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Abstract—The focus of this paper is on energy consumption 

optimization in smart homes (with/without RES) and 

increasing the user comfort level. The paper presents a 

functional and adaptable home energy management system 

with RES and an energy storage device for designing and 

implementing Demand Response (DR) programs. The four 

meta-heuristic techniques: Genetic Algorithm (GA), Wind-

Driven Optimization (WDO), Grey Wolf Optimization 

(GWO) and Salp Swarm Optimization (SSA), are used to 

optimize the energy consumption cost for a home energy 

environment. In the process of identifying and proposing a 

dedicated home energy optimization algorithm, this paper 

investigated four optimization algorithms with four 

different pricing schemes: Time of Use (TOU) pricing, Real-

Time Pricing (RTP), Critical Peak Pricing (CPP), and Day-

Ahead Pricing (DAP) schemes. The results obtained using 

these pricing schemes are validated and compared in a 

common smart home environment. Further, the results 

show that by integrating Renewable Energy Sources (RES) 

and a battery reduces the electricity bill by 10.89% (without 

RES) and 38.88% (with RES), as well as the peak-to-

average ratio (PAR) by 59.97% (without RES) and 64.98% 

(with RES) when compared to the energy consumption cost 

obtained without-scheduling technique. Moreover, without 

RES, the SSA algorithm based home energy management 

system outperforms the other algorithms particularly with 

the TOU pricing scheme.  

Index Terms—Home energy management, renewable energy 

sources, salp swarm optimization, peak-average ratio, time 

of use price, real-time price, critical peak price, Day-ahead 

price 

I. INTRODUCTION 

Smart homes are an integral part of the electric power 

system that has become an essential component of a 

smart grid due to its considerable environmental and 

economic benefits. Also, the smart grid encourages the 

usage of renewable energy like wind and solar, which 

further helps to reduce peak demand issues and power 

prices [1]. In addition, the smart home plays a significant 

role in reducing the additional investments in power 
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generation, transmission and distribution to satisfy future 

electricity demand. Nowadays, the utility control center 

gradually facing stress as the energy demand for 

residential buildings consistently increases [2]. The 

primary energy consumers in a country are residential 

buildings, which consume almost 30% to 40% of the total 

energy generation [3]. It reflects more on the consumers 

electricity bill; it indicates the necessity to reduce 

consumers energy usage costs. Since most electricity 

prices are not stable all the time, it ultimately depends on 

the amount and period of power generation, time of use, 

and climatic conditions. If the load demand is higher at a 

specific time interval, then the duration is considered a 

peak and the cost of power usage is fixed high. The off-

peak period is considered with the lowest price, as the 

demand request of consumers during the specific time 

interval is less. The mid-period has moderate demand, so 

the energy usage cost is normal [4]-[7]. It is to be noted 

that, normally, if the load demand exceeds the threshold 

power limit for a day, the critical peak price is employed 

in conjunction with the existing pricing strategies. 

Particularly during the peak period, the CPP cost is very 

high, and the utility control center effectively uses this 

price to regulate the energy consumption in residential 

buildings [8], [9]. Various other pricing schemes also 

exist in the literatures and they are classified based on the 

following categories [10]. 

• Consumer incentive for overall energy savings  
• Consumer incentive for peak demand savings  
• Financial risk to utility  
• Financial risk to consumer  
• Consumers financial benefit  
• Pricing profile  
Fig. 1 depicts the different electricity costs accessible 

on the energy market, which fluctuate by day and season. 

These prices always fluctuate based on energy 

consumption, especially in the late afternoon when 

demand is typically high, referred to as the peak period. 

Most pricing schemes include both peak and off-peak 

periods. Some pricing schemes include a third price, the 

"mid-peak price," between peak and off-peak hours.   

The demand-side management (DSM) is intended to 

profit the consumers more by reducing their electricity 

bills by controlling and managing their load demand. At 

the same time, the DSM also takes care of the utility 
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control center benefits by reducing the burden during the 

peak period by ensuring reliable service to the consumers. 

In order to balance the consumers’ load demand and 

energy supply, the Demand Response (DR) program is 

implemented by the utility control center. Thus, Fig. 2 

portrays the categorization of DR based on price and 

incentives.  

 
 

Fig. 1. Characteristics of electricity pricing. 

 
Fig. 2. Classification of DR programs and pricing schemes (considered) 

The demand response programs with many pricing 

schemes are mainly for the monetary benefit of 

consumers. Also, it is observed from literatures that the 

real-time price (RTP), time of use (TOU), critical peak 

price (CPP) and day-ahead price (DAP) have played a 

vital role in the monetary benefit of residential building 

consumers. As aforementioned, the RTP (dynamic) 

pricing scheme fluctuates continuously for each time slot 

and entirely depends on load demand. Time-of-use 

pricing is based on fixed electricity prices with respect to 

time intervals. It is structured according to peak and off-

peak periods and based on how the consumer utilizes the 

electricity. The day-ahead price is also a fixed price 

assigned to each time slot by the utility control center 

based on the previous day load demand profile of the 

consumers. 

The objective of this paper is to identify a novel 

optimization algorithm for reducing the energy 

consumption cost with an electricity pricing scheme by 

scheduling operations (with and without RES). Therefore, 

for the first time, the four different pricing (TOU, RTP, 

CPP and DAP) schemes are implemented along with SSA, 

GA, WDO, GWO optimization algorithms and without 

scheduling technique. 

A. Highlights of This Paper  

The following features are the main contributions of 

this paper and it is as follows.   

1. The metaheuristic salp-swarm optimization 

algorithm (SSA) technique is utilized for appliance 

scheduling and results are compared with genetic 

algorithm (GA), wind-driven optimization (WDO), 

grey wolf optimization (GWO), and without-

scheduling techniques. 

2. Environmental factors -RES (solar and wind) with 

battery is considered.  

3. Reduction in energy consumption costs, peak-

average ratio (PAR) and increase in the level of 

user comfort are the objectives of this paper.  

This paper considers multiple constraints on 

consumers so as to keep the user's comfort level 

maximum. 

This paper is organized as follows. A review of related 

research works on various optimization methods and 

pricing systems is provided in Section II. Section III 

discusses the problem formulation with various 

constraints. The four bio/nature-inspired meta-heuristic 

optimization algorithms are portrayed in Section IV. 

Section V illustrates the simulation results and the SSA 

algorithm robustness is described in Section VI and 

concluded in Section VII. 

II. RELATED WORKS 

In the past decades, several DSM techniques have been 

proposed to minimize energy consumption costs and peak 

average ratio (PAR). This section summarizes the 

optimization techniques employed to schedule the home 

appliances with an electricity pricing strategy for the 

above-discussed objective. 

Since the home energy management system has 

enough potential to reduce electricity consumption costs 

with efficient usage of electricity. So, need proper 

monitoring and control of each appliance are required to 

optimize the energy consumption. The work [11] focuses 

on minimizing electricity usage costs with a graph 

search-based algorithm named the DijCostMin algorithm 

under multiple constraints. This optimization technique is 

implemented with the time of use (TOU) price, to shift 
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the set of home (schedulable and non-schedulable) 

appliances from the peak to off-peak period based on the 

information accumulated at the smart meter that is 

connected to the house so that the peak load demand is 

reduced. Mostly, all the techniques involve shifting the 

loads to the off-peak period, which again creates the peak 

demand problem. 

With the same objective but in different home 

environmental conditions, a hybrid grey wolf-differential 

optimization algorithm was developed with Real-Time 

Price (RTP) and Critical Peak Pricing (CPP) strategies 

[12]. Their proposed optimization process is carried out 

with 17 different power ratings of home appliances by 

placing them in three groups: schedulable, non-

schedulable and controllable appliances. It is worth 

noting that the non-schedulable appliances have to be 

kept in ON condition for the entire day, which has fixed 

energy usage. In such cases, these hybrid optimization 

algorithms are not able to deal with all provided 

constraints [13]-[15]. 

