
111

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

DESIGN AND IMPLEMENTATION OF 32 BIT
UNSIGNED MULTIPLIER USING CLAA, CSLA, ETA

Veersh B Jalihal1* and Naseeruddin1

*Corresponding Author: Veersh B Jalihal,veeresh.jalihal@gmail.com

This project deals with the comparison of the VLSI design of the Carry Look-Ahead Adder (CLAA)
based 32-bit unsigned integer multiplier and the VLSI design of the carry select adder (CSLA)
based 32-bit unsigned integer multiplier. Both the VLSI design of multiplier mUltiplies two 32-bit
unsigned integer values and gives a product term of 64-bit values. The CLAA based multiplier
uses the delay time of 99 ns for performing mUltiplication operation where as in CSLA based
multiplier also uses nearly the same delay time for mUltiplication operation. But the area needed
for CLAA multiplier is reduced to 31% by the CSLA based multiplier to complete the multiplication
operation. These multipliers are implemented using Altera Quartus II and timing diagrams are
viewed through avan waves. ETA is able to ease the strict restriction on accuracy, and at the
same time achieve tremendous improvements in both the power consumption and speed
performance.

Keywords: CLAA, CSLA, Delay, Area, Array multiplier, VHDL modeling, Simulation

INTRODUCTION
Digital computer arithmetic is an aspect of
logic design with the objective of developing
appropriate algorithms in order to achieve an
efficient utilization of the available hardware.
The basic operations are addition, subtraction,
multiplication and division. In this, we are going
to deal with the operation of additions
implemented to the operation of multiplication.
The repeated form of the addition operations
and shifting results in the multiplication
operations.

ISSN 2319 – 2518 www.ijeetc.com
Vol. 3, No. 3, July 2014

© 2014 IJEETC. All Rights Reserved

Int. J. Elec&Electr.Eng&Telecoms. 2014

1 Department of ECE, BITM Bellary, Karnataka, India.

Given that the hardware can only perform a
relatively simple and primitive set of Boolean
operations, arithmetic operations are based
on a hierarchy of operations that are built upon
the simple ones. In VLSI designs, speed,
power and chip area are the most often used
measures for determining the performance
and efficiency of the VLSI architecture.

Multiplications and additions are most
widely and more often used arithmetic
computations performed in all digital signal
processing applications. Addition is a

Research Paper

112

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

fundamental operation for any digital
multiplication. A fast, area efficient and
accurate operation of a digital system is greatly
influenced by the performance of the resident
adders.

Adders are also very important component
in digital systems because of their extensive
use in these systems.

In this project we are going to compare the
performance of different adders implemented
to the multipliers based on area and time
needed for calculation. On comparison with the
Carry Look-Ahead Adder (CLAA) based
multiplier the area of calculation of the carry
select adder (CSLA) based multiplier is
smaller and better with nearly same delay time.
Here we are dealing with the comparison in
the bit range of n*n (32*32) as input and 2 n
(64) bit output.

Hence, to design a better architecture the
basic adder blocks must have reduced delay
time consumption and area efficient
architectures. The demand is of DSP style
systems for both less delay time and less area
requirement for designing the systems. Our
interest is in the basic building blocks of
arithmetic circuits that dominate in DSP
applications, VLSI architectures, computer
applications and where ever reduced area
computation is needed.

CARRY LOOK-AHEAD ADDER
Carry look-ahead adder can produce carries
faster due to parallel generation of the carry
bits by using additional circuitry. This technique
uses calculation of carry signals in advance,
based on input signals. The result is reduced
carry propagation time. For example, ripple
adders are slower but use the least energy.

Let Gi is the carry generate function and Pi
be the carry propagate function. Then we can
rewrite the carry function as follows:

Gi = Ai·Bi ...(1)

Pi = (Ai xor Bi) ...(2)

Si = Pi xor Ci ...(3)

Ci + l = Gi + Pi·Ci ...(4)

Thus, for 4-bit adder, we can compute the
carry for all the stages as shown below:

C1 = GO + PO·CO ...(5)

C2 = G1 + P1·C1 = G1 + P1·GO +
P1·PO·CO ...(6)

C3 = G2 + P2·C2 = G2 + P2·G1 +
P2·P1·GO + P2·P1·PO·CO ...(7)

C4 = G3 + P3·C3 = G3 + P3·G2 + P3·P2·
G1 + P3·P2·P1·GO + P3·P2·P1·PO·CO

...(8)

In general, we can write:

The sum function:

SUMi – Ai xor Bi xor Ci – Pi xor Ci ...(9)

The carry function:

Ci + l = Gi + Pi
.Ci ...(10)

In general, we can write the algorithm as:

If Carry in = 1, then the sum and carry out
are given by,

Figure 1: Carry Look-Ahead Adder

113

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

Sum(i) = a(i) xor b(i) xor ‘1’ ...(11)

