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AN ADAPTIVE DIFFERENTIAL EVOLUTION
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This article introduces an Adaptive Differential Evolution (ADE) method for dealing with optimal
reactive power dispatch aiming at power loss reduction. The optimum reactive power dispatch
of power systems is to allocate reactive power control variables so that the objective function
composed of power losses is minimized and the prescribed voltage limits are satisfied. The
proposed method determines the optimum settings of reactive power control variables such as,
generator excitation, tap changing transformers, and SVC that reduces the power loss, while
maintaining the voltage stability. Mathematically, the problem of this research is a nonlinear
programming problem with integer variables. This article presents a new approach that employs
the ADE algorithm to solve the problem. IEEE-30 bus test system from the literature is used to
exemplify the performance of the proposed method. Numerical results show that the proposed
method is better than the other methods.

Keywords: Adaptive differential evolution, Reactive power dispatch, Power loss reduction,
L-index

INTRODUCTION
To solve the RPD problem, a number of
conventional optimization techniques (Lee
et al., 1985; and Granville, 1994) have been
proposed. These include the Gradient method,
Non-Linear Programming (NLP), Quadratic
Programming (QP), Linear Programming (LP)
and Interior point method. Though these
techniques have been successfully applied for
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solving the reactive power dispatch problem,
still some difficulties are associated with them.
One of the difficulties is the multimodal
characteristic of the problems to be handled.
Also, due to the non-differential, nonlinearity
and non-convex nature of the RPD problem,
majority of the techniques converge to a local
optimum. Recently, Evolutionary Computation
techniques like Genetic Algorithm (GA) (Iba,
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1994), Evolutionary Programming (EP) (Wu
and Ma, 1995) and Evolutionary Strategy
(Bhagwan Das and Patvardhan, 2003) have
been applied to solve the optimal dispatch
problem. In this paper, GA based approach
has been proposed to solve the RPD problem.

Evolutionary Algorithms (EAs) are
optimization techniques based on the concept
of a population of individuals that evolve and
improve their fitness through probabilistic
operators like recombination and mutation.
These individuals are evaluated and those that
perform better are selected to compose the
population in the next generation. After several
generations these individuals improve their
fitness as they explore the solution space for
optimal value. The field of evolutionary
computation has experienced significant
growth in the optimization area. These
algorithms are capable of solving complex
optimization problems such as those with a
non-continuous, non-convex and highly
nonlinear solution space. In addition, they can
solve problem that feature discrete or binary
variables, which are extremely difficult.

Several algorithms have been developed
within the field of Evolutionary Computation
(EC) being the most studied Genetic
Algorithms were first conceived in the 1960’s
when Evolutionary Computation started to get
attention. Recently, the success achieved by
EAs in the solution of complex problems and
the improvement made in computation such
as parallel computation have stimulated the
development of new algorithms like
Differential Evolution (DE), Particle Swarm
Optimization (PSO), Ant Colony Optimization
(ACO) and scatter search present great
convergence characteristics and capability of

determining global optima. Evolutionary
algorithms have been successfully applied to
many optimization problems within the power
systems area and to the economic dispatch
problem in particular (IEEE Committee
Report, 1971; Walters and Sheble, 1993;
Rainer Storn and Kenneth Price, 1995; Hong-
TzerYang et al., 1996; Wood and Woolenberg,
1996; Jason Yuryevich and Kit Po Wong, 1999;
Venkatesh et al., 2003; Dervis Karaboga and
Selcuk Okdem, 2004; Gnanadass et al., 2004;
Sinha et al., 2004; Somasundaram et al.,
2004; Somasundaram et al., 2004; Tarek
Bouktir and Linda Slimani, 2004; Gnanadas
et al., 2005; Jayabarathi et al., 2005; Raul and
Jose, 2005a and 2005b; and Balamurugan
and Subramanian, 2007).

