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A special moduli set Residue Number System (RNS) of high Dynamic Range (DR) can speed
up the execution of very-large word-length repetitive multiplications found in applications like
public key cryptography. The modulo 2n-1 multiplier is usually the noncritical datapath among all
modulo multipliers in such high-DR RNS multiplier. This timing slack can be exploited to reduce
the system area and power consumption without compromising the system performance. With
this precept, a family of radix-8 Booth encoded modulo 2n-1 multipliers, with delay adaptable to
the RNS multiplier delay, is proposed. The modulo 2n-1 multiplier delay is made scalable by
controlling the word-length of the ripple carry adder, k employed for radix-8 hard multiple
generation. Formal criteria for the selection of the adder word-length are established by analyzing
the effect of varying k on the timing of multiplier components. It is proven that for a given n, there
exist a number of feasible values of k such that the total bias incurred from the partially-redundant
partial products can be counteracted by only a single constant binary string. This compensation
constant for different valid combinations of n and k can be precomputed at design time using
number theoretic properties of modulo 2n-1 arithmetic and hardwired as a partial product to be
accumulated in the carry save adder tree. The adaptive delay of the proposed family of multipliers
is corroborated by CMOS implementations. In an RNS multiplier, when the critical modulo
multiplier delay is significantly greater than the noncritical modulo 2n-1 multiplier delay, k = n and
k = n/3 are recommended for n not divisible by three and divisible by three, respectively.
Conversely, when this difference diminishes, k is better selected as n/4 and n/6 for n not divisible
by three and divisib le by three, respectively. Our synthesis results show that the proposed
radix-8 Booth encoded modulo 2n-1 multiplier saves substantial area and power consumption
over the radix-4 Booth encoded multiplier in medium to large word-length RNS multiplication.
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INTRODUCTION
RIVEST, Shamir, and Adleman (RSA) and
Elliptic Curve Cryptography (ECC) are two of
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the most well established and widely used
Public Key Cryptographic (PKC) algorithms.
The encryption and decryption of these PKC
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algorithms are performed by repeated modulo
multiplications. These multiplications differ
from those encountered in signal processing
and general computing applications in their
sheer operand size. Key sizes in the range of
512~1024 bits and 160~512 bits are typical
in RSA and ECC, respectively. Hence, the long
carry propagation of large integer
multiplication is the bottleneck in hardware
implementation of PKC. The Residue Number
System (RNS) has emerged as a promising
alternative number representation for the
design of faster and low power multipliers
owing to its merit to distribute a long integer
multiplication into several shorter and
independent modulo multiplications. RNS has
also been successfully employed to design
fault tolerant digital circuits.

A RNS is defined by a set of pair-wise co-
prime moduli {L1, L2, …, Ln} such that any
integer within the Dynamic Range (DR), i.e.,
L1 is represented as an-tuple, where is the
rmuesidue of modulo. RNS multipliers based
on generic moduli have been reported in.
However, special moduli of forms 2n or 2n ± 1
are preferred over the generic moduli due to
the ease of hardware implementation of
modulo arithmetic functions as well as system-
level inter-modulo operations, such as RNS-
to-binary conversion and sign detection. The
most popular of these special moduli sets is
the triple moduli set {2n – 1, 2n, 2n ± 1} which
however has a DR of only bits. It is obvious
that the DR of an existing moduli set can be
extended by appending many small word-
length moduli or a few large word-length moduli.

As the time complexity of partial product
summation by a Carry Save Adder (CSA) tree
and a two-operand parallel-prefix adder is a

logarithmic function of, the critical path delay
can be modeled as, but the delays of the
modulo and modulo multipliers are only. This
speedup of around by modulo and modulo
multipliers over the critical path delay is of no
consequence.

As encryption and decryption in PKC
involves repeated multiplications, the
cumulative difference in the critical and
noncritical modulo multiplier delays will
increase with the number of multiplications
involved. For lightweight cryptographic
applications, such as smartcards and Radio
Frequency Identification (RFID) tags, the
considerations of power, size and cost are of
paramount importance.

The complexity of implementing reliable
cryptographic hardware can be reduced by an
ingenious exploitation of this timing headroom
in the design of RNS multiplier. The noncritical
modulo multipliers can be made to operate at
a slower speed that nearly matches the delay
of the critical modulo multiplier. In doing so,
the timing slack freed up from the modulo and
modulo multipliers can be effectively explored
for more area and power efficient architectures
without compromising the overall system
performance. This approach to reduce the
overall area and power consumption of a RNS
multiplier is based on architectural
modification and can be implemented with any
standard cell library. It does not require multiple
supply voltages, multiple threshold voltages,
or control circuitries for the generation and
scaling of voltage and frequency in order to
exploit the timing surplus in the noncritical paths
for power saving.