Carry(i + 1) = (a(i) and b(i)) or (b(i) or a(i))
...(12)

If Carry in = 0, then the sum and carry out
are given by,

Sum(i) = a(i) xor b(i) ...(13)

Carry(i + 1) = (a(i) and b(i)) ...(14)

The sum function:

Si = CiSi
0 – CiSi

1 ...(15)

The carry function:

Ci-1 = CiCi+1
0 + CiCi-1

1 ...(16)

MULTIPLTER FOR UNSIGNED
DATA
Multiplication involves the generation of partial
products, one for each digit in the multiplier,
as in Figure 3. These partial products are then
summed to produce the final product. The
multiplication of two n-bit binary integers
results in a product of up to 2 n bits in length
(Stallings, xxxx).

CARRY SELECTADDER
The concept of CSLA is to compute alternative
results in parallel and subsequently selecting
the correct result with single or multiple stage
hierarchical techniques. In CSLA both sum
and carry bits are calculated for two alternatives
Cin = O and 1. Once Cin is delivered, the
correct computation is chosen using a mux to
produce the desired output. Instead of waiting
for Cin to calculate the sum, the sum is correctly
output as soon as Cin gets there. The time
taken to compute the sum is then avoided
which results in good improvement in speed.

Figure 2: A Partial Schematic of the
Multiplier

Figure 3: Figure Carry Select Adder

We used the following algorithm to
implement the multiplication operation for
unsigned data.

ERROR TOLERANT ADDER
The commonly used terminologies in Error
Tolerant addition are overall error and
accuracy. They are defined by the equations
discussed below. Overall Error (OE):

OE = |Rc – Re| ...(17)

where Re is the result obtained by the Error
tolerant addition technique, and Rc is the
correct result (all the results are represented
as decimal numbers).

114

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

Accuracy (ACC): In the case of the error
tolerant design, the accuracy of an addition
process is used to indicate how “correct” the
output of an adder is for a particular input. Its
value ranges from 0-100%.

ACC% = (1 – (OE/Rc)) x 100 ...(18)

In the conventional adder circuit, the delay
is mainly due to the carry propagation from the
Least Significant Bit (LSB) to the Most
Significant Bit (MSB). Glitches in the carry
propagation also cause significant power
dissipation.

Therefore, if the carry propagation can be
eliminated or curtailed, a great improvement
in speed performance and power consumption
[8] can be achieved. This new addition
arithmetic can be illustrated via an example
shown below.

In error tolerant addition technique, we first
split the input operands into two parts: an
accurate part that includes higher order bits
and the inaccurate part that consists of lower
order bits. The length of each part need not
necessary be equal. The addition process
starts from the middle, i.e., starting point in
Figure 4 towards the two opposite directions
at the same time.

In the example of Figure 4, the two 8-bit
input operands, A = “10110111” (183) and B =
“01101101” (109),are divided equally into 4 bits
each for the accurate andinaccurate parts. The
addition of the higher order bits (accurate part)
of the input operands is carried from right toleft
(LSB to MSB) and normal addition method is
applied. This is to preserve its correctness
since the higher order bitsplay a more
important role than the lower order bits. The
lower order bits of the input operands (in

accurate part) require a special addition
mechanism. No carry signal will beconsidered
at any bit position to eliminate the carry
propagation path. To minimize the overall error
due to theelimination of the carry chain, a
special strategy is adapted, and as follows: 1)
check every bit position from left to right (MSB
to LSB); 2) if both input bits are “0” or different,
normal one-bit addition is performed and the
operation proceeds to next bit position; 3) if
both input bits are “1”, the checking process
stopped and from this bit onward, all sumbits
to the right are set to “1”. The addition

Figure 4: Arithmetic Procedure of Error
Tolerant Adder

Figure 5: Block Diagram of Error Tolerant
Adder

115

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

mechanism described can be easily
understood from the example. For theaddition
of the MSB part in modified booth
multiplication we have adopted this technique.

MULTIPLICATION
ALGORITHM
Let the product register size be 64 bits. Let
the multiplicand registers size be 32 bits. Store
the multiplier in the least significant half of the
product register. Clear the most significant half
of the product register.

Repeat the following steps for 32 times:

• If the least significant bit of the product
register is “1” then add the multiplicand to
the most significant half of the product
register.

• Shift the content of the product register one
bit to the right (ignore the shifted-out bit).

• Shift-in the carry bit into the most significant
bit of the product register. Figure 6 shows
a block diagram for such a multiplier.

