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Abstract—In Multiple-Input Multiple-Output (MIMO), 

there is multi-user interference because of the limited 

number of antennas at the Base Station (BS). Deploying 

more antenna elements at the BS to decrease the multi-user 

interference is a costly solution. Therefore, changing the 

configuration of antenna arrays at the BS is implemented as 

an alternative. In this paper, the impact of BS antenna array 

configurations on the performance of massive MIMO 

detection techniques is investigated where four different 

antenna array configurations are implemented at the BS: 

Uniform Linear Array (ULA), Uniform Rectangular Planar 

Array (URPA), Uniform Circular Array (UCA) and 

Uniform Circular Planar Array (UCPA). The performance 

of the massive MIMO system is based on the millimeter 

wave (mmWave) channel that depends on the array 

response vector of the BS antenna array configuration. To 

the best of our knowledge, this is the first paper to 

investigate the impact of antenna array configurations at the 

BS on the performance and the computational complexity of 

massive MIMO detection techniques. Numerical results 

show that the implementation of URPA at the BS with 

MMSE detection algorithm can achieve the best 

performance of BER=104 at SNR = 9dB. The deployment of 

the UCA at the BS with the successive over-relaxation 

(SOR), the Gauss-Seidel (GS), and the conjugate-gradient 

(CG) detection methods provides a performance of 

BER=104 at SNR = 12dB when the number of iterations 

equals eight. In the case of using the UCA at BS with the 

Richardson (RI) detection method, the number of iterations 

is required to be increased to achieve the same performance. 

To achieve BER=104, the detector based on the CG method 

has the lowest computational complexity while the RI 

method has the highest complexity.  

Index Terms—Massive MIMO, detection,   antenna    array 

configurations, Fifth-Generation, computational complexity  

I. INTRODUCTION 

It is foreseeable that efficient technologies are playing 

a crucial role in Fifth-Generation (5G) and Beyond 5G 

(B5G) to achieve the user demands in both the 

performance and the Quality of Services (QoS). In the 
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millimeter-wave (mmWave), the spectrum from 30GHz 

to 300GHz is utilized to provide large bandwidth, and 

thus, the data rate increases up to multi Gigabits per 

second. The conventional small-scale MIMO technology 

had been deployed since the Third-Generation (3G) 

wireless networks to improve the performance of wireless 

transceivers. Massive MIMO is an extension of the small-

scale MIMO and it is a promising candidate to achieve a 

high data rate, low latency, high energy, and spectral 

efficiencies. In massive MIMO, a large number of 

antennas are deployed at the BS to serve a large number 

of mobile user terminals at the same frequency band 

where the number of mobile user terminals is noticeably 

smaller than the number of Base Station (BS) antennas. 

The increase in the number of antenna elements at the BS 

requires the use of mmWave to reduce the operating 

wavelength and pack more antenna elements in a smaller 

physical space. But as the operating wavelength is 

decreasing, the carrier frequency is increasing, and the 

power loss is increasing as well. To compensate for this 

additional attenuation, higher gain antennas are required 

to be implemented with the massive MIMO system. If the 

BS has an unlimited number of antenna elements in a 

massive MIMO system, the multi-user interference will 

be eliminated and the mutual orthogonality among the 

channel vectors of the user’s terminals occurs. However, 

practically there is multi-user interference because of the 

limited number of antennas at the BS. Deploying more 

antenna elements at the BS to decrease the multi-user 

interference is a costly solution so changing the 

configuration of antenna arrays at the BS is implemented 

as an alternative [1]-[4].  

In literature, a plethora of massive MIMO detectors’ 

structures is proposed to obtain a convenient balance 

between performance and complexity. Nonlinear 

detectors are not competitive in realization because they 

require a decomposition, i.e., QR, LDL, or Cholesky 

decompositions, which increases the complexity. 

Detectors based on linear methods are relatively simple 

and easy to implement but they suffer from a remarkable 

performance deterioration in highly correlated channel 

elements. Moreover, they also contain an undesirable 

matrix inverse which is not easy to implement. To 

achieve a pleasant balance between the performance and 
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the complexity of linear massive MIMO uplink detectors, 

two scenarios are proposed to obtain a free-matrix-

inversion detector. These scenarios are well-known 

among the Very-Large-Scale Integration (VLSI) signal 

processing community because of their low complexity. 