This paper focuses on the design space
exploration of arithmetic operation in one of
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the two special moduli, i.e., 2n – 1, the modulo
multiplier design. The Montgomery modulo
multiplication, while computing the modular
product without trial division, is modulus-
independent and incapable of exploiting
number theoretic properties of modulo 2n – 1
arithmetic for combinational circuit
simplification. The properties of modulo
2n – 1 arithmetic were most effectively
exploited for the full adder based
implementation of modulo multiplier in. In the
multiplier bits were not encoded, which lead
to higher implementation area and longer
partial product accumulation time.

In and, the radix-4 Booth encoding
algorithm was employed to reduce the number
of partial products to n/2 + 1 and n/2,
respectively. The shorthand notations [a]and
[a]denote the smallest integer greater than or
equal to[a] and the largest integer smaller than
or equal to respectively. With higher radix
Booth encoding the number of partial products
is reduced by more than half and consequently,
significant reduction in silicon area and power
dissipation is feasible. The radix-8 Booth
encoding reduces the number of partial
products to n/3+1, which is more aggressive
than the radix-4 Booth encoding.

However, in the radix-8 Booth encoded
modulo multiplication, not all modulo-reduced
partial products can be generated using the
bitwise circular-left-shift operation and bitwise
inversion.

The performance overhead due to the end-
around-carry addition is by no means trivial
and hence, the use of Booth encoding for
modulo multipliers have been restricted to only
radix-4 in literature.

In this paper, we propose the first-ever
family of low-area and low-power radix-8
Booth encoded modulo multipliers whose
delay can be tuned to match the RNS delay
closely. In the proposed multiplier, the hard
multiple is generated using small word-length
Ripple Carry Adders (RCAs) operating in
paral lel.  The Appendix provides the
derivat ion of  the predetermined
compensation constant for different valid
combinations of the multiplier and RCA
word-lengths.

RADIX-8 BOOTH ENCODED
MODULO MULTIPLICATION
2n – 1 ALGORITHM
By using above technique booth multiplication
can be performed. But this technique +3X2n –
1 for computation involves two -bit carry-
propagate additions in series such that the
carry propagation length is twice the operand
length In the worst case, the late arrival of +3X
2n – 1 the may considerably delay all
subsequent stages of the modulo 2n – 1
multiplier. Hence, this approach for hard
multiple generation can no longer categorically
ensure that the multiplication in the modulo
channel still falls in the noncritical path of a RNS
multiplier.

Figure 1: Generation of +3X2n – 1 Using
Two Bit RCAs
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In what follows, we propose a family of low-
power and low area modulo 2n – 1 multipliers
based on the radix-8. Booth encoding, which
allows for an adaptive control of the delay to
match the delay of the critical modulo channel
of a RNS multiplier.

PROPOSED RADIX-8 BOOTH
ENCODED MODULO 2n – 1
MULTIPLIER DESIGN
To ensure that the radix-8 Booth encoded
modulo 2n – 1 multiplier does not constitute
the system critical path of a high-DR moduli
set based RNS multiplier, the carry
propagation length in the hard multiple
generation should not exceed n bits. To this
end, the carry propagation through the HAs in
Figure 2 can be eliminated by making the end-
around-carry bit c7 a partial product bit to be
accumulated in the CSA tree. This technique
reduces the carry propagation length to n bits
by representing the hard multiple as a sum and
a redundant end-around-carry bit pair. The
resultant n/3+1 end-around-carry bits in the
partial product matrix may lead to a marginal
increase in the CSA tree depth and
consequently, may aggravate the delay of the
CSA tree. In which case, it is not sufficient to
reduce the carry propagation length to merely

bits using the above technique. Since the
absolute difference between the noncritical
modulo 2n– 1 multiplier delay and the system
critical path delay depends on the degree of
imbalance in the moduli word-length of a RNS,
the delays cannot be equalized by arbitrarily
fixing the carry propagation length to n bits.

So above technique used in our project to
reduce the carry length and increase the speed
of the system.