Voltage Stability is becoming an increasing
source of concern in secure operation of
present-day power systems. The problem of
voltage instability is mainly considered as the
inability of the network to meet the load
demand imposed in terms of inadequate
reactive power support or active power
transmission capability or both. Voltage
collapse is a local load bus problem and
depends mostly on load conditions in the
system. There exist two major techniques viz.,
static approach and dynamic approach for this
analysis. Although not very accurate, yet the
static technique has gained wide acceptance
for its inherent virtues, eg, simplistic approach,
faster execution and less memory
consumption. The static voltage stability is
primarily associated with the reactive power
support.

The real power (MW) loadability of a bus in
a system depends on reactive power support
that the bus can receive from the system.
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Several analytical tools have been presented
in the literature for the analysis of the static
voltage stability of a system. This paper is
mainly concerned with analysis and
enhancement of steady state voltage stability
based on L-index (Kessel and Glavitsch,
1986).

VOLTAGE STABILITY L-
INDEX
The L-indices for a given load condition are
computed for all load buses (Kessel and
Glavitsch, 1986). The equation for the L-index
for jth node can be written as
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It can be seen that when a load bus
approaches a steady state voltage collapse
situation, the index L approaches the numerical
value 1.0. Hence for an overall system voltage
stability condition, the index evaluated at any
of the buses must be less than unity. Thus the
index value L gives an indication of how far
the system is from voltage collapse. This
feature of this indicator has been exploited in
our proposed algorithm to evolve a voltage
collapse margin incorporated in RPD routine.

ADE ALGORITHM
The proposed algorithm is based on
Differential Evolution which uses adaptation
based optimization techniques. DE is a
floating-point encoding evolutionary algorithm
for global optimization over continuous spaces.
ADE employs mutation, crossover, and

selection operations during the evolutionary
process, in each generation. Our algorithm
uses the idea of adaptation based
optimization.

Like any other evolutionary algorithm, the
ADE also starts with a population of NP
D-dimensional parameter vectors. We will
represent subsequent generations in the ADE
by discrete time steps like t = 0, 1, 2, ..., t, t + 1,
etc. Since the vectors are likely to be changed
over different generations we may adopt the
following notation for representing the ith vector
of the population at the current generation (i.e.,
at time t = t) as:

          txtxtxtxtX Diiiii ,3,2,1, ,,,, 


 ...(1)

For each parameter of the problem, there
may be a certain range within which value of
the parameter should lie for better search
results. At the very beginning of a DE run or at
t = 0; problem parameters or independent
variables are initialized somewhere in their
feasible numerical range. So, if the jth

parameter of the given problem has its lower
and upper bound as jxmin,  and jxmax,

respectively, then we may initialize the jth

component of the ith population members as:

     jjjjji xxrandxx min,max,min,, 1,00 

...(2)

where randj(0, 1) is the jth instantiation of a
uniformly distributed random number lying
between 0 and 1. The following steps are taken
next.

Mutation
After initialization, the ADE creates a donor
vector  tVi


 corresponding to each population

member or target vector  tX i


 in the current
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generation through mutation. It is the method
of creating this donor vector, which
demarcates between the various DE
schemes. For example, five most frequently
referred mutation strategies implemented in
the public-domain DE codes available online
at http://www.icsi.berkeley.edu/»storn/
code.html are listed as follows:

       




  tXtXFtXtVrandDE iii rrri

321
:"1//"



...(3a)

       




  tXtXFtXtVbestDE ii rrbesti

21
:"1//"



...(3b)

   tXtVbesttoettDE ii


 :"1/arg/"

        




  tXtXFtXtXF ii rribesr

21



...(3c)

   tXtVbestDE besti


:"2//"

       




 





  tXtXFtXtXF iiii rrrr 4321



...(3d)

   tXtVrandDE iri
1

:"2//"




       




 





  tXtXFtXtXF iiii rrrr 5432



...(3e)

The indices iiiii randrrrr 54321 ,,,  are mutually
exclusive integers randomly chosen from
range [1, NP], which are also different from
index i. These indices are randomly
generated once for each mutant vector. The
scaling factor F is a posit ive control
parameter for scaling the difference vectors.

