
33

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

EFFICIENT IMPLEMENTATION OF ROM-LESS
FFT/IFFT PROCESSOR USING FUSED MULTIPLY

AND ADD UNIT

M Arunkumar1* and N Kirthika

*Corresponding Author: M Arunkumar,arunnkumarrm@gmail.com

Wireless systems is mainly based on the Orthogonal Frequency Division Multiplexing
(OFDM).The orthogonal frequency division multiplexing is mainly used to split the input signals
into number of sub carrier signals. The orthogonal frequency division multiplexing requires an
Inverse Fast Fourier Transform (IFFT).The inverse fast Fourier transform is mainly used to
produce multiple sub-carriers signal. The FFT/IFFT processor for OFDM applications is
described in this paper. The architecture uses single path delay feedback style and it occupies
less memory space. The read only memory is mainly used to store the twiddle factors. To
eliminate the Read Only Memory (ROM) a ROM-less FFT/IFFT processor is used. The
reconfigurable complex multipliers is mainly used to achieve the ROM-less FFT/IFFT processor
and the bit parallel multipliers is mainly used for square root evaluation. The Fused Multiply Add
(FMA) operation is very important in many scientific and engineering fields. The floating point
unit increases the performance and accuracy of the floating point. The Fused Multiply and Add
unit is mainly used to reduce the latency and power.

Keywords: FFT, IFFT, Fused multiply add unit, Complex multiplier

INTRODUCTION
The Fast Fourier Transform (FFT) is mainly
used as the fundamental component of many
Digital Signal Processing (DSP) systems.
The FFT is useful for frequency domain
analysis. The FFT mainly used to convert a
signal, from time domain into frequency
domain. By decomposing the Fast Fourier

ISSN 2319 – 2518 www.ijeetc.com
Vol. 2, No. 2, April 2013

© 2013 IJEETC. All Rights Reserved

Int. J. Elec&Electr.Eng&Telecoms. 2013

1 Sri Ramakrishna Engineering College, Coimbatore, India.

Transform operates an N point time domain
signals each composed of single point. The
Fast Fourier Transform (FFT) is the heart of
OFDM that enables its fast and efficient
modulation of signal. Is based mainly on the
Discrete Fourier Transform the FFT
algorithm is the fast computation algorithm
of which is an essential component for the

Research Paper

34

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

modulat ion scheme used for OFDM
applications.

The Fast Fourier Transform is mainly based
on the divide-and-conquer model, by which the
discrete transform is divided into smaller and
simpler transforms. The divide-and-conquer
model is based on the idea that aN-point DFT
computation can be divided into two N/2-point
DFT computation. The Fast Fourier Transform
can be used in many applications such as
(WIMAX) terrestrial (DVB-T). Cooley and
Tukey proposed fast Fourier transform (FFT)
efficiently used to reduce the time complexity.

The FFT processor can be classified into
two types they are memory based and pipeline
architectures styles. Memory based
architecture is mainly used to design an FFT
processor and it is also known as the single
Processing Element (PE) approach. The FFT
design uses main PE and several memory
units thus the hardware cost and power
consumption is lower. The pipeline FFT
processor has two approaches. The first
approach uses pipeline architecture with
Single path Delay Feedback (SDF) and other
uses Multiple-path Delay Commutator (MDC)
pipeline architecture. The Single path Delay
Feedback (SDF) pipeline FFT has less
memory space and its control unit is easy to
design. The single path pipeline architecture
is used in low power design especially for
applications in DSP devices.

The FFT computation need to multiply with
different twiddle factors which results in
higher hardware cost because of large size
of ROM is needed to store the unwanted
twiddle factor.The complex multipliers is
mainly used to eliminate the twiddle factor

ROM and to achieve a ROM-less FFT/IFFT
processor. The complex multipliers used in
the FFT processor are realized with shift-and-
add operations. Hence, the processor uses
only a two-input digital multiplier and does not
need any ROM for internal storage of
coefficients. The complex multiplier design is
mainly used for ROM-size reduction and it is
used to produce twiddle factor as well as to
compact the chip area.