In addition, these authors suggested that robust 

optimization algorithms can be effectively utilized with 

any pricing scheme in such systems to attain an optimal 

solution. Also, these studies have explored the 

possibilities of effective utilization of renewable energy 

sources to reduce energy consumption costs and keep a 

balance between demand and supply. Further, to the same 

objective, three more hybrid optimization algorithms, like 

Wind-Driven Genetic Algorithm (WDGA), Wind-Driven 

Grey Wolf Optimization (WDGWO) and wind-driven 

binary particle swarm (WBPSO), are utilized by the 

authors of the papers [16], [17] and [18]. But these 

authors have given more priority to consumer satisfaction. 

So, to ease the scheduling process, two groups of home 

appliances, namely, schedulable and non-schedulable, are 

used. They utilized both time of use and dynamic (RTP) 

pricing schemes to identify the best and most suitable 

pricing for such home environments. The TOU pricing 

scheme has lesser overall energy consumption costs than 

the dynamic pricing. Also, they discuss the feasibility of 

using renewable energy sources (solar) with a battery in 

the residential environment. 

Similarly, in recent years, most researchers have 

explored the effective utilization of alternative energy 

sources and the usage of energy-storing devices (batteries) 

that provide better results in the optimization process. 

The authors of [19] and [20], have proposed an energy 

management system that includes Renewable Energy 

Sources (RES) and storage devices for the optimal 

scheduling of residential loads. The effective utilization 

of alternative energy sources and the usage of energy-

storing devices (batteries) will provide better results in 

the optimization process. Therefore, the authors have 

effectively utilized charging and discharging actions of 

storing devices to decrease the peak load demand 

problem under the TOU pricing scheme. The authors of 

[21] and [22] considered consumer satisfaction and the 

effectiveness of TOU, RTP and CPP schemes in their 

load scheduling problem. According to these authors, the 

RTP pricing strategy benefits consumers more during the 

frequent variations in electricity prices and intermittent 

RES power generation. But the literatures [23]-[27] has 

given their observations that the TOU price is more 

effective with any optimization algorithms. This is 

because of the availability of price information well 

before the actual energy consumption begins and 

guaranteed energy consumption cost reduction compared 

to the RTP pricing. 

In recent days, due to increased electrical energy 

demand, balancing electricity demand and supply is the 

biggest challenge to the utility control center. In this 

regard, the energy forecasting technique assists the home 

energy management system in making effective decisions 

to balance the energy demand and supply [28]-[30]. 

Hence, to have efficient energy management, both the 

consumers and control center has to update mutually 

about their energy demand and consumption information 

at regular intervals without any errors and delays. With 

the support of computing and communications 

technology, consumers and utility control centers can 

share information/data regarding power demand and 

generation. But in certain cases, like the non-availability 

of any historical data or erroneous forecasted information, 

the reinforcement learning method is the suitable strategy 

[31]. Thus, it is necessary to have adequate data 

aggregation; hence the sensors are employed effectively 

with wired/wireless communication networks to collect 

information on energy generation and demand. Actually, 

because of the huge size of data, it is a tedious job to 

process and store without any loss. Therefore, big 

data/cloud computing methods are employed extensively 

for effective home energy management [32], [33].  

This investigation was carried out based on the 

inferences obtained by the author’s research work [7], 

[28], [34], [35], and [36]. From the literature, it is 

understood that every algorithm has its advantages and 

disadvantages. Hence, this paper gives importance to the 

robustness of an algorithm to identify the suitable 

optimization algorithm for the home energy management 

system. 

From the recent literatures, it is further understood that 

most of the researchers were focusing on residential 

microgrid and the prevalent pricing scheme; the TOU 

price, which has three pricing periods: peak, off-peak, 

and mid-peak period prices during the course of a day. 

The authors of [37] have presented an optimal energy 

management system for a residential microgrid that 

employs both RTP and TOU pricing schemes. The results 

show that the TOU pricing scheme assures lower 

operational costs and higher energy exchange with the 

grid than the RTP scheme. Regarding the power 

generation system for residential microgrids and 

renewable-energy-based smart homes against the 

backdrop of COVID-19 is extensively discussed in [38] 

and [39].  

Furthermore, a residential microgrid is considered with 

energy storage system, an electric vehicle, and renewable 

energy sources [40]. The authors have used PSO 

algorithm and attained an optimal solution to the problem 

that aims to minimize the energy consumption cost.  
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As discussed above, energy management in residential 

buildings has been a critical research issue for decades. 

Researchers have used different metaheuristic algorithms 

for the reduction of energy consumption costs using 

various pricing schemes. Most of them have achieved low 

cost by shifting the load from peak to off-peak periods by 

compromising on user comfort. In this regard, pricing 

schemes plays an important role in energy consumption 

costs.  

Thus, the authors have investigated on four meta-

heuristic techniques (GA, WDO, GWO, and SSA) and 

without a scheduling technique with the four (RTP, TOU, 

CPP, and DAP) pricing schemes to achieve the objective 

of minimizing energy consumption costs, reducing PAR, 

and maximizing user comfort. Consequently, the problem 

is formulated by considering a home with multiple smart 

appliances that operate with and without RES support on 

a summer day, with a one-hour time gap between each set 

of operations. 

III. PROBLEM FORMULATION 

This section gives detail about the objective function 

and associated constraints. The eighteen smart appliances 

are divided into three categories: schedulable (SA), non-

schedulable (NSA), and controllable (CA). Table I shows 

the complete classification of appliances.  

The results obtained using GA, WDO, GWO, and 

without scheduling with the RTP scheme are considered 

from [16].  

TABLE I: CLASSIFICATION OF APPLIANCES 

Non-Schedulable 
Appliances (NSA) 

Controllable 
Appliances (CA) 

Schedulable 
Appliances (SA) 

Domestic lightings   Heater (Water)   Ceiling fans  

celling Fan   Electric vehicle   Other lightings  

Exhaust fan   Iron box   Towel driers  

Desktop (PC)   Water Pump   Computer  

Energy storage system   Fridge   TV  

Washing machine   Garden lightings   Electric watch  
 

This section defines the objective function and 

constraints for reducing electricity prices and PAR. A 

battery with RES (wind and solar) power generation is 

considered. Scheduling is done for one day, represented 

by D (24 hours). A day is divided equally into 24 sub-

intervals (each one hour), represented as t1, t2, , t24. 

This article uses the TOU, RTP, CPP, and DAP tariffs 

to establish a daily power price. Let it  and itP  be the 

real-time price and the power consumption (kWh) in ti
 

interval,  and P be the price and the power consumption 

in normal price intervals, + and P+ the price and the 

power consumption in peak price intervals, and -- and P- 

the price and the power consumption in off-peak price 

intervals, the cost of energy consumption is calculated as 

Electricity bill

                      

i it t
P

P P P



     



  
               (1) 

For consumers’ convenience, users in a residential area 

are allowed to classify their appliances as SA, NSA, or 

CA. The group of (SA, NSA, and CA) appliances is 

called set formulation, (W). Each individual appliance are 

represented as 
1 2 3, , , , na a a a . 

A. Decision Variable 

In general, the load profile is a real and continuous 

decision variable. A binary β =0, 1 variable can be 

considered as a decision variable to specify “1” (ON) and 

“0” (OFF) for each scheduled appliance and the non-

scheduled appliance of the day that equals the total 

number of times to be operated. 

The objective of this paper is to minimize the total 

energy consumption costs, the cost calculation is based 

on a given 24-hours of four different electricity tariffs, 

such as TOU, RTP, CPP and DAP. Let it denote the 

electricity tariff for the time slot ti. The total electricity 

cost for operating all appliances (SA, NSA, CA) is given 

in the following equation (2).  

24
ON

Total
1 1 1

n n

i

a W
t

t a W

P
  

  
   

  
                      (2) 

During the scheduling process, energy consumption by 

each group of appliances in a particular time slot ti and 

total energy consumed by all appliances for a given day is 

as defined in equations (3)-(6).  