GbestX ,


 is the best individual vector with the

best fitness function value in the population

at generation G. The general convention used
for naming the various mutation strategies is
DE/x/y/z, where DE stands for the Differential
Evolution, x represents a string denoting the
vector to be perturbed and y is the number of
difference vectors considered for perturbation
of x.z stands for the type of crossover being
used (exp: exponential; bin: binomial). The
following section discusses the crossover
step in the DE.

Adaptive Mutation
Adaptive mutation generates a mutant
population PV,g, from the current population Pg,
using mutant strategy and adaptive mutation
scale factor F. For each vector from the current
population, mutation (using one of the mutation
strategies) creates a mutant vector igV ,


, which

is an individual of mutant population.

  NPiVVVV Digigigig ,,2,1,,, ,,2,,1,,, 




DE includes various mutation strategies for
global optimization. In our algorithm we used
the rand/2 mutation strategy, which is given by
the equation:

   5,4,3,2,1,, rgrggrgrggrgig XXFXXFXV




The indexes r1, r2, r3, r4, r5 are random and
mutually different integers generated within the
range [1, NP] and also different from index i.
Fg is a mutation scale factor in the g th

generation within the range [0, 2] but usually
less than 1.0. Because Fg scales the distance
between the new and old individuals, it is
responsible for exploration and exploitation
balance in the evolutionary process.
Therefore, we used adaptive Fg defined as the
ratio of the standard deviations between
parameters of the initial and current
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populations, as shown in the following
equations:

 
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where g,i is a standard deviation of the ith

parameter in the current population.

Crossover
Next, to increase the potential diversity of the
population a crossover scheme is undertaken.
The DE family of algorithms can use two kinds
of cross over schemes, namely exponential
and binomial. The donor vector exchanges its
“body parts”, i.e., components with the target
vector  tX i


 under this scheme to form the trial

vector  tU i


. We here outline the binomial

crossover scheme, which comes into play in
our present analysis. In this case the crossover
is performed on each of the D variables
whenever a randomly picked number between
0 and 1 is within the CR value. In this case the
number of parameters inherited from the
mutant has a (nearly) binomial distribution. The
scheme may be outlined as:

         irnjorCRrandIftvtu ijiji  1,0,,

       irnjorCRrandIftx iji 1,0, ...(4)

where randj(0, 1)  [0, 1] is the jth evaluation of
a uniform random number generator. rn(i) 
[1, 2, ..., D] is a randomly chosen index which
ensures that  tU i


 gets at least one component

from  tVi


. It is instantiated once for each

vector. In this article we have not taken into

account the term rn(i) so that CR may be
exactly equal to the cross-over probability PCr.

Selection

In this way for each target vector  tX i


 a trial

vector  tU i


 is created. To keep the population

size constant over subsequent generations,
the next step of the algorithm calls for
‘selection’ to determine which one of the
target and the trial vector will survive in the
next generation, i.e., at time t = t + 1. The DE
actually involves the Darwinian principle of
“Survival of the fittest” in its selection process,
which may be outlined as,

         
       









tXftUfiftX
tXftUfiftUtX

iii

iii
i 




1 ...(5)

where f is the function to be minimized. So if
the new trial vector yields a better value of the
fitness function, it replaces its parent in the next
generation; otherwise the parent is retained
in the population. Hence the population either
gets better (w.r.t the fitness function) or remains
constant but never deteriorates.

In this study, the ADE for solving the reactive
power dispatch is proposed. In order to
demonstrate the effectiveness, the proposed
approach is applied to a test system with two
different case studies. One is normal operating
condition and the other is network contingency
condition; both are solved respectively by the
proposed method.

ORPD PROBLEM
FORMULATION
The objective of RPD is to identify the reactive
power control variables, which minimizes the
real power loss (Ploss) of the system. This is
mathematically stated as follows:
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Minimize F = [f1]

 
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jik
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ijjijikloss VVVVgPf
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22
1 cos2




...(6)

The reactive power optimization problem is
subjected to the following constraints.