Radix-8 Booth Encoded Modulo
2n – 1 Multipliers Diagram

Figure 2: Generation of Partially-
Redundant +3X2n – 1 Using Bit RCAs

Figure 3: Generation of Partially-
Redundant Bits

Figure 4: Partial Product Generator
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BOOTH’S MULTIPLICATIO
ALGORITHM OF RESIDUE
Number System
Booth’s mult ipl ication algorithm is a
multiplication algorithm that multiplies two
signed binary numbers in two’s complement
notation. The algorithm was invented by
Andrew Donald Booth in 1950 while doing
research on crystallography at Birkbeck
College in Bloomsbury, London. Booth used
desk calculators that were faster at shifting
than adding and created the algorithm to
increase their speed. Booth’s algorithm is
of interest in the study of  computer
architecture.

BOOTH ALGORITHM
Booth’s algorithm examines adjacent pairs of
bits of the N-bit multiplier Y in signed two’s
complement representation, including an
implicit bit below the least significant bit, y–1 =
0. For each bit yi, for i running from 0 to N–1,
the bits yi and yi–1 are considered. Where these
two bits are equal, the product accumulator P
remains unchanged. Where yi = 0 and yi–1 = 1,
the multiplicand times 2i is added to P; and
where yi = 1 and yi-1 = 0, the multiplicand times
2i is subtracted from P. The final value of P is
the signed product.

The representation of the multiplicand and
product are not specified; typically, these are
both also in two’s complement representation,
like the multiplier, but any number system that
supports addition and subtraction will work as
well. As stated here, the order of the steps is
not determined.

Typically, it proceeds from LSB to MSB,
starting at i = 0; the multiplication by 2i is then
typically replaced by incremental shifting of the
P accumulator to the right between steps; low
bits can be shifted out, and subsequent
additions and subtractions can then be done
just on the highest N bits of P. There are many
variations and optimizations on these details.

The algorithm is often described as
converting strings of 1’s in the multiplier to a
high-order +1 and a low-order –1 at the ends
of the string. When a string runs through the
MSB, there is no high-order +1, and the net
effect is interpretation as a negative of the
appropriate value.

A TYPICAL IMPLEMENTATION
Booth’s algorithm can be implemented by
repeatedly adding (with ordinary unsigned

Figure 5: Booth Encoder, Booth Selector

Figure 6: Carry Save Adder
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binary addition) one of two predetermined
values A and S to a product P, then performing
a rightward arithmetic shift on P. Let m and r
be the multiplicand and multiplier, respectively;
and let x and y represent the number of bits in
m and r.

1. Determine the values of A and S, and the
initial value of P. All of these numbers should
have a length equal to (x + y + 1).

• A: Fill the most significant (leftmost) bits
with the value of m. Fill the remaining
(y + 1) bits with zeros.

• S: Fill the most significant bits with the
value of (–m) in two’s complement
notation. Fill the remaining (y + 1) bits
with zeros.

• P: Fill the most significant x bits with
zeros. To the right of this, append the
value of r. Fill the least significant
(rightmost) bit with a zero.

2. Determine the two least signif icant
(rightmost) bits of P.

• If they are 01, find the value of P + A.
Ignore any overflow.

• If they are 10, find the value of P + S.
Ignore any overflow.

• If they are 00, do nothing. Use P directly
in the next step.

• If they are 11, do nothing. Use P directly
in the next step.

3. Arithmetically shift the value obtained in the
2nd step by a single place to the right. Let P
now equal this new value.

4. Repeat steps 2 and 3 until they have been
done y times.

Drop the least significant (rightmost) bit
from P. This is the product of m and r.

BOOTH RECODING
Booth multiplication is a technique that allows
for smaller, faster multiplication circuits, by
recoding the numbers that are multiplied. It is
the standard technique used in chip design,
and provides significant improvements over
the “long multiplication” technique.

SHIFT AND ADD
A standard approach that might be taken by a
novice to perform multiplication is to “shift and
add”, or normal “long multiplication”. That is,
for each column in the multiplier, shift the
multiplicand the appropriate number of
columns and multiply it by the value of the digit
in that column of the multiplier, to obtain a
partial product. The partial products are then
added to obtain the final r

0 0 1 0 1 1

0 1 0 0 1 1

0 0 1 0 1 1

0 0 1 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1 0 0 0 1

with this system, the number of partial products
is exactly the number of columns in the
multiplier.

Radix-8 Booth Recoding
To Booth recode the multiplier term, we
consider the bits in blocks of four, such that
each block overlaps the previous block by one
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bit. Grouping starts from the LSB, and the first
block only uses three bits of the multiplier

Grouping of bits from the multiplier term, for
use in Booth recoding. The least significant
block uses only three bits of the multiplier, and
assumes a zero for the fourth bit.

The overlap is necessary so that we know
what happened in the last block, as the MSB
of the block acts like a sign bit. We then
consult the table to decide what the encoding
will be.

