS WITH
SIMULATED WAVEFORM
The first signal considered is given by:

x(t) = 100cos(240t) + 50cos(2217t)

+ 40cos(2760t) + noise ...(14)

The signal is corrupted with a white
Gaussian noise of zero mean and variance
equal to 1. The Signal to Noise Ratio (SNR) is
10. To investigate the methods, several
experiments have been performed with the
waveform described by (14) and given by
Figure 1. Sampling frequency is taken as 2000
Hz for both the methods. The number of
samples is taken as 2000.

Wavelet Transform
The CWT is applied to the signal with Morlet
as the mother wavelet and with the sampling

Figure 1: First Signal
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Figure 2: Scale vs Frequency Curve for
Morlet Wavelet with Sampling Frequency

of 2000 Hz
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Figure 3: Fundamental Frequency
Estimated as 40.625 Hz at Scale 40 by WT
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SIMULATION OF A
FREQUENCY CONVERTER
A PWM converter with modulation frequency
of 1080 Hz supplying a 4 pole, 3 hp
asynchronous motor (U = 220 V) is simulated
in simulink. The simulated converter has a
modulation index of 0.92. The output voltage
waveform of the converter corrupted with noise
having zero mean value and unity variance is
taken for analysis. Figure 6 shows the noise
corrupted voltage waveform at the converter
output for the frequency 60 Hz.

Figure 4: Interharmonic Estimated
as 216.67 Hz at Scale 7.5
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Figure 5: 19th Harmonic Estimated
as 755.81 Hz at Scale 2.15
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frequency of 2000 Hz. The scale vs frequency
curve and the highest energy points
corresponding to the estimated frequencies
are shown below.

Singular Value Cecomposition
For the signal given by Equation (14) , SVD is
applied to estimate the frequencies with
sampling frequency 2000 Hz. The number of
samples taken for this analysis is 2000. The
fundamental frequency 40 Hz , Interharmonic
217 Hz and 19th harmonic 760 Hz present in
the signal are taken for consideration to
constitute the matrix A. The frequencies are
estimated as shown in the following table.

Frequency (Hz)  Amplitude (Xk)

40 99.9904

217 50.0128

760 40.0070

Table 1: Amplitudes of the Frequencies
Present in the First Signal Estimated

by SVD

Figure 6: Simulated Voltage Waveform
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Wavelet Transform
Continuous Wavelet Transform is applied to
the voltage signal with sampling frequency
6400 Hz. Again, Morlet wavelet is considered
as mother wavelet. The first 2048 samples are
taken for this analysis. The scale Vs frequency
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Figure 7: Frequency vs Scale Curve for
Morlet Wavelet at Sampling Frequency
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Figure 8: The Fundamental Frequency
Estimated as 59.77 Hz at Scale 87

200 400 600 800 1000 1200 1400 1600 1800 2000
-500

0

500
Anal yz ed Si gnal

Sc alogram
P erc ent age of energy  for each wavel et  c oeffic ient

Tim e (or S pac e) b

S
ca

le
s 

a

200 400 600 800 1000 1200 1400 1600 1800 2000
60
63
66
69
72
75
78
81
84
87
90
93
96
99

0.5

1

1.5

2

2.5

3

3.5

4
x 10 -3

Figure 9: Frequency of 1040.2 Hz
Estimated at Scale 5
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Figure 10: Frequency of 2131.5 Hz
Estimated at Scale 2.44
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Figure 11: Frequency of 2241.7 Hz
Estimated at Scale 2.32
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Figure 12: Frequency of 2873.4 Hz
Estimated at Scale 1.81
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Figure 13: Frequency of 3077.4 Hz
Estimated at Scale 1.69
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curve for Morlet wavelet at sampling frequency
6400 Hz is shown in Figure 7. The major
frequencies estimated by WT are shown in the
following figures from Figures 8 to 13.

Wavelet Transform estimates the major
frequencies as: 59.77, 1040.2, 2031.6, 2072,
2131.5, 2241.7, 2667.1, 2873.4, 3077.4,
3333.9 Hz.

SVD
SVD is applied to the simulated voltage
signal to estimate the frequencies present in
the signals as explained in previous section.
The sampling frequency is 6400 Hz and first

Frequency (Hz)  Amplitude (Xk)

60 321.9131

960 99.1468

1200 98.9905

2100 77.8872

2220 78.0127

3000 50.6782

3030 39.9028

3120 72.8911

Table 2: Amplitudes Corresponding to the
Frequencies Estimated for the Simulated

Voltage Signal

2048 samples are taken for the analysis. A
prior knowledge of the system under
consideration is required to apply SVD
technique. The amplitudes of the major
harmonics and interarmonics estimated by
SVD are obtained as shown in Table 2.

CONCLUSION
The estimation of harmonics and
interharmonics in a power system has been
investigated using SVD and Wavelet
Transform for different test signals with same
no. of samples and sampling period. It is
observed that Wavelet Transform technique
is not as accurate as the Singular Value
Decomposition technique in the estimation
of frequencies in case of stationary signal.
However, wavelets, though not specifically
dedicated to this type of analysis, can recover
some of the spectral information. In case of
non-stationary signal, Wavelet analysis can
estimate the frequencies as well as can
detect time of occurrence of the frequencies.
SVD is an efficient tool in estimating
amplitudes of harmonics and interharmonics
existing in a system. Although SVD requires
a prior knowledge of the signals under
consideration and because of significant
computational work involved, SVD is mostly
suitable for the offline analysis of recorded
waveform.
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