Equality Constraints
These constraints represent load flow
equation such as

 



gN

j
Bijijijijjii NiBGVVP

1

1,0sincos 

 



gN

j
Bijijijijjii NiBGVVQ

1

1,0cossin 

...(7)

Inequality Constraints
These constraints represent the system
operating constraints. Generator bus voltages
(Vgi), reactive power generated by the
capacitor (Qci), transformer tap setting (tk), are
control variables and they are self-restricted.
Load bus voltages (Vload) reactive power
generation of generator (Qgi) and line flow limit
(S1) are state variables, whose limits are
satisfied by adding a penalty terms in the
objective function. These constraints are
formulated as

• Voltage limits

Biii NiVVV  ;maxmin ...(8)

• Generator reactive power capability limit

ggigigi NiQQQ  ;maxmin ...(9)

• Capacitor reactive power generation limit

ccicici NiQQQ  ;maxmin ...(10)

• Transformer tap setting limit

Tkkk Nkttt  ;maxmin ...(11)

• Transmission line flow limit

lll NlSS  ;max ...(12)

• Voltage stability constraint

PQj NjLL  ;max ...(13)

The equality constraints are satisfied by
running the power flow program. The active
power generation (P) (except the gi generator
at the slack bus), generator terminal bus
voltages (V) and transformer tap-settings (t)
are the optimization gi k variables and they
are self-restricted by the optimization
algorithm. The active power generation at the
slack bus (Pgs), load bus voltages (V) and
reactive power generation (Q) and voltage
stability load gi level (L) are state variables
which are restricted through penalty function
approach.

AODE SOLUTION
TECHNIQUE
In the ORPD problem, the elements of the
solution consist of all the control variables,
namely, generator bus voltages (V), the gi
transformer tap-setting (tk), and the reactive
power generation (Qci). These variables are
represented continuous variables in the DE
population.

Fitness Function: In the ORPD problem
under consideration the objective is to
minimize the total power loss satisfying the
constraints given by equations (2) to (9). For
each individual, the equality constraints given
by equations (2) and (3) are satisfied by
running Newton-Raphson algorithm and the
constraints on the state variables are taken into
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consideration by adding a quadratic penalty
function to the objective function.

With the inclusion of penalty function, the new
objective function then becomes,

    
 


PQ gN

i

N

i
gigiqiivloss QQKVVKPF

1 1

2lim2limmin
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 
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i

N

j
jliif LLKSSK

1 1

2lim2lim ...(20)

where Kv, Kq, Kf and KI are the penalty factors
for the bus voltage limit violation, generator
reactive power limit violation, line flow violation
and voltage stability limit violation, respectively.
In the above objective function lim

iV  and lim
giQ

are defined as;
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gi QQifQ

QQifQ
Q ...(21)

The minimization objective function given by
Equation (20) is transformed to a fitness
function (f) to be maximized as, where k is a
large constant. This is used to amplify, the value
of 1/F which is usually small, so that the fitness
value of the chromosome will be in a wider
range.

SIMULATION RESULTS
The details of the simulation study carried out
on IEEE 30-bus system using the proposed
ADE-based method are presented here. It is
chosen as it is a benchmark system, has
more control variables and provides results
for comparison of the proposed method. The
approach can be generalized and easily
extended to large-scale systems. IEEE

30-bus system consists of 6 generator buses,
24 load buses and 41 transmission lines of
which 4 branches (6-9), (6-10), (4-12) and
(28-27) are with the tap-setting transformer.
Generator parameters are given in the
Appendix. The transmission line parameters
of this system and the base loads are given
in Lee et al. (1985). Number of population Np
= 20, maximum generations =150.

Figure 1: IEEE 30-Bus System

Case 1: Base Case
For the ORPD problem, the candidate buses
for reactive power compensation are 10, 12,
15, 17, 20, 21, 23, 24 and 29. The ADE-based
ORPD algorithm was implemented using
MATLAB code and was executed on a PC.
Two different studies were performed with this
system to show the significance of the
proposed method and the use of the algorithm
in a bigger system. In case 1 RPD problem is
solved by the proposed method with 100%
load level, case 2 is reactive power dispatch
under network contingency with the
incorporation of the voltage stability limit in both
the cases.
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The real power settings of the generator are
taken from Lee et al. (1985). To obtain the
optimal values of the control variables the ADE-
based algorithm was run. The optimal values
of the control variables and power loss
obtained are presented in Table 1. The
minimum transmission loss obtained is 4.8500
MW which is smaller than the result obtained in
Lee et al. (1985) for the same IEEE 30-bus
system. To illustrate the convergence of the

algorithm, the relationship between the best
fitness value of the ORPD results and the
objective function (Ploss) are plotted against the
number of generations in Figure 2. From the
figure it can be seen that the proposed
algorithm converges rapidly towards the
optimal solution. This shows the effectiveness
of the proposed method for the ORPD problem.