The first scenario, such as the Neumann Series (NS) and 

Newton Iteration (NI) methods, is approaching the matrix 

inverse instead of exact computation. However, the 

complexity of the NS method is comparable to the exact 

matrix inversion algorithm when the expansion order is 

more than two. In the NI method, matrix multiplications 

are involved which increases the computational 

complexity. The second scenario depends on avoiding the 

matrix inversion by exploiting the iterative methods to 

solve the linear equations. The Successive Over-

Relaxation (SOR), the Gauss-Seidel (GS), the Jacobi (JA), 

the Richardson (RI), and the Conjugate Gradient (CG) 

methods are examples of such iterative methods where 

matrix multiplications are replaced by matrix-vector 

products. Therefore, solving linear equations with 

iterative methods is less computational complexity 

compared with the first scheme. In addition, the first 

scenario suffers from a slow convergence rate when the 

number of BS antennas is relatively close to the number 

of user terminal antennas [5].  

In [5] and [6], the fundamentals of data detection 

techniques were comprehensively presented. The authors 

have provided an extensive overview of milestones of 

optimal massive MIMO detection development. The 

impact of channel effects, precoding, and channel 

estimation methods are also presented. In [7], the pros 

and cons of iterative methods were listed where the 

number of computations and Bit-Error-Rate (BER) are 

considered. In addition, it is shown that detectors based 

on RI, OCD, and CG methods can achieve a high 

Hardware Efficiency (HE) while a detector based on JA 

has achieved the worst HE. The relaxation parameter 

effects in RI and SOR methods are also studied. Although 

[5]-[7] were comprehensive, the impact of antenna array 

configurations is not well-investigated. In [8], it is shown 

that linear detectors based on iterative methods could 

achieve a high-performance enhancement with a low 

computational complexity when a stair matrix is 

exploited instead of a diagonal matrix. The article in [9] 

provides insights on data detection algorithms for 

decentralized and cell-free massive MIMO. However, the 

effect of antenna array configurations at the BS is not yet 

investigated. Therefore, there is still room for 

fundamental research in data detection for massive 

MIMO. 

The effect of the antenna array configuration at the BS 

on the performance of MIMO systems was studied in 

many works of literature. In [3], the inter-element spacing 

in a ULA at the BS was utilized to decrease the multi-

user interference and enhance the performance of the 

MU-MIMO system. In [4], a rectangular antenna array 

with non-uniform distances between its elements was 

implemented at the BS to improve the performance of the 

FD-MIMO system. In [10], the elements of the antenna 

array at the BS were divided into multiple sub-arrays 

antenna configurations, each of which is connected with a 

single RF chain. The effect of implementing different 

sub-ULA configurations with the BS on the performance 

of a massive MIMO system was studied. In [11], the 

achievable sum rate for the massive MIMO system was 

investigated, where three different antenna array 

configurations including ULA, UCA, and URPA were 

implemented with the BS. The influence of using ULA, 

URPA, and UCA at the BS on the performance of a 

massive MIMO system was investigated in [12], where 

the orthogonality between the channels vectors associated 

with different users is affected by the antenna array 

configuration at the BS. In [13], hybrid precoding for 

millimeter mmWave massive MIMO systems with 

different antenna configurations has been considered. The 

spectral efficiency and energy efficiency have been 

illustrated when ULA, URPA, and UCPA are utilized. 

However, this paper did not consider the detection 

scheme and the receiver design. 
To the best of our knowledge, this is the first paper to 

investigate the effect of the antenna array configurations 
at the BS on the performance and the computational 
complexity of massive MIMO detection techniques.  

This paper is organized as follows: Section II describes 

the massive MIMO system model. Section III describes 

the iterative methods to avoid direct computation of 

matrix inverse. The computational complexity of each 

method is illustrated in Section IV. Section V presents the 

antenna array configurations at the BS. Section VI 

provides the numerical results and Section VII concludes 

the paper. 

II. SYSTEM MODEL 

In this section, the massive MIMO system model is 

presented. It is assumed that massive multiuser Base 

Station (BS) antennas Nr are serving K single-antenna 

users where K<<Nr. The separation between these single-

antenna user’s devices is many wavelengths so the 

collaboration between these single-antenna user’s 

terminals does not exist. For the uplink communication 

scenario, a single-cell massive MIMO system is assumed. 