VHDL SIMULATIONS
The VHDL simulation of the two multipliers is
presented in this section. In this, waveforms,
timing diagrams and the design summary for
both the CLAA and CSLA based multipliers
are shown in the figures. The VHDL code for
both multipliers, using CLAA and CSLA, are
generated. The VHDL model has been
developed using Altera Quartus II and timing

Figure 6: Multiplier of Two n-bit Values

Figure 7: Waveform for a CLAA Based
Multiplier

Figure 8: Waveform for CSLA Based
Multiplier

Figure 9: Timing Analysis for CLAA Based
Multiplier

Figure 10: Timing Analysis for CSAA
Based Multiplier

116

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

diagrams are viewed through avan waves. The
multipliers use two 32-bit values.

Delay Analysis
The performance analysis for the delay time
of CLAA and CSLA based multipliers are
represented in the form of the diagram shown
in Figure 14.

Figure 11: Design Summary of CLAA
Multiplier

Figure 12: Figure Design Summary
of CSLA Multiplier

Under the worst case, the multiplier with a
carry look-ahead adder uses time = 98.5 ns,
while the multiplier with the carry select adder
uses time = 99.5 ns.

PERFORMANCE ANALYSTS
Area Analysis
The performance analysis for the area of CLAA
and CSLA based multipliers are represented
in the form of the diagram shown in Figure 13.

Figure 13: Figure Area Analysis Chart

Figure 14: Figure Delay Analysis Chart

Area Delay Product Analysis
The performance analysis for the area delay
product of CLAA and CSLA based multipliers
are represented in the form of the diagram
shown in Figure 15.

117

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

The area needed and delay for both the
CLAA and CSLA implemented to the multiplier
was analyzed and the comparison was shown
in the figure in the form of a table.

Analysis Table
Tn this analysis table shown in Table 1, the
delay time is nearly same, the area and the
area delay product of CSLA based multiplier
is reduced to 31% when compared to CLAA
based multiplier.

Speed Integrated Circuit Hardware
Description Language, was used to model and
simulate our multiplier. Using CSLA improves
the overall performance of the multiplier.

Thus a 31% area delay product reduction
is possible with the use of the CSLA based
32-bit unsigned parallel multiplier than CLAA
based 32-bit unsigned parallel multiplier. The
application for ETA are in those areas where
there is no strict restriction on accuracy or when
high speed performance is more important
compared to accuracy.

FUTURE WORK
This 32-bit multiplier can be further extended
to 64-bit multiplier and 128-bit multiplier using
the proposed method for multiplication
operation can be done as future work.

REFERENCES
1. Armstrong J R and Gray F G (2000),

VHDL Design Representation and
Synthesis, 2nd Edition, Prentice Hall, USA,
ISBN: 0-13-021670-4.

2. Asadi P and Navi K (2007), “A Novel
Highs-Speed 54-54 Bit Multiplier”, Am. J.
Applied Sci., Vol. 4, No. 9, pp. 666-672.

3. Brown S and Vranesic Z (2005),
Fundamentals of Digital Logic with
VHDL Design, 2nd Edition, McGraw-Hill
Higher Education, USA, ISBN:
0072499389.

4. Hasan Krad and Aws Yousi (2010),
“Design and Implementation of a Fast
Unsigned 32-bit Multiplier Using VHDL”.

5. Meier P C H, Rutenbar R A and Carley L
R (1996), “Exploring Multiplier

Figure 15: Figure Area Delay Product
Analysis Chart

CLAA based
multiplier 98.5 2957 logic cells 291264.5

CSLA based
multiplier 99.5 2039 logic cells 202880.5

ETA 95 2021

Table 1: Analysis Table

Multiplier
Type

Delay
(ns) Area Delay Area

Product

CONCLUSION
A design and implementation of a VHDL-
based 32-bit unsigned multiplier with CLAA
and CSLA was presented. VHDL, a Very High

118

Int. J. Elec&Electr.Eng&Telecoms. 2014 Veersh B Jalihal and Naseeruddin, 2014

Architecture and Layout for Low Power”,
CIC’96.

6. Mohanty P S (2009), “Design and
Implementation of Faster and Low
Power Multipliers”, Bachelor Thesis,
National Insti tute of Technology,
Rourkela.

7. Navabi Z (2007), VHDL Modular Design
and Synthesis of Cores and Systems,
3rd Edition, McGraw-Hill Professional,
USA, ISBN: 9780071508926.

8. Sertbas A and Ozbey R S (2004), “A
Performance Analysis of Classified Binary
Adder Architectures and the VHDL

Simulations”, J. Elect. Electron. Eng.,
Vol. 4, pp. 1025-1030, Istanbul, Turkey.

9. Software Simulation Package: Direct
VHDL, Version 1.2 (2007), Green
Mounting Computing Systems Inc.,Essex,
VT, UK.

10. Stallings W (2006), “Computer
Organization and Architecture Designing
for Peljormance”, 71h ed., Prentice Hall,
Pearson Education International, USA,
ISBN: 0-13-185644-8.

11. Wakerly F (2006), Digital Design-
Principles and Practices, 4th Edition,
Pearson Prentice Hall,USA, ISBN:
0131733494.