 
NSAON

1 1 2 2 24

24
NSA NSA NSA NSA NSA

1 1

=
n n n

W

a t a t a t a t
t W

P P P P P
 

 
    

 
    (3) 

 
SAON

1 1 2 2 24

24
SA SA SA SA

1 1
n n n

W
SA

a t a t a t a t
t W

P P P P P
 

 
    

 
       (4) 

 
CAON

1 1 2 2 24

24
CA CA CA CA CA

1 1

...
n n n

W

a t a t a t a t
t W

P P P P P
 

 
    

 
      (5) 

ON ON ONON NSA CA SA

TotalP P P P                     (6) 

where WNSA, WSA, and WCA are the group/set of 

appliances NSA, SA and CA, 
ONNSAP , 

ONSAP and 
ONCAP are the total power consumed by non-schedulable, 

controllable appliances, and schedulable appliances 

respectively, ON

TotalP  is the total power consumed by all 

appliances.  

B. Constraints 

This section describes the two groups of constraints: 

timing constraints and energy constraints.  

1) Timing constraints 

Non-Schedulable Appliance (NSA) - 24 hours 

operation: Every NSA appliance must be turned ON for 

the entire day, whether it is a peak period or not. Thus, 

the constraint is given in equation (7) and the entire set of 

non-schedulable appliances is represented within the 

operator (||). 

 ON
24

NSA

1t

D W


                      (7) 

where D is the total number of time intervals of the day.  
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2) User Comfort Level: Both schedulable and 

controllable appliances are to be scheduled appropriately 

to avoid overloading during peak hours. Also, keeping in 

mind the user’s comfort level and satisfaction, the 

appliances have to be scheduled optimally and distribute 

the energy according to the price of the time slot. The 

appliances are operated for the desired number of times K, 

which is defined in equation (8).  

24

app app ,
1

ix x N
t

tK k


                    (8) 

where appx it
K  is the total number of times that a given 

appliance is operated. appx is the appliances type (i.e., 

NSA, CA, SA). app ,x Nk  is the frequency of preference 

given by the consumers which ensures that all appliances 

are operated for the desired number of times and that can 

be formulated as shown in equation (9): 

a, ,app , app 1 app 2 pp ( 1) app
1

, ,i i i ix x x x xt t N t

n

t
t

tk k k k K   


      (9) 

C. Energy Constraints 

1) Maximum energy consumption (Emax): The total 

power ON

TotalP  consumed by SA, NSA and CA appliances 

for a given day should be less than or equal to the 

threshold limit (Emax=15kW), that is  

ON

Total maxP E                               (10) 

2) Total energy consumption: In order to ensure that 

the scheduling process has fulfilled their total energy 

demand ,n na wE of 156.5 kW, the following constraint is 

imposed:  

24
ON

Total ,
1

, , ,
n na w n n i

t

P E a w t


                   (11) 

3) Peak average ratio (PAR): During peak hours, the 

peak average ratio (PAR) must be reduced. Consequently, 

the calculation of PAR is illustrated in (12) to (14): 

24
ON

peak
1

max ( ( ))
t

P P t


 
  

 
                (12) 

ON

Total
avg

P
P

D
                             (13) 

peak avgPAR P P                           (14) 

where Ppeak is the maximum load demand for a time slot ti 

and Pavg is the average power consumption (from t = 1 to 

24 hours). PAR represents a consumer's electricity 

consumption behavior and is directly related to utility 

control center activity during peak periods. Minimizing 

the PAR helps both consumers and utility control centers 

to balance demand and supply. 

4) Objective function: Once the group (set) of 

appliances satisfies the given constraints, then that set of 

appliances will undergo the optimized load scheduling 

process. Accordingly, the objective function is defined as 

shown in equation (15).  

 

  

24
ON grid wind

Total
1

solar

OF min ( ) ( )

         BT( ) min(PAR)i

T

t

P P P t

P t 



     

 



       (15) 

where OF is the objective function, ON

TotalP  is the total 

power consumption by all sets of appliances in the ON 

state for scheduling in an appropriate time slot. Pwind is 

the power supported by wind, Psolar is the power 

supported by solar, BT is the power supported by the 

battery, and it is the energy consumption cost.  

D. Renewable Energy Sources (RES) in Residential 

Buildings 

The home environment considered in this paper 

consumes, generates and stores energy while being 

connected either with the support obtained from a grid or 

renewable energy sources. Hence, the home taken for 

analysis is equipped with renewable energy sources (wind 

and solar), a grid supply, and a battery, as discussed in 

[16]. Using stored energy during peak hours is a benefit 

to both consumers and utility control centers. It is to be 

noted that RES and grid supply are there to support 

batteries for storing and discharging their energy, but this 

paper does not discuss about battery control unit. 

Solar and Wind energy generation:  A 230W fixed 

array solar panel and a battery (1.2 kwh) are considered 

to meet the load demand. The capacity of the battery 

(BT(t)) is calculated by equation (16) in the time interval 

(t). 

demand

discharge

BT( )
v B

L

D

H
t

 
                       (16) 

where Ldemand is the daily energy consumption by the 

consumers, H is the number of autonomy hours. v and 

B are the voltage and battery efficiency respectively, and 

Ddischarge is the allowable depth of discharge. The battery 

charging and discharging during time intervals (t1) to t 

can be determined by, 

bankCapacity Capacity BTBT ( ) BT ( 1)(1 ) ( )t t P t     

where BTCapacity(t) and BTCapacity(t1) is the amount of 

energy available in a battery (which may be consumed by 

the consumer) at time intervals t and (t1) hours,   is 

the battery self-discharge rate (0.002A) and power 

supported from the battery 
bankBT ( )P t  at time interval t. 

This paper considers the depth of battery discharge as 

50%. The minimum and maximum capacity of the battery 

are BTmin and BTmax, respectively, given as  

min Capacity maxBT BT BT                   (17) 

As the solar panel produces its power from the sun, the 

irradiance that reaches the surface of the Earth can vary 

substantially based on the geographic location, altitude, 

time of day, time of year, and the concentration of 

atmospheric gases and particles. The Earth receives a 

considerable amount of solar radiation, and most 
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populated places have insulation levels of 150 to 300 

variability in irradiance. The reference solar irradiance 

spectra are typically used in the calculation. The solar 

panel output power is measured as shown in equation 

(18). 

solar_out solar_nominal ref

ref

ambient

1 ( )

(0.256 )

T c

c

P P K T T

T T







    

 

     (18) 

where solar_outP is the total power generated by solar panel 

(kW), solar_nominalP is the nominal power of solar panel 

(kW),  is the solar radiation (W/m2), ref is the solar 

radiation at reference conditions (1000 W/m2), whereas 

KT =3.7103 (1/C). Tc is cell temperature (C), Tref is 

the cell temperature reference (25C) and Tambient is the 

ambient temperature (C). 

An AC-AC converter integrates a 10 kW wind turbine 

generator into this same home environment. Weather-

related factors such as wind speed (Pwind-speed) and air 

density influenced the energy produced by wind 

generators, as defined in equations (19) and (20), 

wind 3

rotor coefficient0.5P V P                  (19) 

cin cout

cin
wind-speed rtd cin rtd

rtd cin

rtd rtd cout

0, ,

( ) ,

,

V V V V

V V
P V P V V V

V V

P V V V

  



  


  

     (20) 

where Гrotor is the rotor swept area of a wind turbine,  

(m2) is the density of air (kg/m2), V is the average wind 

velocity (m/s). The power coefficient for wind turbine 

efficiency and it is denoted as Pcoefficient. The output of a 

wind turbine purely depends on what kind of wind speed 

(m/s) it is rated for (Vrtd), the turbine's cut-in (Vcin) speed 

and cut-out (Vcout) speed. The power produced by the 

wind generator is denoted as, Pwind. Finally, the most 

challenging task for the utility control center is to balance 

the demand and supply as defined in equation (21), for 

which the net power source of the smart home is,  

ON grid wind solar

Total ( ) ( ) BT( ),  1 24P P P t P t t t        (21) 

IV. OPTIMIZATION TECHNIQUE FOR REDUCING ENERGY 

CONSUMPTION COST 

For reducing energy consumption cost, this section 
describes the inspiration and performance of four 
bio/nature-based algorithms: genetic, grey wolf, wind-
driven, and salp-swarm optimization algorithm. The 
suggested salp-swarm optimization technique (SSA) 
efficiently shifts the appliance demand from peak to off-
peak. The results of SSA under various pricing schemes 
such as TOU, RTP, CPP, and DAP are compared and 
validated with the outcomes of genetic, grey wolf, wind-
driven optimization algorithms and without scheduling 
technique. 