Case 2: Contingency Case
Again in this case, the same values of load
condition and generator setting as in case 1
are followed. But a network contingency is
considered in this case. Additional constraint
in the form of limit on the maximum value of L-
index as in normal condition is incorporated.

This is done to restrict the maximum value
of L-index under contingency condition from
reaching a dangerously high value. For the
network contingency, namely, line outage
(4-12), with the inclusion of the voltage stability
constraint the ADE-based algorithm was
applied to obtain the optimal values of the
control variables under normal condition, the
result of which is given in the Table 2.

1 1.07 Qc10 0.043 T6–9 0.91

2 1.0629 Qc12 0.0261 T6–10 0.902

5 1.0451 Qc15 0.0275 T4–12 1.0092

8 1.0429 Qc17 0.0282 T28–27 1.012

11 1.0974 Qc20 0.0458

13 1.0612 Qc21 0.0381

Qc23 0.0532

Qc24 0.0258

Qc27 0.0309

Table 1: Control Variables for the 30-Bus
System

Generator
Voltages

Shunt
Compensation

Transformer
Taps

Gen
Bus Value ValueSVC Tran.

Tap Value

Figure 2: Fitness Function Value vs
Generations (Case 1)

|VG1| 1.0700 Qc10 0.0140 T6–9 1.0284

|VG2| 1.0630 Qc12 0.0554 T6–10 0.9001

|VG5| 1.0390 Qc15 0.0421 T4–12 1.0137

|VG8| 1.0402 Qc17 0.0261 T28–27 0.9851

|VG11| 1.0864 Qc20 0.0484

|VG13| 1.0646 Qc21 0.0159

Qc23 0.0195

Qc24 0.0497

Qc27 0.0288

Table 2: Control Variables for the 30-Bus
System

Generator
Voltages

Shunt
Compensation

Transformer
Taps

Gen
Volt. Value ValueSVC Tran.

Tap Value
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For these optimal values of control variables
when line (4-12) was removed it was found that
the maximum value of L-index reached by the

system is 0.1780 only. This improvement in
voltage stability was achieved because of the
restriction put on the maximum L-index value
in the base case condition. Table 3 shows the
performance parameters of the reactive power
dispatch obtained using ADE-based RPD.
This shows the effectiveness of the proposed
algorithm for voltage security enhancement.

CONCLUSION
This paper presented a ADE solution to the
optimal reactive power allocation problem
and is applied to an IEEE 30-bus power
system. The main advantage of ADE over
other modern heuristics is modeling flexibility,
sure and fast convergence, less
computational time than other heuristic
methods. And it can be easily coded to work
on parallel computers. The main
disadvantage of ADE is that it is heuristic
algorithms, and it does not provide the
guarantee of optimal solution for the RPD
problem. The ADE approach is useful for
obtaining highquality solution in a very less
time compared to other methods. Simulation

Figure 3: Objective Function Value vs
Generations for Case 1

Table 3: Performance Parameters

Parameter
Values

Case 1 Case 2

Pg1 (pu) (slack bus) 0.9979 1.0230

Lmax 0.1322 0.17781

Ploss (pu) 0.04969 0.0501

Figure 4: Fitness Function Value vs
Generations for Case 2

Figure 5: Objective Function Value vs
Generations for Case 2
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results shows that the ADE-based reactive
power dispatch algorithm is able to improve
voltage stability condition along with loss
minimization in the system. Also, it is found
that the results of the ADE-based algorithm
are always better than that obtained using
conventional methods.
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