FFT AND IFFT ALGORITHMS
An efficient the Fast Fourier Transform (FFT)
is algorithm for the computating DFT. The Fast
Fourier Transform is mainly on the
decomposing of the discrete Fourier transform
principle computation of a sequence into
smaller discrete Fourier transforms. The FFT
generates the same result as DFT, however
the computation for N numbers complexity is
O(N2) reduced to O(Nlog(N)). After Cooley and
Tukey publishing for faster computation of the
FFT algorithm of discrete transform to perform
computation algorithms were proposed.
Based on different algorithms for
decomposition could be obtained for the
discrete Fourier transform computation.

Cooley-Tukey FFT Algorithms

For efficient computation the technique of
DFTs is based on divide and
conquerapproach. The sub-problems are then
independently solved and their solutions are
combined. Computation DFT by dividing the
sequence ofdata into sequences of smaller
data DFTs for small data sequences can be
computed efficiently. Cooley and Tukey
efficiency demonstrated the simplicity and of
the divide and conquer approach for DFT
accepted for the divide and conquer approach.

35

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

We give a simple example.

COMPLEX MULTIPLIERS
The block diagram of the 64-point FFT/IFFT
processor consists of an input unit (I/P unit),
two 8-point FFT units, a multiplier unit, an
internal storage register bank (CB unit), an
output unit (O/P unit), and a 5-bit binary counter
that acts as the master controller for the entire
design (Figure 1). The main performance
bottlenecks in such a scheme. First, there is a
large number of global wires resulting from
multiplexing of the complex data to the 8-point
FFT. Second, the construction of the multiplier
unit to attain the required speed with minimal
silicon area . Two bottlenecks and to make
efficient algorithm-to-architecture mapping
several special strategies have been adopted
in the current architecture. The key component
in the complex multiplier is the data path. The
direct implementation of complex multiplier
uses real multipliers the number of real
multipliers can be reduced cost. The twiddle
factors are known in advance, in the FFT
processor which can be simplified the
Distributed Arithmetic (DA) with complex
multiplier.

The complex multiplier dissipates of total
power in the work. A low power multiplier.
Multipliers can be divided into three types.
Although thechip area is less in bit-serial
multiplier than that ofa high-speed
clockrequires in bit-parallel multiplier. The bit-
serial or digit-serial multiplier is usedto achieve
high throughput, often needs several parallel
units. The bit-parallel structure is used to meet
the speed requirement.

The memory reduced complex multiplier is
used to deal with the twiddle factor. To reduce

the size of Look-Up Table (LUT), the twiddle
factors with phases between 0 and –45° are
selected to be stored, while the others can be
reconstructed by these values. The data
mapping scheme note that the twiddle factors
within region a are defined as p-jq, and the
data input are a+jb. According to the
computation results, it can be seen that the
multiplication with twiddle factors in region A
is used to calculate the results in regions.
Result, only 32 rather than 190 values are
needed to be stored in the LUT.

To the data mapping scheme, it is clear that
only twiddle factors with are in region A of
therefore, it is sufficient for the modified complex
multiplier to compute twiddle factors the
architecture of the modified complex multiplier
is depicted. First, the real and the imaginary
parts of data are separately fed into the constant
multiplier to produce intermediate terms.

Figure 1: Without Fused Multiply Add Unit
Using Complex Multiplier

36

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

After that, these terms are fed into a data
mapped to carry out the results final. Binary
index of each region corresponds to the
content of 3-bit control signal. Various
approaches have been proposed to
implement the multiplier constant. To according
prior arts, hard-wired constants are efficient
for multiplying four or eight distinct twiddle
factors simultaneously. Specifically, there are
eight hardwired constants within the constant
multiplier and each one of them is built to deal
with the specified twiddle factor. However,
using hard-wired constants might not be an
efficient solution because there is no need to
perform so many multiplications at the same
time in this work. Therefore, an alternative
constant multiplier is designed to efficiently
realize these constants.