A. Genetic Algorithm (GA) 

In genetic algorithm, the fittest individuals are selected 
for the reproduction of the next generation. The process 

commences by identifying a group of individuals named 
as population. An individual has categorized by a set 
(group) of parameters (set of appliances) identified as 
Genes. Genes are a group of strings to form a 
Chromosome (solution). Every individual is the solution 
(appliances) to the problem that must be solved (kept ON 
or OFF). Usually, a group of chromosomes is represented 
as a string of binary values (0s and 1s). It indicates the 
appliance in ON (1s) or OFF (0s) state. This length of the 
binary-coded chromosome represents the number of 
appliances in the ON or OFF state [16], [32], [41].  

1 2Chromosome [ , , , ]nC C C             (22) 

where Cn is the length of chromosomes in binary and n is 

the number of chromosomes. After determining the 

number of chromosomes, the fitness function f(x) is 

assessed by calculating the objective function (OF) using 

(23): 

1
( )

1 OF
f x 


                           (23) 

where OF is the objective function of the problem. A 

mutation operator Pm is used for random modification of 

the chromosomes from 0 to 1. Each bit in every 

chromosome is checked for possible mutation by 

generating a random number between 0 and 1. If this 

number is less than or equal to the given mutation 

probability (Pm=1), then a gene is mutated from its 

unique state. Most of the literature studies show that 

better results are achieved by a crossover probability 

between 0.65 and 0.90 which ensures the probability of a 

selected chromosome surviving to the next generation 

remains unchanged. Therefore, the authors of this paper 

have chosen the probability of crossover Pc as shown in 

(25) so that premature convergence that leads to a sub-

optimal solution can be eliminated. If crossover 

probability is 100%, then all chosen chromosomes are 

used for new generation reproduction. For 0%, the entire 

new generation will be an exact copy of the parent 

chromosomes.  

=0.9cP                             (24) 

In natural genetic systems, the probability of mutation 

Pm is too low; thus, an optimal mutation rate for 

optimization problems is given in equation (25).  

1m cP P                            (25) 

Towards the end of crossover and mutation operation, 

the fitness of newly created population is compared with 

the current population and stores the best solution. After 

initializing the population, the objective function is 

determined through the fitness function. The new 

generation is generated by implementing the crossover 

and mutation process using parameters given in Table II.  

TABLE II: PARAMETERS USED IN GA 

Parameters Value 
Size of the Population  200 

Iterations  50 
Mutation probability Pm 0.1 

Crossover probability Pc 0.9 
n 18 
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B. Wind-Driven Optimization Algorithm (WDO) 

The wind-driven optimization technique works by 

tracking air particle movement. Air particles travel in the 

same direction (forward) when the wind blows from high 

pressure to low pressure zones. The WDO algorithm's 

velocity and position vectors are upgraded using 

Newton's second law of motion [42]. Various forces 

acting on air particles are represented using (26) to (29): 

Cr = 2F v                                 (26) 

Gv δvF g                                (27) 

prg δvF                               (28) 

FrF v                                  (29) 

where FCr is the Coriolis Force, Ω is the earth rotation, v 
is the velocity of wind and FGv is the gravitational force, 
η is the density of air, v represents a finite volume of air 
with gravity g. Fpr is the pressure gradient force and Δ is 
the pressure gradient with Frictional force FFr and Φ is 
the friction coefficient. 

Velocity and position of the air particles are updated 
using (30) and (31): 

( 1) ( 1)

p p p

i i ix x v                                (30) 

Cr
( 1)

1
(1 ) RT 1 (

p
p p p p i
i i i tg

best

F v
v v gx x x

r r


   
              

 (31) 

where 
p

iv  is the current velocity of air particles, ( 1)

p

iv    is 

the new velocity of air particles and 
p

ix  is the current 

position of air particles. 1

p

ix  and xgbest represents the new 

position of air particles. and the global best position 
respectively. r is the ranking value of air particles. R and 
T is the universal gas constant and temperature 
respectively.  

The optimal solution is generated by evaluating the 
velocity and fitness function of air particles. WDO uses 
the term “pressure” to describe the fitness function and 
the parameters involved in algorithm are given in Table 
III. 

TABLE
 
III:

 
PARAMETERS USED IN WDO

 
Parameters

 
Value

 
Size of the Population 

  
200 

 
Iterations 

  
50 

 
n
  

18 
 

dimMin, dimMax 
  

-5, 5 
 

vmin, vmax
   

-0.3, 0.3 
 

universal gas constant 
  

3 
 

Gravity 
  

0.2 
 

Friction Coefficient 
  

0.4 
 

TABLE

 

IV:
 

SOCIAL HIERARCHY OF GREY WOLVES

 
Level of 

Hierarchy
 

Category 

Name
 

Administration level of the Pack
 

I
  

Alpha (α) 
 

leader, it orders the final decision to the 

pack
 

II
  

Beta (β) 
 

mentor to alpha, it upholds discipline in 

the pack
 

III
  

Delta (δ) 
 

observing the territory/ border-it acts as 

caretaker of sick and injured wolves
 

IV
  

Omega (ω) 
 

follows the leading wolves-
 
It eats after 

all the powerful wolves complete their 

food
 

C. Grey Wolf Optimization Algorithm (GWO) 

The GWO was proposed by Seyedali Mirjalili et al. 
[43] and it is based on the grey wolf hunting hierarchy 
(Table IV). The pack of wolves always live with a 
hierarchy. Hunting has four primary steps: searching 
(exploration), chasing, surrounding, and assaulting the 
prey (exploitation). 

The mathematical representation of encircling the prey 

is given in equations (32) and (33).  

( ) ( )PD C X t X t                        (32) 

( 1) ( )PX t X t A D                      (33) 

where t is the current iteration, D  is the distance 

between the prey and wolf A  and C  is the coefficient 

vectors 
PX (t) is the position vector of prey, X (t) is the 

position vector of predator (grey wolf). In equations (34) 

to (38), the operator “” represents the dot product and the 

operators “+” and “-” are the normal arithmetic addition 

and subtraction operators. 

Equation (34) to (39) updates each wolf’s location in 

the n-dimensional search space. Table V shows the 

parameters used in the GWO simulation. 

2| |D C X X                                (34) 

3| |D C X X                                (35) 

1 1| |X X A D                               (36) 

2 2= | |X X A D                             (37) 

3 3= | |X X A D                              (38) 

1 2 3( 1)
3

X X X
X t

 
                      (39) 

TABLE V: PARAMETERS USED IN GWO 

Parameters Value 

Size of the population   200  

Iterations   50  

  2 to 0 

Random vectors (r1, r2)   [0, 1] 

n  18  

D. Salp Swarm Optimization Algorithm (SSA) 

Salp Swarm Optimization Algorithm (SSA) models 

salps' navigation and foraging behaviour (family of 

Salpidae). Salp is similar to jellyfish with a transparent 

barrel-shaped body. A salp chain is a network (swarm) of 

salps that develop in the deep sea. SSA is a nature-

inspired, evolutionary, robust, and, stochastic 

optimization algorithm to solve computationally hard 

optimization problems. The paper [44] presented the salp 

swarming mathematical model. The swarms (salp chain) 

are grouped as leader and followers. The first salp in the 

chain is the leader, and the others are followers. The 

leader salp communicates either directly or indirectly 

with the follower salps using search directions. The 



positions of all salps are defined as, 1 1

1 1( , , , , )n n

m mx y x y  

where 1,2, ,d n , n  is the number of salps and 

1,2, ,j m , m  is the number of variables. The SSA 

considers the food source (F) as a target and that is in the 

search area. It has three components: direction, personal 

best, and team-best. 

