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The fundamental idea behind wavelets is to analyze according to scale. Indeed, some researchers
in the wavelet field feel that, by using wavelets, one is adopting a perspective in processing data.
Wavelets are functions that satisfy certain mathematical requirements and are used in
representing data or other functions. In this paper, separable pipeline architecture for fast
computation of the 2D DWT with a less memory and low latency is proposed. The low latency
and less memory is achieved by proper designing of two 1-D DWT filtering processes and also
efficiently transferring the data between the two 1-D DWT filters. This 2D DWT is responsible
for checking is there any errors are there or not in Memories.
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INTRODUCTION

The 2-D discrete wavelet transforms (DWT)
have been widely used in many applications
like image compression, signal processing,
speech compression because of their multi-
resolution of signals with localization both in
time and frequency. In the past, much
architecture have been proposed aimed at
providing high – speed 2-D DWT computation
with the requirement of utilizing a reasonable
amount of hard ware resources. These
architectures can be broadly classified into
separable (Vishwanath M et al., 1995;
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Chakrabarti C and Vishwanath M, 1995; Liao
H Y et al., 2004; Guevorkian D et al., 2005;
Alam M et al., 2005) and non separable
architectures (Chakrabarti C and Vishwanath
M, 1995; Liao H Y et al., 2004; Guevorkian D
et al., 2005; Alam M et al., 2005; Yu C and
Chen S J, 1997). The separable method is the
most straight forward implementation method.
In separable method, a 2-D filtering
operations, one for processing the data row-
wise and the other column-wise. In this method
the intermediate coefficients stores in a frame
memory first. Then it performs 1-D DWT in
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other direction with these intermediate
coefficients to complete one-level 2-D DWT
.Because the size of this frame memory is
usually assumed to off chip.

However, the separable method performs
1-D DWT in both directions simultaneously.
Thus in separable architectures, in which a 1-
D filtering structure is used to perform the 2-D
DWT, have an additional requirement of
transposing the intermediate data between the
two 1-D filtering processes. Hence the
separable method does not require a frame
memory to store the intermediate data.
Instead, some internal line buffers are used to
store the intermediate data, and the required
size is proportional to the image width.
Vishwanath et al. (1995) have proposed low-
storage short-latency separable architectures
in which the row wise operations are
performed by systolic filters and the column
operations by parallel filters. In non separable
architectures the 2-D transforms are computed
directly by using 2-D filters. chakrabarti et al.
(1995) have proposed two non separable
architectures, one using parallel 2-D filters and
the other an SIMD 2-D array ,both based on a
modified RPA. In non separable method
internal line buffers are use to store the
boundary data among neighbor blocks such
as to keep the required external frame memory
bandwidth as low as the separable method.
However, the external memory access would
consume the most power (Vishwanath M et
al., 1995) and become very sensitive in the
case of system on chip. In addition, the
required external memory bandwidth of the
non-separable is more than the double of the
separable method. The most existing
separable architectures aim at providing fast
computation of the DWT by using pipeline and
a large number of parallel filters and systolic
filters. However these existing architectures

have large latency and memory size increases
because of by providing additional
requirement of transposing the intermediate
data between the two 1-D filtering processes.

PIPELINE FOR THE 2-D DWT

COMPUTATION

In a pipeline structure for the DWT
computation, multiple stages are used to carry
out the computations of the various
decomposition levels of the transform [4]. The
computation corresponding to each
decomposition level needs to be mapped to
a stage or stages of the pipeline. In order to
design a pipeline structure capable of
performing a fast computation of the DWT with
low expense on hardware resources and low
design complexity, an optimal mapping of the
overall task of the DWT computation to the
various stages of the pipeline needs to be
determined. Any distribution of the overall task
of the DWT computation to stages must
consider the inherent nature of the sequential
computations of the decomposition levels that
limit the computational parallelism of the
pipeline stages, and consequently the latency
of the pipeline. Further, in order to minimize
the expense on the hardware resources of the
pipeline, the number of filter units used by each
stage ought to be minimum and proportional
to the amount of the task assigned to the stage.

A straightforward of mapping of the overall
task of the DWT computation to a pipeline is
one-level to one-stage mapping, in which the

Figure 1: Pipeline Structure
with N Stages
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tasks of J decomposition levels are distributed
to J stages of the pipeline. However, dividing a
stage of the one-level to one stage pipeline into
multiple stages would require a division of the
task associated with the corresponding
decomposition level into sub-tasks, which in turn,
would call for a solution of even a more complex
problem of synchronization of the sub-tasks
associated with divided stages. On the other
hand, merging multiple small-size stages of the
pipeline into one stage would not create any
additional synchronization problem. As a matter
of fact, such a merger could be used to reduce
the overall number of filter units of the pipeline.