In butterfly operation, the input signal is
multiplied with twiddle factor. This operation
results in multiplication complex. The complex
multiplication is FFT processor major block.
This complex multiplication put the constraint
on computational performance of
communication. The multiplications dominate
the time execution. Results in high
consumption power, huge area performance
is poor. So we need to design good multiplier
which should be fast, occupies less area and
low power. Feasible only if we reduce the
number operation. In literature, we could get
various multiplier structures

FUSED MULTIPLY ADD UNIT
The Fused multiply add unit performs
multiplication followed by addition and so that
the calculation is done as operation single
(Figure 2). This greatly increases the Floating-
Point Unit (FPU). Recent advancement in

performance and accuracy of FPGA
architecture in order to improve performance.
Many floating-point fused multiply add
algorithms are developed to reduce the overall
latency. The paper claims an estimated 15-
20% reduction in latency as compared to a
standard fused multiply add. Floating-Point Unit
(FPU) is one of the most important custom
applications needed in most hardware.

Recently, the floating-point units of several
commercial processors like IBM PowerPC,
Intel/HP Itanium, MIPS-compatible Loongson-
2F and HP PA-8000 have included a floating-
point fused multiply add (FMA) unit to execute
the fused multiply add operation using double-
AA + (BB  CC) as an operation indivisible,
intermediate rounding. The first FMA is
introduced in 1990 by IBM RS/6000. After that
FMA is implemented by several companies
like HP, MIPS, ARM and Intel. It is a key feature
of the floating-point unit because it greatly
increases the floating-point performance and
accuracy since rounding is performed only
once for the result AA + (BB CC) rather than
twice for the multiplier and then for the adder.
It also realizes reduction in the latency and
hardware cost. FMA can be used instead of
floating-point addition and floating-point
multiplication by using constants, e.g., 0.0 +

Figure 2: Fused Multiply Add Unit

37

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

(BB  CC) for multiplication and AA + (BB 
1.0) for addition.

Floating-point fused multiply add unit is one
of the most important blocks that exist in floating-
point unit as it increases its accuracy and
performance. It is useful in many computations
which involve the accumulation of products such
as scientific and engineering fields. Algorithms
are developed on floating-point fused multiply
add unit to decrease its latency.

The multiplier is the process of generation
and addition of the partial products. The differ
in multiplication algorithms is used to
generate partial products and the partial
products are added together to produce the
final result.

Partial Product Generation

Floating point fused multiply add unit includes
a multiplier which uses a modified Booth’s
algorithm to generate partial products.
Multiplier operand C in algorithm Booth’s the
recoded often into a radix higher than 2 in
orders to reduce the number of products
partially. Common recoding is radix-4
recoding (modified booth’s recoding) with the
digit set {–2, –1, 0, 1, 2} is shown .Series of
consecutive 1’s, the recoding algorithm. Which
has the potential of reducing switching
activity.Each three consecutive bits of the
multiplier C represent the input to booth
recoding block and the output from this block
selects the right operation on the multiplicand
B which may be “shift “ (–2B, –B, 0, B, 2B)
respectively due to the bits of multiplier.

Partial Product Reduction

After generation of the partial products, begin
compression using 3-2 CSA tree. The
reduction occurs by rows where each three

partial product in same level will be input to
CSA adder and output 2 operands (i.e., partial
products) to the next level, and so on. For 27
partial products, 8 stages are required to
produce a product in carry-save, or a carry
vector and sum vector that need only to be
added for a complete multiply.