The received signal for a time-invariant wireless channel 

can be expressed as  

 y Hx n                                 (1) 

The received signal at the BS is  1rN 
y , the signals 

which are transmitted by the user’s terminals are 

represented by a random vector  1 2 
T

Kx x xx , where 

1Kx , the AWGN random vector is realized by n , 

where  1rN n , and   rN K
H  is the wireless 

channel matrix between Nr BS and K users. Each mobile 
device is restricted to have unitary power, so that 

 2| | 1,  1,  2,  ,  kE x k K      , where E[] denotes the 

expected value. The mmWave channel of the massive 
MIMO system is described as [1] 

   
raycl H

ray

, ,

NN

r r t tt r
il r il il t il il

i=1 l=1C

N N

N N
     H a a      (2) 
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where 
H( ) denotes the Hermitian operators, Ncl is the 

number of scattering clusters, and each cluster has several 

propagation paths that equal Nray. il is the gain of each 

propagation path that follows a complex Gaussian 

distribution with a variance of 2

i
  and zero mean. The 

array response vector of the transmitter is represented by 

( , )t t

t il il a  which is assumed to be independent and 

identically distributed random variables with unit 

variance and zero mean, while ( , )r r

r il il a  is the array 

response vector of the receiver. 
r

il  and 
r

il  are the 

azimuth and elevation Angles of Arrivals (AoA), 

respectively; while 
t

il and
t

il  are azimuth and elevation 

Angles of Departures (AoD), respectively. The angles of 

arrivals and departures follow the Laplacian random 

distribution. Each propagation path can be described by 

three parameters: the complex gains on each path, the 

AoA of the path at the base station, and the AoD of the 

path at the mobile terminal. This system model is usually 

utilized to derive a detection scheme where x is 

determined based on the received vector y. It is 

noteworthy that the channel state information (CSI) at the 

BS is assumed to be known. In the maximum likelihood 

(ML) detector, an exhaustive search is conducted where 

the estimated signal x̂  is illustrated as 

2

2
arg miˆ n x y Hx                         (3) 

It is worth mentioning that the ML detector is barred in 

realization because of its extremely high complexity. In a 

rich scattering environment with a small number of user 

terminals, a detector based on the matched filter (MF) 

achieves a good performance where the estimated signal 

is given as 

MF  ˆ  Hx H y                                   (4) 

In spatially correlated channels, advanced detectors are 

needed to attain an interesting tradeoff between 

performance and complexity. Other linear detectors, such 

as the Zero-Forcing (ZF) and Minimum Mean Square 

Estimation (MMSE), are alternative low complexity 

solutions. In the ZF detector, the estimated signal x̂ ) is 

illustrated as   

 
1

H H H

ZF
ˆ



 x H H H y A y                      (5) 

where 
H

ZFA  is the equalization matrix in the ZF detector. 

It is well known that the effect of noise is neglected in the 

ZF detector which produces a noise enhancement in the 

case of small-valued coefficients. The MMSE detector 

could be implemented to overcome the weakness in the 

ZF detector. The estimated signal in the MMSE detector 

is given as  

 
1

H 2 H H

MMSE
ˆ 



  x H H I H y A y             (6)  

where 
H

MMSEA  is the equalization matrix in the MMSE 

detector. 2 and I are the noise variance and the KK 

identity matrix, respectively. As shown in (5) and (6), the 

matrix inversion is included in the equalization matrix for 

both the ZF and MMSE detectors. Due to the high 

complexity of computation of the matrix inversion, 

several iterative methods have been proposed and they 

are well-known in detectors design since 2013. 

III. ITERATIVE MATRIX INVERSION METHOD 

Iterative methods date to the late 18th century when 

Jacobi (JA) and Gauss-Seidel (GS) iterative methods 

have been proposed. Matrix inversion exhibits a high 

computational complexity, thus, it is very seldom to use 

iterative methods for solving small dimension systems 

because the time required for a satisfactory accuracy 

could exceed that required indirect techniques to find the 

exact solutions, such as the Gaussian Elimination (GE) 

method. For a large system, iterative methods are 

efficient to approximate the matrix inversion in terms of 

both storage and computation. As shown in (5) and (6), 

matrix inversion is wanted to equalize the received signal 

and is being one of the awful complex mathematical 

operations in linear and nonlinear massive MIMO 

detectors. The problem increases as the MIMO size 

increases. Several methods are proposed to 

approximate/avoid the computation of an exact matrix 

inverse, rather than computing it. In addition, a challenge 

of matrix inversion also lies and the system is 

characterized as ill-conditioned when the channel matrix 

is nearly singular. In this situation, advanced detectors are 

in demand to overcome the inherent noise enhancement. 