1 2 31

1 2 3

((ub lb ) lb ), 0

((ub lb ) lb ), 0

j j j j

j

j j j j

F c c c
X

F c c c

   
 

   
      (40) 

where 
1

jX  and 
jF  are the position of leader salp and the 

position of food at jth dimension on search space 

respectively. c1, c2, and c3 are the random numbers, ubj 

and lbj are the upper bound and lower bound of jth 

dimension. The controlling parameter c1 is a significant 

coefficient factor in SSA to balance the exploration and 

exploitation as given in (41), it is the constant number 

having natural of the helical shape of salp swarm:  

2

1

4
2

l
c e

L

  
  

 
                         (41) 

where l is the current iteration and L is the maximum 

number of iterations. The controlling parameter c1 is 

decreased adaptively over the course of iteration so that 

the SSA algorithm first explores and then exploits it in 

the search space. 

The coefficient factors c2 and c3 are consistently 

generated random numbers, where c2 is in the range of [0, 

1] which is responsible for widening the search space. 

And 
3c  is to indicate whether the next position of current 

leader salp and follower salps are within the boundary or 

not. If c3<0.5, the salps are moving out of the boundary 

on a negative scale while for c30.5, salps are going on a 

positive scale with respect to food. Thus, c2 and c3 help to 

decide the next position of salp in jth dimension of search 

space. Additionally, the coefficient factors c1, c2, and c3 

together are used to reposition the solutions that goes 

outside the search space. The position of salp followers is 

updated using (42) and it depends on salps speed, 

velocity and distance moved, and worth noting that this 

equation follows the Newton law of motion.  

21

2

d

j ox at v t                             (42) 

where 
d

jx  is the position of dth follower salp in jth 

dimension on search space, v0 is the initial speed, a is the 

acceleration, t is the time, and final 0( )v x x t  is the 

final velocity. Considering v0=0 the above equation can 
be expressed as follows. 

 11

2

d d d

j j jx X X                     (43) 

Equation (44) portrays how to bring back the salp into 

the search space.  

lb , if lb

ub , if ub

, otherwise

d

j j j

d d

j j j j

d

j

X

X X

X

 


 



                  (44) 

The SSA optimization starts by initializing the salps in 

a random position. Consequently, the fitness of each salp 

is dictated by the distance between the food source and 

the salp. For each dimension, with the help of coefficient 

factors, the position of both leader and follower salps are 

updated frequently. The Xj is considered the optimum 

load scheduling for the cost-saving of a day. The salp 

chain exploits the search space to get the most 

appropriate global optimum solution and avoid the local 

solution. The salp swarm chain's velocity, distance and 

fitness function are evaluated. Table VI shows the SSA 

simulation parameters. 

TABLE  VI: PARAMETERS USED IN SSA 

Parameters Value 

Size of the Population   200  

Iterations   50  

lb and ub  0 to 15  

c2  [0, 1] 

c3 [ 0, 0.5] 

n  18  

dim  24 

V. RESULTS AND DISCUSSION 

The outcomes of the genetic, grey wolf, wind-driven 

algorithms and without scheduling technique to the SSA 

technique under four different pricing schemes are 

compared. Also, this paper evaluates the impact of 

integrating renewable energy sources with the battery. 

Fig. 3 (a) represents real-time pricing similarly, Fig. 3 (b) 

to Fig. 3 (d) depict the time of use, day-ahead, and crucial 

peak prices that are adapted from [8], [12], and [45]. All 

the discussed techniques are implemented with these 

prices with and without RES integration. 

Both solar and wind power generation are shown in 

Fig. 4 (a) and Fig. 4 (b). The power generation from these 

sources are high during mid of the day (summer). 

The simulation is carried out in MATLAB (R2017a) 

for 18 appliances with a total demand of 156.5 kW in the 

summer. The desktop/laptop used for simulation: 

Processor Intel(R) Core (TM) i3-7020U CPU @ 

2.30GHz; RAM-12.0 GB; System type-64-bit operating 

system; x64-based processor. The GA, WDO, GWO, 

SSA and manual (without any scheduling) techniques are 

simulated under four pricing systems (RTP, TOU, DAP, 

and CPP) with the constraints discussed in section III. 

The scheduling of loads is shown in Fig. 5. It is also to be 

noted that this scheduling pattern is limited to a 

maximum energy (threshold) limit of 15 kW to decrease 

the peak load and energy usage costs. 
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(a) RTP                                                                                        (b) TOU 

  
(c) CPP                                                                                         (d) DAP 

Fig. 3. Electricity tariff schemes. 

  
(a) Solar power generation                                                         (b) Wind power generation 

Fig. 4. Renewable energy sources. 

   
(a) Without RES                                                                                       (b) With RES 

Fig.  5. Comparison of demand scheduling. 
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A. Demand Comparison

Fig. 5 (a) and Fig. 5 (b), shows the load that are 
scheduled in each time slot using the RTP pricing scheme 
by all the algorithms. Fig. 5 (a) (without RES) during the 
t1 slot shows that both the without-scheduling (manual 
operation) technique and the WDO algorithm have 

scheduled 6.5 kW, whereas GA and GWO have 
scheduled 12 kW for RTP pricing schemes. But SSA 
schedules the load demand of 6.8 kW. Similarly, for the t4

slot, the GA and WDO have shown a demand of 14 kW 
and GWO with 12 kW. But SSA has selected a group of 
appliances that has a demand of 6.5 kW. 
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Considering the eighth time slot t8 (high electricity 
price time slot), the GA has scheduled a 7 kW demand, 
WDO with 6.5 kW, GWO schedules up to 8.5 kW, but 
SSA schedules with a demand of 5.7 kW only. While the 
SSA has reduced the energy usage costs, it has also met 
the total demand of 156.5 kW by distributing the 
appliance in all time slots. This comparison shows that 
except for SSA, all other algorithms scheduled high-
demand appliances in low-tariff time slots resulting in 
low-cost energy usage. Notably, the SSA does not 
surpass 15 kW at any time of the day. The 2.5 kW of non-
schedulable appliances is also satisfied. 

By utilizing renewable energy sources, the energy 
usage cost is reduced and the same is illustrated in Fig. 5 
(b). Also, this figure proves that the SSA schedules the 
load effectively by satisfying the minimum demand of 2.5 
kW and not exceeding the Emax value. The comparison 
shows that all optimization approaches schedule the loads 
by satisfying the constraint specified in equation (7). In 
time intervals t15 to t24, the GA, WDO, and GWO have 
scheduled the demand between 3 kW and 7 kW, while the 
SSA has scheduled the demand between 3 kW and 5 kW. 

From the utility control center and consumer perspectives, 
the SSA algorithm efficiently schedules the home 
appliances and manages the peak demand problems. 

B. Cost Comparison 

1) Without RES Integration 

Fig. 6 (a) to Fig. 6 (d) show the cost comparison of 

SSA with GA, WDO, GWO, and without scheduling. 