Carry Save Adder (CSA)

The multiplier produce 106-bit sum and carry
vectors that are reduced together with the
aligned A using 3:2 CSA. Although the output
of the multiplier must be positive number
because we multiply two positive numbers
(sign and magnitude representation), one of
the two output vectors of the multiplier (sum
and carry) may be negative because of using
booth algorithm which use negative sets {–1,
–2} which convert a positive number with sign
and magnitude representation to a negative
number with two’s complement representation.
The addition of sum and carry vectors must
be a positive number but one of them, not both,
may be negative.

Instead of using 161-bit CSA, Only the 106
least-significant bits of the aligned A are
needed as input to the 3:2 CSA, because the
product (i.e., sum and carry vectors) has only
106 bits and The 55 most-significant bits will
be sign extension bits which have two cases
{0, 0} if both sum and carry vectors are
positive or {0, 1} if one of them is negative.
For the 55 most bits significant, two
multiplexers, one to select between A and
inverted A as a sum vector and the second
one to select between zeros and A as a carry
vector by Xor-ing sign extension bits then the
outputs of the two multiplexers are the CSA
to obtain at the output concatenated of the
161-bit sum and carry words.

38

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

The Rounding

The rounding block rounds the result to
nearest floating point number due to the
round mode and performs post-
normalization in case of an overflow. The
round decision is taken by knowing also
sticky and round bits. The sticky bit is
calculated from the result by OR-ing all least
significant bits after the round bit.

RESULTS AND ANALYSIS
The simulation results of without fused
multiply add unit using complex multiplier is
obtained using mentor graphics tool shown
in Figure 3 and the figure has input, clk, and
mode In the simulation results of proposed
complex multipliers the clk is used to
represent the clk signals and the mode signal
is zero it acts as FFT and if the mode signal
is one it acts as IFFT. The ouput is taken at
the 64 count.

Area Analysis of Without Fused
Multiply Add Unit Using Complex
Multiplier

The area analysis of the without fused multiply
add unit using complex multiplier is analyzed
by using mentor graphics is shown in the
Figure 4.

Figure 3: Simulation Results of Without
Fused Multiply Add Unit Using Complex

Multiplier

Figure 4: Area Analysis of Without Fused
Multiply Add Unit Using Complex Multiplier

Here the total power consumed by the
without fused multiply add unit using complex
multiplier is noted as 14,523. The total area is
mainly depends on the total number of gate
counts.

Power Analysis of Without Fused
Multiply Add Unit Using Complex
Multiplier

The power analysis of the without fused multiply
add unit using complex multiplier is analyzed
by using xilinux design suite is shown in the
Figure 5.

The simulation results of fused multiply add
unit using complex multiplier is obtained using
mentor graphics tool shown in Figure 6 and
the figure has input, clk, and mode In the
simulation results of proposed complex

39

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

using mentor graphics is shown in the
Figure 7.

Figure 5: Power Analysis of Without Fused
Multiply Add Unit Using Complex Multiplier

Figure 6: Simulation Results of Fused
Multiply Add Unit

multipliers the clk is used to represent the clk
signals and the mode signal is zero it acts as
FFT and if the mode signal is one it acts as
IFFT. The ouput is taken at the 64 count.

Area Analysis of Fused Multiply Add
Unit Using Complex Multiplier

The area analysis of the fused multiply add
unit using complex multiplier is analyzed by

Figure 7: Area Analysis of Fused Multiply
Add Unit Using Complex Multiplier

Power Analysis of Fused Multiply
Add Unit Using Complex Multiplier

The area analysis of the fused multiply add unit
using complex multiplier is analyzed by using
xilinux design suite is shown in the Figure 8.