In this section, we present the iterative matrix inversion 

methods in the context of massive MIMO detectors 

where the number of iterations and the systems’ size are 

playing a major role in achieving a balance between 

complexity and performance. The convergence rate of 

each method has a great impact on achieving a 

satisfactory balance between performance and complexity. 

The convergence rate is based on the spectral radius of 

the associated matrix. It is well known that the spectral 

radius (H) of a matrix H is defined by 

  max H                         (7) 

where  is an eigenvalue of H. However, (H) is strongly 

related to the norm of a matrix. One way to choose a 

procedure to accelerate convergence is to select a method 

whose associated matrix has minimal (H). The aim is to 
fully void the matrix inversion of the Gram or Gramian 

matrix G=HHH. In other words, G1 will not be 
calculated or approximated. However, the received signal 
is equalized through iterative methods such as the GS, the 
CG, the SOR, the JA, and the RI. As mentioned earlier, 
the number of iterations and the initial solution are 
playing a pivotal role in achieving a pleasurable 
performance-complexity profile. 

A. Successive Over Relaxation 

The SOR method is a well-known iterative method 

where the estimated signal is described as 
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1

( ) ( 1)

MF

1 1
ˆ ˆ ˆ1n n

 



     
         
     

x D L x D U x     (8) 

where , D , n, L, and U are the relaxation parameter, 

diagonal matrix, number of iterations, strictly lower and 

upper triangular components, respectively [14]. The 

relaxation parameter () plays a crucial role in the 

systems’ performance-complexity profile. However, the 

method is called the under-relaxation method if 0<<1 

while it is called the over-relaxation method if  >1. The 

profile of a detector is greatly influenced by the initial 

solution 
(0)

x̂  where the common selection is 
(0) 1

MF
ˆ ˆx D x . If there is no prior knowledge about the 

initial solution 
(0)

x̂ , it can be considered as a zero vector. 

The main drawback of this detector is an uncertain 

relaxation parameter since it could be greater than zero 

and smaller than 2. In addition, G has to be pre-computed 

and supplied as an input to the method which could 

increase the computational complexity. 

B. Gauss-Seidel 

The GS method is a distinctive status of the SOR 

method, where the relaxation parameter is considered as 

1  . The estimated signal is given as  

     1 ( 1)

MF
ˆ ˆ ˆ

n n   x D L x Ux                 (9) 

This method is not appropriate for parallel computation 

due to the internal sequential iterations structure. 

However, the GS-based detector requires lower 

computational complexity than a detector based on the 

SOR method [15]. Like the SOR method, the initial 

solution can be considered as   1

F

0

M
ˆ ˆ

 Dx x . If there is no 

prior knowledge about 
 0

x̂ , it can be considered a zero 

vector. 

C. Jacobi 

The JA method is an iterative method where the 

diagonal matrix has a great impact to find the estimated 

signal as 

      11

MF
ˆ ˆ ˆ

n n  x D x D A x             (10) 

which is applicable if  

 1lim 0
n

n




 I D A                       (11) 

A detector that depends on the JA method converges 

slowly, and therefore, implies high latency [16]. In 

addition, it is not achieving optimal performance when 

the ratio of the user terminal to BS antennas is close to 

one. In general, the computational complexity required by 

the JA method is lower than the required in the SOR and 

GS methods. In general, the JA method guarantees that 

the first iteration is multiplication free and thus, 

complexity is low. 

D. Richardson 

The RI method is an iterative method where  plays a 

crucial role in the performance-complexity profile [17]. 