RESIDUE NUMBER SYSTEM
Residue Number System (RNS) represents a
large integer using a set of smaller integers,
so that computation may be performed more
efficiently. It relies on the Chinese remainder
theorem of modular arithmetic for its operation,
a mathematical idea from Sun Tsu Suan-Ching
(Master Sun’s Arithmetic Manual) in the 4th

century AD.

Defining A Residue Number System
A residue number system is defined by a set
of N integer constants,

{m1, m2, m3, ..., mN},

referred to as the moduli. Let M be the least
common multiple of all the mi.

Any arbitrary integer X smaller than M can
be represented in the defined residue number
system as a set of N smaller integers

{x1, x2, x3, ..., xN}

with

xi = X modulo mi

representing the residue class of X to that
modulus.

Note that for maximum representational
efficiency it is imperative that all the moduli are
coprime; that is, no modulus may have a
common factor with any other. M is then the
product of all the mi.

For example RNS(4|2) has non-coprime
moduli, resulting in the same representation
for different values.

SELECTION OF k
The guidelines for choosing the RCA word-
length, k, to achieve the desired performance
are presented in this section.

Block Partial Product

0000 0

0001 1* Multiplicand

0010 1* Multiplicand

0011 2* Multiplicand

0100 2* Multiplicand

0101 3* Multiplicand

0110 3* Multiplicand

0111 4* Multiplicand

1000 –4* Multiplicand

1001 –3* Multiplicand

1010 –3* Multiplicand

1011 –2* Multiplicand

1100 –2* Multiplicand

1101 –1* Multiplicand

1110 –1* Multiplicand

1111 0* Multiplicand

Table 1: Booth Encoding

Note: 0 = same as zero; 1 = same as multiplicand; –1 = compliment
of multiplicand; 2 = circular left shif by 1 bit position; –2 =
circular left shift (compliment of multiplicand) one position;
3 = x + 2x (it means x is the multiplicand, 2x is circular
shift of x; –3 = compliment of (x + 2x); 4 = circular shift of
multiplicand by 2 bits position; –4 = complement of (4).
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Firstly, irrespective of the targeted delay, the
choice of k must satisfy the following two
criteria.

Criterion 1: As the residues of modulus 2n–1
are represented using only n bits, it is
imperative that k divides n. k = 1 is a trivial
case and is excluded from this consideration.
This criterion is expressed as k/n, kf\.

Criterion 2: Since each partial product in
radix-8 Booth encoding is shifted by three bits
relative to the previous partial product, k must
not be a multiple of three to ensure that the qy
bits are nonoverlapping. Therefore, 3fk.

In the proposed modulo 2n–1 multiplier,
each partial product PPi is incremented by a
bias of 23i*B as expressed in (13). To negate
the effect of the bias, a constant CC is added
and the value of CC is given bywhere B is an
n-bit binary word consisting of logic one at bit
position 2k, j € [0, M-1] and logic zero at all
other positions as defined is (7). It is evident
that the value of CC depends only on n and k
As CC is considered as one or more partial
products to be summed in the CSA tree, the
choice of k indirectly determines the regularity
of the multiplier design and consequently its
efficiency in VLSI implementation. A detailed
analysis on the computation of CC for various
combinations of n and k is presented in the
Appendix. For any k that satisfies Criteria 1

and 2, it is shown that CC can be simplified by
the properties of modulo 2n–1 arithmetic and
precomputed at design time.

The resultant CC is shown to be a single
binary word with a specific repetitive pattern
of logic ones and zeros. As the generation of
CC involves merely the assignment of logic.

SIMULATION RESULT
Figure 7 shows the output waveforms of Radix-
8 booth Encoded Modulo 2n–1 multiplier for
various inputs. If the number of bits for
multiplier and multiplicand are 8, i.e., n = 8 that
means modulo 255 multiplier. The modulo
result is the least positive remainder when the
decimal multiplication result of the inputs is
divided by the modulus 255. Hence if the
decimal multiplication result is less than 255,
the modulo result is the same as the decimal
multiplication result of the inputs. If the decimal
multiplication result of the inputs is 255, the
modulo result is also same, i.e., 255.

CONCLUSION
This radix-8 booth modulo-1 multiplication
algorithm performed mulitiplication operation
to reduce the area and power dissipation
without compromising system performance.
Booth multiplication algorithm is more speed,
when compared with the normal multiplication
operation. And it is advanced method of the

Figure 7: Output Waveforms of Radix-8 Booth Encoded Modulo 2n–1 Multiplier
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