Considering Fig. 6 (a) with the RTP pricing scheme, at 

the high-cost time slot t8, the SSA algorithm attains the 

energy usage cost of 152.8 Cents. While, the GA, WDO, 

GWO, and without-scheduling operations schedule with 

the cost of 189.16 Cents, 174.1 Cents, 230.5 Cents and 

397.5 Cents, respectively. Similarly, the time slot t9 is 

also a high-cost period of the day and observes similar 

performance by the approaches such as GA, WDO, GWO, 

and without-scheduling operations with 192.82 Cents, 

381.8 Cents, 183.22 Cents, and 405 Cents respectively. 

From the comparison, the SSA schedules the demand 

with least energy usage cost of 184.71 Cents in the t9 time 

slot. 

 
(a) RTP                                                                                                    (b) TOU 

 
(c)  CPP                                                                                                  (d) DAP 

Fig. 6. Cost comparison without RES 

 
2) With RES Integration 

Fig. 7 (a) to Fig. 7 (d) compares the energy 
consumption cost using four pricing strategies with RES 
integration. With the SSA technique, energy consumption 
cost has drastically reduced during the t8 and t9 time slots. 
It is understood from the results that the energy usage 
cost using CPP scheme is higher than the cost obtained 
using RTP, TOU, and DAP schemes. From the results, 

both the TOU and DAP schemes effectively reduce 
energy consumption costs.  
3) Total Cost Comparison 

Table VII and Table VIII present the comparison on 
percentage of cost difference with respect to the SSA 
technique. The SSA attains 1401.03 Cents which is lesser 
cost than the cost obtained from GA, WDO, GWO, and 
without-scheduling methods, i.e., 2032.40, 2257.70, 



1869.90, and 2494.80 Cents, respectively (Fig. 8 (a)). The 
GA, WDO, GWO, and without-scheduling techniques 
with the RTP scheme and without RES have attained 
higher energy usage costs than SSA. It is to be noted that 
all the algorithms have satisfied the total demand of 
156.56 kW, hence 100% of the user comfort level is 
achieved (Table VII). Note that by all techniques, the 
demand of non-schedulable appliances (2.5 kW) is also 
satisfied. 

With RES integration, the SSA using RTP scheme has 
attained 1182.26 Cents which is lesser cost than the cost 
obtained from GA, WDO, GWO and without-scheduling 
techniques, i.e., 1341.90, 1237.40, 1287.40 and 1781.08 

Cents respectively (Fig. 8 (b)). The percentage cost 
difference obtained using GA, WDO, GWO, and without-
scheduling technique with respect to SSA (with RTP 
scheme and RES) is 11.90%, 4.46%, 8.17% and 33.62%, 
respectively (Table VIII). Likewise, the remaining 
pricing schemes are compared with and without RES and 
it is evident that SSA has outperformed other techniques 
in all pricing schemes. In particular, the SSA technique 
with the TOU price has a remarkable cost-saving 
compared to other pricing schemes. Thus, the TOU 
pricing scheme is more effective than other pricing 
schemes in reducing energy consumption costs.  

 

(a) TTP                                                                                                   (b) TOU 

   

(c) CPP                                                                                                     (d) DAP 

Fig. 7. Cost comparison with RES. 

TABLE VII: ENERGY CONSUMPTION COMPARISON - WITHOUT RES 

Price Description SSA GA WDO GWO Without scheduling algorithm 

RTP 
 Cents  1401.03 2032.40 2257.70 1869.90 2494.80 

 Percentage of Cost difference from SSA  - 31.07 37.94 25.07 43.84 

TOU 
 Cents  801.03 835.61 889.25 812.33 898.90 

 Percentage of Cost difference from SSA  - 4.14 9.92 1.39 10.89 

CPP 
 Cents  4051.22 5289.31 6489.67 4260.86 6931.58 

 Percentage of Cost difference from SSA  - 23.41 37.57 4.92 41.55 

DAP 
 Cents  1881.57 2228.78 2171.89 2213.81 2447.23 

 Percentage of Cost difference from SSA  - 15.58 13.37 15.01 23.11 

TABLE VIII: ENERGY CONSUMPTION COST COMPARISON - WITH RES 

Price Description SSA GA WDO GWO Without scheduling algorithm 

RTP 
 Cents  1182.26 1341.90 1237.40 1287.40 1781.08 

 Percentage of Cost difference from SSA  - 11.90 4.46 8.17 33.62 

TOU 
 Cents  549.45 569.26 593.81 560.33 898.90 

 Percentage of Cost difference from SSA  - 3.48 7.47 1.94 38.38 

CPP 
 Cents  2734.83 4333.18 4220.52 3401.81 6931.58 

 Percentage of Cost difference from SSA  - 36.89 35.20 19.61 60.55 

DAP 
 Cents  1235.11 1425.92 1370.83 1453.07 2447.25 

 Percentage of Cost difference from SSA  - 13.38 9.90 15.00 49.53 

 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 6, November 2022

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm. 445

COST 



         
(a) Scheduling without RES                                                                       (b) Scheduling with RES 

Fig. 8. Total cost comparison 

TABLE IX: PEAK AVERAGE RATIO (PAR) EVALUATION UNDER DIFFERENT PRICING SCHEMES 

Price Renewable source Without scheduling algorithm GA WDO GWO SSA 

RTP 
 Without RES  5.2915 4.6095 5.2915 4.2426 1.0381 
 With RES  5.2915 1.8199 2.5024 1.6265 1.0443 

TOU 
 Without RES  2.6254 2.0363 2.2898 1.8971 1.0507 
 With RES  3.0212 1.6954 2.2797 1.6313 1.0579 

CPP 
 Without RES  5.9656 3.7168 5.0465 4.1680 1.0411 
 With RES  7.6035 3.8023 4.9332 3.8240 1.0547 

DAP 
 Without RES  4.0295 3.7807 2.7543 3.4473 1.0731 
 With RES  4.6749 3.3518 2.4829 2.8328 1.0677 

 

4) Peak Average Ratio (PAR) Comparison 

This section discusses the peak-average ratio (PAR) 

with and without RES integration. From Table IX, a 

significant PAR difference is observed after load 

scheduling in all four pricing schemes. When comparing 

the PAR values attained by scheduling and without-

scheduling techniques, it is clear that the without-

scheduling (manual operation) technique has achieved the 

highest PAR. Moreover, the result shows that the SSA 

algorithm has attained the lowest PAR (with and without 

RES) among the scheduling techniques. 

VI. ROBUSTNESS OF SSA TECHNIQUE 

Fig. 9 and Fig. 10 show the SSA technique conver-
gence curves for 20 trial runs in load scheduling. The 
figures show that as the number of iterations reaches 25, 
the SSA approach starts to attain the optimal value. These 
results strongly prove that the SSA technique helps to 
avoid local solutions. After every trial run, the algorithm 
reaches the fitness value, indicating that the convergence 
curve is substantially closer to the optimal energy usage 
cost. Thus, the SSA algorithm achieves the best results 
with the TOU price among the four pricing schemes. 

     
(a) RTP                                                                                                     (b) TOU 

     
(c) CPP                                                                                                     (d) DAP 

Fig. 9. SSA algorithm optimal cost convergence curve without RES-20 Trail runs  
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(a) RTP                                                                                                  (b) TOU 

 
(c) CPP                                                                                                 (d) DAP 

Fig. 10. SSA algorithm optimal cost convergence curve with RES-20 Trail runs 

TABLE X: BEST, MEDIAN, AND WORST VALUES OF SSA 

Price 
Renewable 

source 
Best 

(Cents) 
Average 

(Cents) 
Worst 
(Cents) 

Standard 
deviation 

RTP 

With RES  1182.2336 1182.2704 1182.2897 0.0150 

Without 

RES  
1401.0332 1401.0543 1401.0945 0.0133 

TOU 

With RES  549.4493 549.4756 549.5001 0.0135 

Without 

RES  
801.0332 801.0518 801.0749 0.0128 

CPP 

With RES  2734.8285 2734.8512 2734.8808 0.0156 

Without 
RES  

4051.2192 4051.2438 4051.2706 0.0136 

DAP 

With RES  1235.1081 1235.1171 1235.1342 0.0196 

Without 
RES  

1881.5681 1881.5981 1881.6605 0.0153 

 

The results of SSA algorithm (with RES) outperform 

the results obtained by without RES in terms of the 

specified performance measures, such as the best, average 

(median), and worst values of optimized energy costs 

(Table X). From the obtained standard deviation, 

confirms the SSA technique accuracy and robustness.  

