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To improve the visual images which are degraded by blocking artifacts from compression. It is
efficient method to use deblocking algorithms instead of using perceptually questionable PSNR.
We proposed a block-sensitive index method named as PSNR-B, it produces objective
judgements that accord with observations. The PSNR-B modifies PSNR by including a blocking
effect factor. We also use the perceptually significant SSIM index, which produces results largely
in agreement with PSNR-B. Simulation results show that the PSNR-B results in better
performance for quality assessment of deblocked images than PSNR and a well-known
blockiness-specific index.
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INTRODUCTION
Deblocking is a local operation which
improves the appearance of the image in
some regions, while degrading the quality
elsewhere. We Analyse the efficiency of
deblocking algorithms for improving visual
signals degraded by blocking artifacts from
compression. Blocking artifacts are the grey
level discontinuties at block boundaries, Which
are generally oriented horizontally and
vertically. These arise from poor representation
of the block luminance levels near the block
boundaries.
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Instead of using perceptually questionable
PSNR, we propose PSNR-B.The PSNR-B
modifies PSNR by including a blocking effect
factor. The disadvantage of PSNR is it does
not capture subjective quality well when
blocking artifacts are present.

SSIM (Structural Similarity) Index metric is
slightly complex than PSNR, but correlates
highly with human subjectively. Most blocking
artifact reduction methods assume that the
distorted image contains noticeable amount
of blocking. The degree of blocking depends
upon several parameters, the most important
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of which is the quantization step for lossy
compression. The recent advent of powerful
modern Image Quality Assessment (IQA)
algorithms that compare well with human
subjectively makes this plausible. Here we
investigate quality assessment of deblocked
images, and in particular we study the effects
of the quantization step of the measured quality
of deblocked images. A deblocking filter can
improve image quality in some aspects, but
can reduce image quality in other regards.

We perform simulations on the quality
assessment of deblocked images. We first
perform simulations using the conventional
Peak Signal-to-Noise Ratio (PSNR) quality
metric and a state of the art quality index, the
structural similarity (SSIM) index. We also
propose a new deblocking quality index that
is sensitive to blocking artifacts in deblocked
images. We name this Peak Signal-to-Noise
Ratio including blocking effects (PSNR-B).

The simulation results show that the
proposed PSNR-B correlates well with
subjective quality and with the SSIM index, and
performs much better than the PSNR. We study
a variety of image and video deblocking
algorithms, including lowpass filtering,
Projection Onto Convex Sets (POCS), and the
H.264 in-loop filter.

QUALITY ASSESSMENT
METHODS
We consider the class of Quality Assessment
(QA) methods that are Full-Reference (FR)
QA, which compares the test (distorted) image
with a reference (original) image. In this
project, the distorted images will ostensibly
suffer from blocking artifacts or from the
residual artifacts.

Mean Square Error
In statistics, the Mean Squared Error (MSE)
of an estimator is one of many ways to quantify
the difference between values implied by an
estimator and the true values of the quantity
being estimated. MSE is a risk function,
corresponding to the expected value of the
squared error loss or quadratic loss. MSE
measures the average of the squares of the
“errors.” The error is the amount by which the
value implied by the estimator differs from the
quantity to be estimated. The difference occurs
because of randomness or because the
estimator doesn’t account for information that
could produce a more accurate estimate.

The MSE is the second moment (about the
origin) of the error, and thus incorporates both
the variance of the estimator and its bias. For
an unbiased estimator, the MSE is the
variance. Like the variance, MSE has the same
units of measurement as the square of the
quantity being estimated. In an analogy to
standard deviation, taking the square root of
MSE yields the Root Mean Square Error or
Root Mean Square Deviation (RMSE or
RMSD), which has the same units as the
quantity being estimated; for an unbiased
estimator, the RMSE is the square root of the
variance, known as the standard error.
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Peak Signal to Noise Ratio
The phrase peak signal-to-noise ratio, often
abbreviated PSNR, is an engineering term for
the ratio between the maximum possible
power of a signal and the power of corrupting
noise that affects the fidelity of its
representation. Because many signals have
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a very wide dynamic range, PSNR is usually
expressed in terms of the logarithmic decibel
scale.

The PSNR is most commonly used as a
measure of quality of reconstruction of lossy
compression codecs (e.g., for image
compression). The signal in this case is the
original data, and the noise is the error
introduced by compression. When comparing
compression codecs it is used as an
approximation to human perception of
reconstruction quality, therefore in some cases
one reconstruction may appear to be closer
to the original than another, even though it has
a lower PSNR (a higher PSNR would normally
indicate that the reconstruction is of higher
quality). One has to be extremely careful with
the range of validity of this metric; it is only
conclusively valid when it is used to compare
results from the same codec (or codec type)
and same content.