SYNCHRONIZATION OF STAGES

The distribution of the computational load
among the three stages, and the hardware
resources made available to them are in the
ratio 8:2:1. The stages of pipeline need to be
synchronized in such a way that each stage
starts the operation at an earliest possible time
when the required data become available for
its operation. Once the operation of a stage is
started, it must continue until the task assigned
to it is fully completed. Consider the timing
diagram given in Figure 2 for the operation of
the three stages, where t1,t2 and t3 are the times
taken individually by stages 1,2 and 3,
respectively, to complete their assigned tasks,
and ta and tb are the times elapsed between
the starting points of the tasks, by stages 1
and 2, and that stages 2 and 3 respectively.

Note that the lengths of the times t
1
,t

2
 and t

3

to complete the tasks by individual stages are
approximately the same, since the ratios of the
tasks assigned and the resources made
available to the three stages are the same. The

average times to compute one output sample
by stages 1,2 and 3 are in the ratio 1:4:8. In
Figure 2 the relative widths of the slots in the
three stages are shown to reflect this ratio. Our
objective is to minimise the total computation
time ta+tb+t3 by minimizing t,t and t individually.

Figure 2: Timing Diagram for the
Operations Three Stages

A. Design of stages

In the proposed three-stage architecture,
stages 1 and 2 perform the computations of
levels 1 and 2 respectively, and stage 3 that of
all the remaining levels. Figure 3 shows the
block diagram of the three-stage architecture.

Figure 3: Block Diagram of Diagram
of the Three-stage Architecture

DIFFERENT TYPES OF

TRANSFORMS

1. FT (Fourier Transform).

2. DCT (Discrete Cosine Transform).
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3. DWT (Discrete Wavelet Transform).

A. Discrete Fourier Transform

The DFT representation for a finite duration
sequence is

...(1)

...(2)

where x(n) is a finite duration sequence, X(jω)
is periodic with period 2π.It is convenient
sample X(jω) with a sampling frequency equal
an integer multiple of its period =m that is
taking N uniformly spaced samples between
0 and 2π.

Let

...(3)

Therefore

...(4)

Since X(jω) is sampled for one period and
there are N samples X(jω) can be expressed
as

...(5)

B. The Discrete Cosine Transform
(DCT)

The discrete cosine transform (DCT) helps

separate the image into parts (or spectral sub-

bands) of differing importance (with respect

to the image’s visual quality). The DCT is

similar to the discrete Fourier transform: it

transforms a signal or image from the spatial

domain to the frequency domain.

C. Discrete Wavelet Transform
(DWT)

The discrete wavelet transform (DWT) refers
to wavelet transforms for which the wavelets
are discretely sampled. A transform which
localizes a function both in space and scaling
and has some desirable properties compared
to the Fourier transform. The transform is
based on a wavelet matrix, which can be
computed more quickly than the analogous
Fourier matrix. Most notably, the discrete
wavelet transform is used for signal coding,
where the properties of the transform are
exploited to represent a discrete signal in a
more redundant form, often as a
preconditioning for data compression. The
discrete wavelet transform has a huge number
of applications in Science, Engineering,
Mathematics and Computer Science.

Wavelet compression is a form of data
compression well suited for image
compression (sometimes also video
compression and audio compression). In this
the values a and b is taken as 1 for digital
design purpose. If we take those values as 0
then it became Zero response. The splitter is
used to split the values and the 20 bit registers
are used to store the values and transfer the
values. The adders are used to add the original
and delay values of the register discrete cosine
transform, had been used. First a wavelet
transform is applied. This produces as many
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coefficients as there are pixels in the image
(i.e.: there is no compression yet since it is
only a transform). These coefficients can then
be compressed more easily because the
information is statistically concentrated in just
a few coefficients. Image data in as little space
as possible in a file. A certain loss of quality is
accepted (lossy Compression).

wavelets. Both transforms have another
similarity. The basic functions are localized in
frequency, making mathematical tools such as
power spectra (how much power is contained
in a frequency interval) and scale grams (to
be defined later) useful at picking out
frequencies and calculating power
distributions.