The unique features of SSA algorithm which makes it 

popular in the field of optimization problems are:  

The number of parameters involved are less compared 

to other optimization techniques like GA, WDO and 

GWO. Further it can be implemented to a wider range of 

optimization problems,  

a) The extensive property of SSA is elitism which 

helps to find the best solution with in the search 

space,  

b) Furthermore, the convergence of the system is 

insensitive to the parameter selection which helps  

in reducing the tuning time of the parameters for a 

specific problem,  

c) In addition, SSA is more stochastic and robust for 

most of the optimization problems compared to the 

other meta-heuristic algorithms like GA, WDO and 

GWO algorithms etc., and  

d) In SSA, the leader salp is used to update the 

position with respect to the food source in search 

space for generating new candidate solutions which 

makes the randomization process more efficient. 

In addition to the above features of SSA, most of the 

recent literatures have proven that SSA is potentially 

more efficient than other metaheuristic algorithms. 

Taking all the above factors into account, the authors 

have chosen SSA as the method for optimizing the energy 

consumption cost and the PAR of residential buildings 

through load scheduling. 

VII. CONCLUSION 

This paper investigates four meta-heuristic 

optimization algorithms like SSA, GA, WDO, GWO 

algorithms and without scheduling technique used for 

load scheduling under four pricing (TOU, RTP, CPP, 

DAP) schemes in a common home environment 

(with/without RES). 

The home environment consists of eighteen different 

appliances. Minimization of energy usage cost, PAR 
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reduction and increasing the user comfort level are the 

main objectives of this paper. Simulation results prove 

that the SSA algorithm efficiently schedules the 

appliances and attains reduced energy usage cost and 

PAR with maximum user comfort level than other 

techniques.  

The energy usage cost attained by SSA algorithm with 

TOU price is minimized by 10.89% (without RES) and 

38.88% (with RES), also the PAR has been reduced by 

59.97% (without RES) and 64.98% (with RES) from the 

cost obtained by without scheduling technique. Thus, the 

simulation results prove that the SSA algorithm with 

TOU pricing is the most promising algorithm by meeting 

all the constraints. 

Thus, it is clear that renewable energy generation has 

potentially supported in reduction of energy consumption 

costs and PAR, which helps the control center to balance 

the energy demand and supply effectively. In future work, 

the same home environment can be considered with the 

real-time scheduling process. In addition, cases like 

power injection from RES into the grid (both forward and 

reverse operation), and the usage of an electric vehicle as 

one of the appliances (vehicle to grid/grid to vehicle) can 

be included. 

CONFLICT OF INTEREST 

None of the authors have any financial or non-financial 

competing interests with respect to this manuscript. 

AUTHOR CONTRIBUTIONS 

Senthil Prabu Ramalingam and Dr. Prabhakar 

Karthikeyan Shanmugam have conceived the idea and 

converted it in to an article. The authors confirm their 

contribution to the paper as follows: Dr. Prabhakar 

Karthikeyan Shanmugam encouraged to investigate and 

supervised the findings of this work. Senthil Prabu 

Ramalingam developed the theory and performed the 

computations, verified the analytical methods and drafted 

the article. 

ACKNOWLEDGMENT 

The authors thank the Management of Vellore Institute 

of Technology, Vellore, Tamil Nadu, India for their 

constant support and encouragement to carry out the 

research work.  

REFERENCES 

[1]  C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, 

“Managing electric flexibility from distributed energy resources: 

A review of incentives for market design,” Renewable and 

Sustainable Energy Reviews, vol. 64, pp. 237-247, Oct. 2016.  

[2]  U. Zafar, S. Bayhan, and A. Sanfilippo, “Home energy 
management system concepts, configurations, and technologies 

for the smart grid,” IEEE Access, vol. 8, pp. 119271-119286, 2020.  

[3]  T. Jiang, Y. Cao, L. Yu, and Z. Wang, “Load shaping strategy 
based on energy storage and dynamic pricing in smart grid,” IEEE 

Trans. Smart Grid, vol. 5, no. 6 pp. 2868-2876, 2014.  

[4]  G. R. Newsham and B. G. Bowker, “The effect of utility time-
varying pricing and load control strategies on residential summer 

peak electricity use: A review,” Energy Policy, vol. 38, pp. 3289-
3296, 2010.  

[5]  H. Chao, “Price-responsive demand management for a smart grid 

world,” The Electricity Journal, vol. 23, no. 1, pp. 7-20, 2010. 

[6]  F. Wolak. (2007). Residential customer response to real-time 
pricing: The anaheim critical peak pricing experiment. [Online]. 

Available: https://escholarship.org/uc/item/3td3n1x1 

[7]  S. P. Ramalingam and S. P. Karthikeyan, “Scheduling and energy 
management of smart homes using customer choice based 

algorithm,” in Proc. Conf. Ind. Commer. Use Energy, 2018. 

[8]  L. Fiorini and M. Aiello, “Energy management for users thermal 
and power needs: A survey,” Energy Reports, vol. 5, pp. 1048-

1076, Nov. 2019. 

[9]  K. Amasyali and N. M. El-Gohary, “A review of data-driven 
building energy consumption prediction studies,” Renew. Sustain. 

Energy Rev., vol. 81, pp. 1192-1205, Jan. 2018. 

[10]  EERE Publication and Product Library, Washington, D.C. (United 
States). (2009). Customer incentives for energy efficiency through 

electric and natural gas rate design. [Online]. Available: 

https://www.epa.gov/eeactionplan 
[11]  A. Basit, G. A. S. Sidhu, A. Mahmood, and F. Gao, “Efficient and 

autonomous energy management techniques for the future smart 

homes,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 917-926, 2017.  
[12]  M. Naz, Z. Iqbal, N. Javaid, et al., “Efficient power scheduling in 

smart homes using hybrid grey wolf differential evolution 

optimization technique with real time and critical peak pricing 
schemes,” Energies, vol. 11, no. 2, 2018. 

[13]  T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side 

management in smart grid using heuristic optimization,” IEEE 
Trans. Smart Grid, vol. 3, no. 3, pp. 1244-1252. 2012. 

[14]  A. Barbato, A. Capone, G. Carello, et al., “A framework for home 

energy management and its experimental validation,” Energy 
Effic., vol. 7, pp. 1013-1052, 2014.  

[15]  Z. Fan, Z. Zhu, J. Tang, and S. Lambotharan, “An integer linear 

programming and game theory based optimization for demand-
side management in smart grid,” in Proc. IEEE PES Innov. Smart 

Grid Technol., 2015. 

[16]  Z. Iqbal, N. Javaid, S. Iqbal, S. Aslam, Z. A. Khan, W. Abdul, A. 
Almogren, and A. Alamri, “A domestic microgrid with optimized 

home energy management system,” Energies, vol. 11, no. 4, 2018. 

[17]  W. Zeng, J. von Appen, P. Selzam, et al., “Active residential load 
management based on dynamic real time electricity price of 

carbon emission,” Energy Procedia, vol. 152, pp. 1027-1032, 
2018.  

[18]  D. Dongol, T Feldmann, M Schmidt, and E Bollin, “A model 

predictive control based peak shaving application of battery for a 
household with photovoltaic system in a rural distribution grid,” 

Sustainable Energy, Grids and Networks, vol. 16, Dec. 2018.   

[19]  T. Terlouw, T. Alskaif, C. Bauer, and W. Van Sark, “Optimal 
energy management in all-electric residential energy systems with 

heat and electricity storage,” Applied Energy, vol. 254, 2019.  