Figure 8: Power Analysis of Fusedmultiply
Add Unit Using Complex Multiplier

40

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

CONCLUSION
The Fused Multiply Add (FMA) operation in
1990 was introduced RS/6000 by IBM for
execution of the single instruction by the
equation A + (B C) floating-point with single
and double precision operands. This hardware
unit was designed to reduce the latency of dot
product calculations and provided greater
floating-point arithmetic accuracy since only a
single rounding is performed. FMA is
implemented by several commercial
processors like IBM, HP, MIPS, ARM and Intel.
FMA can be used instead of floating-point
addition and floating-point multiplication by
using constants for multiplications and for
addition. The Fused Multiply Add (FMA) is
mainly used to decrease the latency. The
existing architecture of without fused multiply
add unit occupies a power of 153 (mw) and
the area of without fused multiply add unit is
14,523. The proposed architecture of fused
multiply add unit occupies a power of 128 (mw)
and the area of fused multiply add unit is 7,172.
The power and area of the proposed fused
multiply add unit is lower than the existing work
which results in lower power consumption and
lower area.

ACKNOWLEDGEMENT
The authors thank the Management and
Principal of SriRamakrishna Engineering

Power (mW) 153 128

Gate Counts 14,523 7,172

Table 1: Power and Area Comparison
of the Proposed Design with Fused

Multiply Add Unit

Parameter
Without Fused

Multiply and Add
Unit

With Fused
Multiply Add Unit

College, Coimbatore for providing excellent
computing facility and encouragement.

REFERENCES
1. Bass B M (1999), “A Low-Power, High

Performance, 1024-Point FFT
Processor”, IEEE Journal of Solid-State
Circuits, Vol. 34, No. 3, pp. 380-387.

2. Chu Yu, Yi-Ting Liao, Mao-Hsu Yen, Pao-
Ann Hsiung and Sao-Jie Chen (2011), “A
Novel Low-Power 64-Point Pipelined
FFT/IFFT Processor for OFDM
Applications”, in Proc. IEEE Int’l
Conference on Consumer Electronics,
pp. 452-453.

3. Chin-Teng Lin, Yuan-Chu Yu and Lan-Da
Van (2006), “A Low-Power 64-Point FFT-
IFFT Design for IEEE 802.11a WLAN
Application”, in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), pp. 4523-4526.

4. Cooley J W and Tukey J W (1965), “An
Algorithm for the Machine Calculation of
Complex Fourier Series”,
Math.Computer, Vol. 19, pp. 297-301.

5. Gold B and Bially T (1973), “Parallelism
in Fast Fourier Transform Hardware”,
IEEE Trans. Audio and Electroacoustics,
Vol. AU-21, No. 1, pp. 5-16.

6. Groginsky H L and Works G A (1970), “A
Pipeline Fast Fourier Transform”, IEEE
Transactions on Computers, Vol. C-19,
No. 11, pp. 1015-1019.

7. He S and Torkelson M (1998), “Designing
Pipeline FFT Processor for OFDM
(de)Modulation”, in Proc. URSI Int. Symp.
Signals, Systems, and Electronics,
Vol. 29, pp. 257-262.

41

Int. J. Elec&Electr.Eng&Telecoms. 2013 M Arunkumar and N Kirthika, 2013

8. Hokenek E, Montoye R K and Cook
(1990), “Second-Generation RISC
Floating Point with Multiply-Add Fused”,
IEEE J. Solid-State Circuits, Vol. 25,
No. 5, pp. 1207-1213.

9. McClellan J H and Purdy R J (1978),
“Applications of Digital Signal Processing
to Radar”, A V Oppenheim (Ed.),
Applications of Digital Signal
Processing, pp. 239-329, Prentice-Hall.

10. Montoye R K, Hokenek E and Runyon S
L (1990), “Design of the IBM RISC

System/6000 Floating-Point Execution
Unit”, IBM J. Research and
Development, Vol. 34, pp. 59-70.

11. Saleh H H and Swartzlander E E Jr (2008),
“A Floating-Point Fused Dot-Product
Unit”, Proc. IEEE Int’l Conf. Computer
Design (ICCD), pp. 427-431.

12. Takahashi D (2003), “A Radix-16 FFT
Algorithm Suitable for Multiply-Add
Instruction Based on Goedecker Method”,
Proc. Int’l Conf. Multimedia and Expo,
Vol. 2, July, pp. II-845-II-848.