A. Dissimilarities between Fourier
and Wavelet Transform

The most interesting dissimilarity between
these two kinds of transforms is that individual
wavelet functions are localized in space.
Fourier sine and cosine functions are not. This
localization feature, along with wavelets’
localization of frequency, makes many
functions and operators using wavelets
“sparse” when transformed into the wavelet
domain. This sparseness, in turn, results in a
number of useful applications such as data
compression, detecting features in images,
and removing noise from time series.

B. Applications of DWT

Generally, an approximation to DWT is used
for data compression if signal is already
sampled, and the CWT for signal analysis.
Thus, DWT approximation is commonly used
in engineering and computer science, and the
CWT in scientific research. One use of wavelet
approximation is in data compression. Like
some other transforms, wavelet transforms can
be used to transform data and then encode
the transformed data, resulting in effective
compression. For example, JPEG 2000 is an
image compression standard that uses bi-
orthogonal wavelets. A related use is that of
smoothing/denoising data based on wavelet
coefficient thresholding, also called wavelet

Figure 4: Proposed Architecture

SIMILARITIES BETWEEN

FOURIER AND WAVELET

TRANSFORM

The fast Fourier transform (FFT) and the
discrete wavelet transform (DWT) are both
linear operations that generate a data structure
that contains log, n segments of various
lengths, usually filling and transforming it into
a different data vector of length 2n. The
mathematical properties of the matrices
involved in the transforms are similar as well.
The inverse transform matrix for both the FFT
and the DWT is the transpose of the original.
As a result, both transforms can be viewed as
a rotation in function space to a different
domain. For the FFT, this new domain contains
basis functions that are sines and cosines. For
the wavelet transform, this new domain
contains more complicated basis functions
called wavelets, mother wavelets, or analyzing
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shrinkage. By adaptively thresholding the
wavelet coefficients that correspond to
undesired frequency components smoothing
and/or denoising operations can be performed.
Other applied fields that are making use of
wavelets include astronomy, acoustics, nuclear
engineering, sub-band coding, signal and
image processing, neurophysiology, music,
magnetic resonance imaging, speech
discrimination, optics, fractals, turbulence,
earthquake-prediction, radar, human vision, and
pure mathematics applications such as solving
partial differential equations.

C. Wavelets for image compression

Wavelet transform exploits both the spatial and
frequency correlation of data by dilations (or
contractions) and translations of mother
wavelet on the input data. It supports the multi-
resolution analysis of data i.e. it can be
applied to different scales according to the
details required, which allows progressive
transmission and zooming of the image
without the need of extra storage. Another
encouraging feature of wavelet transform is its
symmetric nature that is both the forward and

the inverse transform has the same complexity,
building fast compression and decompression
routines. Its characteristics well suited for
image compression include the ability to take
into account of Human Visual System’s (HVS)
characteristics, very good energy compaction
capabilities, robustness under transmission,
high compression ratio etc.

Wavelet transform divides the information
of an image into approximation and detail sub-
signals. The approximation sub-signal shows
the general trend of pixel values and other three
detail sub-signals show the vertical, horizontal
and diagonal details or changes in the images.
If these details are very small (threshold) then
they can be set to zero without significantly
changing the image. The greater the number
of zeros the greater the compression ratio. If
the energy retained (amount of information
retained by an image after compression and
decompression) is 100% then the
compression is lossless as the image can be
reconstructed exactly. This occurs when the
threshold value is set to zero, meaning that the
details have not been changed.

SIMULATION RESULTS

Figure 5: Top Module
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20-bit register : 13

# Comparators : 6

3-bit comparator greater : 1

3-bit comparator lessequal : 2

4-bit comparator greater : 1

4-bit comparator lessequal : 2

Total :  16.917ns (11.928ns logic, 4.990ns
route)

(70.5% logic, 29.5% route)

Total memory usage is 198724 kilobytes,
Comparison of Proposed and existing
architectures:

Table 1: Comparision Table

CONCLUSION

In this paper, separable pipeline architecture
for fast computation of the 2-D DWT with a
less memory and low latency is proposed. The
low latency and less memory is achieved by
proper designing of two 1-D DWT filtering
processes and also efficiently transferring the
data between the two 1-D DWT architectures.
This architecture is simulated, synthesized and
implemented by VERILOG language using
XILINX ISE Tool. From the LL output it can

conclude that the error occurance is less in
memory oriented applications.
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