[20]  K. Zhou and S. Wei, “Time-of-use price model for user-side 
microgrid based on power supply chain management,” Elsevier, 

Energy Procedia, vol. 152, pp. 51-56, 2018.  

[21]  M. Kii, K. Sakamoto, Y. Hangai, and K. Doi, “The effects of 
critical peak pricing for electricity demand management on home-

based trip generation,” IATSS Research, vol. 37, no. 2, pp. 89-97, 

2014. 
[22]  C. Eid, E. Koliou, M. Valles, et al., “Time-based pricing and 

electricity demand response: Existing barriers and next steps,” 

Utilities Policy, vol. 40 pp. 15-25, June 2016. 
[23]  I. Öhrlund, Å. Linné, and C. Bartusch, “Convenience before coins: 

Household responses to dual dynamic price signals and energy 

feedback in Sweden,” Energy Research & Social Science, vol. 52, 
pp. 236-246, 2019. 

[24]  T. A. Nakabi and P. Toivanen, “An ANN-based model for 

learning individual customer behavior in response to electricity 
prices,” Sustain. Energy, Grids and Networks, vol. 18, 2019.  

[25]  A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-kian, “Cost-

effective and comfort-aware residential energy management under 
different pricing schemes and weather conditions Cost-effective 

and comfort-aware residential energy management under different 

pricing schemes and weather conditions,” Energy Build., vol. 86, 
pp. 782-793, 2015.  

[26]  H. Zhao and F. MagoulÃs, “A review on the prediction of 

building energy consumption,” Renew. Sustain. Energy Rev., vol. 
16, pp. 3586-3592, 2012.  

[27]  K. Steriotis, G. Tsaousoglou, N. Efthymiopoulos, P. Makris, and E. 

Varvarigos, “A novel behavioral real time pricing scheme for the 
active energy consumers- participation in emerging flexibility 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 6, November 2022

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm. 448



markets,” Sustain. Energy, Grids and Networks, vol. 16, pp. 14-27, 
Dec. 2018. 

[28]  T. Bhattacherjee, A. K. Saha, S. P. Ramalingam, P. K. 

Shanmugam, and S. Padmanaban, “Server monitoring and priority 
based automatic load shedding algorithm (SEMPALS),” in Proc. 

of 2019 IEEE Region 10 Conference, 2019, pp. 1863-1868.  

[29]  K. Sharma, S. P. Ramalingam, S. P. Karthikeyan, and I. J. Raglend, 
“Indian Power sector-need of privatization and current status,” in 

Proc. Innovations in Power and Advanced Computing 

Technologies, 2019. 
[30]  Rogers, P. Austin, and B. P. Rasmussen, “Opportunities for 

consumer-driven load shifting in commercial and industrial 

buildings,” Sustainable Energy, Grids and Networks, vol. 16, pp. 
243-258, 2018. 

[31]  E. Mocanu, P. H. Nguyen, W. L. Kling, and M. Gibescu, 

“Unsupervised energy prediction in a Smart Grid context using 
reinforcement cross-building transfer learning,” Energy Build., vol. 

254, pp. 646-655, 2019.  

[32]  H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, 
“Review on home energy management system considering 

demand responses, smart technologies, and intelligent controllers,” 

IEEE Access, vol. 6, pp. 24498-24509, 2018.  
[33]  R. P. Senthil and S. K. Prabhakar, “A comprehensive review on 

wired and wireless communication technologies and challenges in 

smart residential buildings,” Recent Advances in Computer 
Science and Communications, vol. 15, no. 9, 2022.  

[34]  P. Ramalingam and P. K. Shanmugam, "Scheduling smart home 

appliances using ACO algorithm with different electricity tariff 
schemes," in Proc. Innovations in Power and Advanced 

Computing Technologies, 2021. 

[35]  S. P. Ramalingam and P. K. Shanmugam, “A home energy 
management system with peak demand reduction using ant colony 

optimization and time of use pricing scheme,” in Soft Computing 

for Problem Solving. Advances in Intelligent Systems and 
Computing, A. Tiwari, K. Ahuja A. Yadav, J. C. Bansal, K. Deep, 

A. K. Nagar, Ed. Springer, Singapore, 2021, pp. 531-546.  

[36]  J. Singh, S. Poddar, S. P. Ramalingam, et al., “Investigation on 
dynamic economic dispatch problem of micro grid using cuckoo 

search algorithm-grid connected and islanded mode,” in Proc. 
IEEE Region 10 Conference, 2019, pp. 1886-1891. 

[37]  M. Dashtdar, M. Bajaj, and S. M. S. Hosseinimoghadam, “Design 

of optimal energy management system in a residential microgrid 
based on smart control,” Smart Science, vol. 10, no. 1, pp. 25–39, 

2022. 

[38]  S. Ali, Z. Zheng, M. Aillerie, et al., “A review of DC microgrid 
energy management systems dedicated to residential applications, 

Energies, vol. 14, no. 14, 2021.  

[39]  S. Ayub, S. M. Ayob, C. W. Tan, et al., “Analysis of energy 
management schemes for renewable-energy-based smart homes 

against the backdrop of COVID-19,” Sustainable Energy 

Technologies and Assessments, vol. 52, Part B, Aug. 2022. 
[40]  G. K. Farinis and F. D. Kanellos, “Integrated energy management 

system for microgrids of building prosumers,” Electr. Power Syst. 

Res., vol. 198, Sept. 2021. 
[41]  F. Fernandes, T. Sousa, M. Silva, H. Morais, Z. Vale, and P. Faria, 

“Genetic algorithm methodology applied to intelligent house 

control,” in Proc. IEEE Symp. Comput. Intell. Appl. Smart Grid, 
2021, pp. 139-146. 

[42]  Z. Bayraktar, M. Komurcu, and D. H. Werner, “A novel nature-

inspired optimization algorithm and its application to 
electromagnetics,” in Proc. IEEE Int. Symp. Antennas Propag., 

2010. 

[43]  S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” 
Adv. Eng. Softw., vol. 69, pp. 46-61, 2014. 

[44]  S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, 

and S. M. Mirjalili, “Salp swarm algorithm: A bio-inspired 
optimizer for engineering design problems,” Advances in 

Engineering Software, vol. 114, pp. 163-191, Dec. 2017.  

[45]  A. Ahmad, A. Khan, N. Javaid, et al., “An optimized home energy 
management system with integrated renewable energy and storage 

resources,” Energies, vol. 10, no. 4, 2017.  

 

Copyright © 2022 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 
Senthil Prabu Ramalingam is a research 

scholar at School of Electrical Engineering, 

Vellore Institute of Technology, Vellore, India, 
with Master of Engineering from Anna 

University affiliated institution, India (2010). 

He obtained bachelor degree in electronics 
and communication engineering from School 

of Electronics Engineering, Vellore Institute 

of Technology, Vellore, India in 2005. His 
research interests are in the fields of energy 

optimization in residential buildings, wireless communication and 

electronics. Currently he is working on natured inspired optimization 
algorithms for smart home energy management. 

 

Prabhakar Karthikeyan Shanmugam 
(corresponding author) has completed his B.E. 

(EEE) from University of Maras, Tamil Nadu 
(1997), M.E. (Electrical Power Engineering) 

from The M.S. University of Baroda, 

Vadodara, Gujarat (1999), Ph.D. degree from 

VIT University, Tamil Nadu, India (2013) 

under the guidance of Prof. D. P. Kothari. He 
has also completed his Post-Doctoral Fellow 

from Central Power Research Institute, 

Bengaluru, Karnataka, India. He is presently with the VIT University as 
an Associate Professor-Senior. He is Senior Member-IEEE, He has 

published more than 25 peer-reviewed journals which include Elsevier, 

IET, Springer publications, and 77 National and International 
Conferences. His area of interest includes Deregulation and restructured 

Power systems under Smart Grid environment, issues in distribution 

systems, and scheduling of Electric Vehicles. 
 

 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 6, November 2022

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm. 449

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