It is most easily defined via the Mean
Squared Error (MSE) which for two m×n
monochrome images I and K where one of the
images is considered a noisy approximation
of the other is defined as:
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The PSNR is defined as:
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Let x and y represent the vectors of
reference and test image signals,
respectively. Let e be the vector of error signal
between x and y. If the number of pixels in an
image is N.

STRUCTURAL SIMILARITY
INDEX METRIC
The structural similarity (SSIM) metric aims to
measure quality by capturing the similarity of
images. A product of three aspects of similarity
are measured: luminance, contrast, and
structure. The luminance comparison function
L(x, y) for reference image x and test image y
is defined as
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where x and y are the mean values of x and
y respectively and C1 is a stabilizing constant.

The contrast comparison function C(x, y) is
defined similarly as:
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where x and y are the standard deviation of
x and y, respectively, and C2 is a stabilizing
constant.

The structure comparison functions S(x, y)
is defined as
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where xy is the correlation between x and y
and C3 is also a constant that provides stability.

The SSIM index is obtained by combining
the three comparison functions

           yxSyxCyxlyxSSIM ,,,,  ...(6)

the parameters are set as  =  =  = 1 and C3

= C2/2
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Local SSIM statistics are estimated using
a symmetric Gaussian weighting function. The
mean SSIM index pools the spatial SSIM
values to evaluate the overall image quality.
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where M is the number of local windows over
the image, and xj and yj are image patches
covered by the jth window.

IMAGE QUALITY AND
QUANTIZATION STEP SIZE
The amount of compression and the quality can
be controlled by the quantization step. As the
quantization step is increased, the
compression ratio becomes larger, and the
quality generally worsens. Quantization is a
key element of lossy compression, but
information is lost. There is a trade off between
compression ratio and reconstructed image/
video quality.

In block transform coding, the input image
is divided into L x L blocks, and each block is
transformed independently into transform
coefficients. An input image block is
transformed into a DCT coefficient block.

tTbTB  ...(9)

where T is the transform matrix and Tt is the
transpose matrix of T. The transform
coefficients are quantized using a scalar
quantizer Q.

   tTbTQBQB ~ ...(10)

The quantization operator in (10) is
nonlinear, and is a many-to-one mapping.

In the decoder, only quantized transform
coefficients B~  are available.

The output of the decoder is

 TTbTQTTBTb ttt  ~~ ...(11)

Let  represent the quantization step. It is
well known that the PSNR is a monotonically
decreasing function of . The SSIM index
captures the similarity of reference and test
images. As the quantization step size
becomes larger, the structural differences
between reference and test image will
generally increase, and in particular the
structure term S(x, y) will become smaller.
Hence, the SSIM index would be a
monotonically decreasing function of the
quantization step size.

MEAN DISTORTION CHANGE
Let x, y, y^ are the original image,decoded
image,and deblocked image respectively. If
‘f’ represents the deblocking operation then
y^ = f(y).

Let M(x, y) be the quality metric between x
and y. Then the goal of the deblocking
operation f is to maximize M(x,f(y)).

Let d(xi, yi) be the distortion between ith

pixels of x and y, expressed as squared
euclidean distance

  2, iiii yxyxd  ...(12)

The Distortion Decrease Region (DDR) ‘A’
to be composed of those pixels where the
distortion is decreased by the deblocking
operation

Figure 1: Block Diagram for Reference,
Decoded, and Deblocked Images
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   iiii yxdyxdifAi ,~,, 

The amount of distortion decrease for the
ith pixel in the DDRA is

   iiiii yxdyxd ~,,  ...(13)

The distortion may also increase at other
pixels by application of the deblocking filter.
We similarly define the Distortion Increase
Region (DIR) B

   iiii yxdyxdifBi ~,,, 

The amount of distortion increase for the ith

pixel i in the DIRB is

   iiiii yxdyxd ,~,  ...(14)

We define the Mean Distortion Decrease
(MDD)
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where N is the number of pixels in the image.

Similarly, the Mean Distortion Increase
(MDI) is
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A reasonable approach for designing a
deblocking filter would be to seek to maximize
the MDD   and minimize the MDI  . This is
generally a very difficult task and of course,
may not result in optimized improvement in
perceptual quality. Lastly, let be the Mean
Distortion Change (MDC), defined as the
difference between MDD and MDI

  ...(17)

If 0 , then the deblocking operation is
likely unsuccessful since the mean distortion
increase is larger than the mean distortion

decrease. We would expect a successful
deblocking operation to yield 0 .