Unlike the SOR, GS, and JA methods, it is executing 

certain vector operations and multiplications by H where 

the estimated signal is obtained as 

 ( ) ( 1) ( 1)ˆ ˆ ˆn n n   x x y Hx                (12) 

It is shown that a good enough balance between the 

computational complexity and the performance can be 

achieved when 0 2   , where  is the largest 

eigenvalue of H. Also a high number of iterations is 

required to converge. However, the RI method is marked 

as a hardware-friendly method. 

E. Conjugate-Gradient 

The CG method was originally designed to solve a 

positive definite linear system [18]. Large sparse systems 

with nonzero entries occurring in predictable manners 

could be solved by implementing the CG method. The 

estimated signal can be obtained as 

       1 1 1ˆ ˆn n nn
p

  
 X X                   (13) 

where ( 1)np   and ( 1)n  are the conjugate direction and a 

scalar parameter, respectively. A detector based on the 

CG method achieves a quasi-optimal performance when 

the ratio between the user terminals and BS antennas is 

small. A detector based on the CG method could achieve 

good performance with low complexity as compared with 

the SOR, GS, JA, and RI methods. 

IV. COMPLEXITY ANALYSIS 

The computation of a matrix inverse requires a large 
number of divisions and multiplications. The 
computational complexity of a massive MIMO detector is 
dominated by matrix multiplications. Table I shows the 
complexity comparison between different iterative 
methods based on the number of multiplications.  

TABLE I: COMPLEXITY COMPARISON AMONG FREE-MATRIX INVERSION 

METHODS 

Method Number of Multiplications 
SOR  24 3 3nk k n    

GS  24 3 1nk k   

RI  24 2 3 3nk k n    

CG 2( 2 )n N k  

JA 2 (2 1)nk k   

V. BASE-STATION ANTENNA ARRAY CONFIGURATIONS  

The antenna arrays provide higher directivity than that 

of their antenna element. The antenna array at the BS is 

generally selected to be uniform. There are various 

configurations of the uniform antenna arrays which can 

be implemented with the BS in the mmWave massive 

MIMO systems. The most common configurations of 

those antenna arrays include a Uniform Linear Array 

(ULA), a Uniform Planar Rectangular Array (UPRA), a 

Uniform Circular Array (UCA), and a Uniform Circular 

Planar Array (UCPA) [2], [19], [20]. In this paper, these 

four uniform antenna array configurations are considered 

to be implemented with the BS. Each antenna array 

configuration consists of 126 isotropic antenna elements.  
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A. Uniform Linear Array (ULA) 

As shown in Fig. 1, the ULA is a one-dimensional 

antenna array where the array response vector for the 

ULA of Nr elements along the x-axis can be expressed as 

[2] 

    1 sin cos

ULA
1

,
r

x x x

x

x

N
j m kd

m

m

I e
  

 
 



 ra      (14) 

All the ULA elements are equispaced with an interval 

of 2x od   , where  and   are the azimuth and 

elevation angles, respectively, 2 ok    , 
o is the free 

space wavelength of the signal. The applied excitation 

weights are set to 1
xmI    and the progressive phase shift 

is set to 0x  . The length of a ULA is about 62.5 o . 

B. Uniform Rectangular Planar Array (URPA) 

The implementation of the URPA with the BS results 

in increasing the number of antenna elements within a 

small area. In x-direction, the number of antenna 

elements equals M with the separation distance between 

every two neighboring elements 2x od   . N elements 

in the y-direction are equispaced at a distance 2y od   . 

The URPA consists of MN elements as shown in Fig. 2. 

 
Fig. 1. The configuration of Uniform Linear Array (ULA). 

 

Fig. 2. Configuration of uniform rectangular planar array (URPA). 

The array response vector of the URPA can be given 

by [21] 

       1 sin sin 1 sin cos

URPA
1 1

,
y y y x x x

x y

x y

M N
j n kd j m kd

m n

m n

I e e
     

 
   

 

  ra  (15) 

The array response vector of the URPA is the product 
of the array response vectors of the ULAs in the x and y 
directions. The applied excitation amplitudes are set to 

1
x ym nI  and the progressive phase shifts in x and y 

directions are set to 0x  and 0y  , respectively. 

The total number of antenna elements in the x and y 
directions are selected to be (M = 9) and (N = 14), 

respectively. The geometrical area for a URPA is 
226 o . 

C. Uniform Circular Array (UCA) 

The UCA can also be implemented to increase the gain. 