DEBLOCKING FILTER
Deblocking can be considered as an image
restoration problem. Let represent the
deblocking operation function and N(xi)
represent a neighborhood of pixel xi. A lowpass
filter is a simple deblocking filter. An L x L
lowpass filter can be represented as:
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where hk is the kernel for the L x L filter and is
the th pixel in the neighborhood of pixel xi. While
lowpass filtering does reduce blocking
artifacts, critical high frequency information is
also lost and the image is blurred. While the
distortion will certainly decrease for some
pixels that define the DDR, the distortion will
likely increase for a significant number of pixels
in DIR. Indeed, it is quite possible that 0

could result. Moreover, blur is perceptually
annoying. A variety of nonlinear methods have
been proposed to reduce the blocking
artifacts, while minimizing the loss of original
information. For example, deblocking
algorithms based upon Projection Onto
Convex Sets (POCS) have demonstrated
good performance for reducing blocking
artifacts and have proved popular.

In POCS, a lowpass filtering operation is
performed in the spatial domain, while a
projection operation is performed in the DCT
domain. Typically, the projection operation is
a clipping operation on the filtered coefficients,
confining these to fall within a certain range
defined by the quantization step size. Since
the lowpass filtering and the projection
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operations are performed in different domains,
forward DCT and Inverse DCT (IDCT)
operations are required.

The lowpass filtering, DCT, projection, IDCT
operations compose one iteration, and
multiple iterations are required to achieve
convergence. It is argued that under certain
conditions, POCS filtered images converge
to an image that does not exhibit blocking
artifacts.

As another example, the H.264 in-loop
deblocking filter is a key component in the
H.264 video coding standard. It is claimed that
the in-loop filtering significantly improves both
subjective and objective video quality. The key
idea of the H.264 in-loop filter is to adaptively
select the filtering operation and the
neighborhood using the relative pixel location
with respect to the block boundary and the local
gray level gradient information. Generally, the
MDI value is reduced while the MDD value is
similar to lowpass filtering. The H.264 in-loop
filter uses separate 1-D operations and integer
multiplications to reduce complexity. However,
it still requires a large amount of computation.
In fact, the H.264 in-loop filter requires about
one-third of the computational complexity of
the decoder.

PSNR-B
We propose a new block-sensitive image
quality metric which we term peak signal-to-
noise ratio including blocking effects (PSNR-
B). As the quantization step size increases,
blocking artifacts generally become more
conspicuous. Blocking artifacts are gray level
discontinuities at block boundaries, which are
ordinarily oriented horizontally and vertically.
They arise from poor representation of the

block luminance levels near the block
boundaries. The following definitions are
relative to an assumed block-based
compression tiling, e.g., 8 x 8 blocks as in
JPEG compression.

Figure 2 shows a simple example for
illustration of pixel blocks with NH = 8, NV = 8,
and B = 4. The thick lines represent the block
boundaries. In this example ,8

BHN ,48C
BH

N

,8
BVN  and 48C

BV
N . The sets of pixel pairs

in this example are

HB = {(y4, y5), (y12, y13), …, (y60, y61)}

C
BH = {(y1, y2), (y2, y3), (y3, y4), (y5, y6),

…, (y63, y64)}

VB = {(y25, y33), (y26, y34), …, (y32, y40)}

C
BV = {(y1, y9), (y9, y17), (y17, y25), (y33,

y41), …, (y56, y64)}

Then we define the mean boundary pixel
squared difference (DB) and the mean
nonboundary pixel squared difference  

CBD  for
image y to be

Figure 2: Example for Illustration
of Pixel Blocks
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Generally, as the quantization step size
increases (DB will increase relative to CBD ), and
blocking artifacts will become more visible. Of
course, this does not establish any level of
correlation between (19), (20) and perceptual
annoyance.

Also define the blocking effect factor

      yDyDyBEF C
BB  ...(21)

where
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Of course, there can be multiple block sizes
in a particular decoded image/video. For
example, there can be 16 x 16 macroblocks
and 4 x 4 transform blocks, both contributing
to blocking effects.

Let ,,, k
C
BB BEFDD

kk
 and k modify (19)-(22)

for block size. Then

      yDyDyBEF C
BBkk kk

 ...(23)

The BEF over all block sizes is defined as
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k
kTot yBEFyBEF

1
...(24)

The mean-squared error including blocking
effects (MSE-B) for reference image x and test
image y is then defined as the sum of the
MSE(x, y) in (1) and BEFtot(y) in (24)

     yBEFyxMSEyxBMSE Tot ,,

...(25)

Finally, we propose the PSNR-B as

   yxBMSE
yxBPSNR

,
255log10,

2

10 


...(26)

The MSE term in (25) measures the
distortion between the reference image and
the test image, while the BEF term in (25)
specifically measures the amount of blocking
artifacts just using the test image. The BEF
itself can be used as a no-reference quality
index, similar to the Generalized Block-edge
Impairment Metric (GBIM) and the Mean
Noticeable Blockiness Score (MNBS). These
no-reference quality indices claim to be
efficient for measuring the amount of
blockiness, but may not be efficient for
measuring image quality relative to full-
reference quality assessment. On the other
hand, the MSE is not specific to blocking
effects, which can substantially affect
subjective quality. We argue that the
combination of MSE and BEF is an effective
measurement for quality assessment
considering both the distortions from the
original image and the blocking effects in the
test image. The associated quality index
PSNR-B is obtained from the MSE-B by a
logarithmic function, as is the PSNR from the
MSE. The PSNR-B is attractive since it is
specif ic for assessing image quality,
specifically the severity of blocking artifacts.
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SIMULATION RESULTS
The Images are compressed using DCT block
coding as JPEG. In JPEG, quantization is
applied using a different quantization step size
for each DCT coefficient, as defined by a
quantization table. Here, we apply the same
quantization step size for all DCT coefficients,
to more directly investigate the effects of
quantization step size on image quality.
Quantization step sizes of 5, 10, 20, 40, 80,
120, and 160 were used in the simulations to
investigate the effects of quantization step size.
Deblocking was applied on the decoded
images for comparison.

In the reconstructed Barbara image with
quantization step 100. Blocking artifacts are
visible in the no-filtered image and are mostly
removed in the POCS filtered image.

The PSNR produced slightly large values
on the no-filtered image,while the SSIM index

Figure 3a: The Original Image: Barbara

Figure 3b: Reconstructed Image
of Barbara with No Filter (Quantization

Step: 100)

Figure 3c: Reconstructed Image
of Barbara with POCS Deblocking Filter

(Quantization Step: 100)
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was almost unchanged. PSNR-B produced
slightly large values on the POCS filtered
image.

In the reconstructed lena image with
quantization step 100. When no filter was
applied annoying Blocking artifacts are clearly
visible. When the POCS deblocking filter was
applied the blocking effects were greatly
reduced, resulting in better subjective quality.

Again, PSNR produced slightly large values
on the no-filtered image,while the SSIM index
was almost unchanged. PSNR-B produced
slightly large values on the POCS filtered
image.

COMPARISON OF QUALITY
INDICES
The below shown graphs prove that POCS
produced improved PSNR-B values relative
to the no-filter case of lena image.

Figure 4a: The Original Image: Lena

Figure 4b: Reconstructed Image of Lena
with No Filter (Quantization Step: 100)

Figure 4c: Reconstructed Image of Lena
with POCS Deblocking Filter (Quantization

Step: 100)
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as well as deblocking artifacts. The PSNR
does not perform as well as might be expected.
Both the PSNR-B and SSIM index indicate that
the POCS approach improves the perceptual
quality of block degraded images more than
does simple low pass filtering.

Figure 5a: PSNR Comparison
of Lena Image

Figure 5b: SSIM Comparison
of Lena Image

Figure 5c: PSNR-B Comparison
of Lena Image

Compared to PSNR, SSIM the PSNR-B
improves more markedly on the deblocked
images, especially for large quantization steps.
The PSNR-B was largely in agreement with
the SSIM index.

The PSNR-B metric captures subjective
quality on images containing blocking artifacts

Type of Filter Used PSNR SSIM PSNR-B

 No Filter 8.52Db 0.085 3.820

 POCS Deblocking Filter 8.80Db 0.130 6.900

CONCLUSION
In simulations, we compared relevant image
quality indices for deblocked images. The
simulation results show that PSNR-B results
in better performance than PSNR for image
quality assessment of these impaired images.
We proposed the block-sensitive image
quality index PSNR-B for quality assessment
of deblocked images. It modifies the
conventional PSNR by including an effective
blocking effect factor. PSNR-B shows similar
trends with the perceptually proven index SSIM.
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It is attractive since it is specific for assessing
image quality, specifically the severity of
blocking artifacts. The PSNR-B takes values
in a similar range as PSNR and is, therefore,
intuitive for users of PSNR, while it results in
better performance for quality assessment of
deblocked images.
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