Fig. 3 shows the configuration of a circular array with 

radius (r) and the total number of equispaced elements 

Nr . The array response vector of the UCA is given as 

[22] 

 
 sin cos( )

UCA
1

,
r

n na a

a

a

N
j kr

r n

n

I e
   

 
 



a         (16) 

where the angular position of the na element is 

2
an a rn N  . The excitation amplitudes are set to 

1
anI  , and the phase excitation of the na element is set 

to 0
an  . The diameter of a UCA is about 20 o . 

D. Uniform Circular Planar Array (UCPA) 

The configuration of the UCPA is illustrated in Fig. 4. 

It consists of several circular rings with different radii 

( )
a am nr  and the same center. The antenna array elements 

are placed at equal distances on the circumference of each 

ring. The array response vector of the UCPA could be 

expressed as follows [22] 

 
 sin cos( )

UCPA
1 1

,
m m

m n m n m na a a a a a

a n

a a

M N
j kr

r m n

m n

I e
   

 
 

 

a      (17) 

where 2
a a a mm n n N   is the azimuth angle of na 

element in the ma ring, respectively. The excitation 

weights are set to 1
a nm nI   and the progressive phase 

shift of the na element in the ma ring is set to 0
a am n  . 

For a UCPA, the total number of antenna elements on the 

ma ring is 6ma, so the 126 antenna elements are 

distributed on 6 rings as ( 1 6N  : 2 12N  : 3 18N  : 

4 24N  : 5 30N  : 6 36N  ). The radius of each ring 

a nm nr  is selected to provide o/2 inter-element spacing at 

the angular direction. The geometrical area of the UCPA 

is about 
225.8 o . 

 

Fig. 3. The configuration of Uniform Circular Array (UCA). 

 
Fig. 4. The configuration of Uniform Circular Planar Array (UCPA). 

xd

 

yd  

xd  

2  
r 

2  
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VI. NUMERICAL RESULTS 

In this section, the 2D directivity patterns for different 

antenna array configurations at the BS are simulated 

using MATLAB. Fig. 5 shows the 2D directivity patterns 

for the ULA, UCA, UCPA, and URPA antenna array 

configurations when each of these antenna arrays consists 

of 126 antenna elements and the azimuth angle is 0 

degrees. The ULA at the BS has maximum and minimum 

directivity of 20.27 dBi and ‒77.74 dBi, respectively. The 

ULA at the BS has a null-to-null beam-width of 22. The 

URPA at the BS provides a null-to-null beam-width of 

30.92, and it has maximum and minimum directivity of 

22.68 dBi and ‒29.44dBi, respectively. The main beam of 

the URPA at the BS is wider due to the decrease in the 

aperture size. The UCA at the BS has maximum and 

minimum directivity of 21.14 dBi and ‒44.19 dBi, 

respectively; while its null-to-null beam-width is 6. The 

UCA has a high angular resolution because of its large 

aperture size. The 2D maximum and minimum directivity 

for the UCPA at the BS are 22.68 dBi and ‒87.36 dBi, 

respectively. The null-to-null beam-width for the UCPA 

is 21.56. The aperture size for the UCPA is small at the 

BS, so its angular resolution is decreased. The 

comparison between the antenna array configuration at 

the BS is indicated in Table II.  

 
Fig. 5. 2D directivity patterns for different antenna array configurations 

at the BS (126 antenna elements, azimuth angle = 0 degrees). 

TABLE II: COMPARISON BETWEEN THE ANTENNA ARRAY 

CONFIGURATIONS AT THE BS 

Antenna 
array 
configur
ation at 
the  BS 

Maximum 
directivity 
for the 2D 
directivity 
pattern 

Minimum 
directivity 
for the 2D 
directivity 
pattern 

Difference 
between 
maximum and 
minimum 
directivity 

Null-
to-
null 
beam-
width 

ULA 20.27 dBi ‒77.74 dBi 98.01 dBi 22° 

UCA 21.14 dBi ‒44.19 dBi 65.33 dBi 6° 
UCPA 22.63 dBi ‒87.36 dBi 109.99 dBi 21.56° 

URPA 22.63 dBi ‒29.44 dBi 52.12 dBi 30.92° 

The performance and the complexity of a detector 

based on exact MMSE and also iterative matrix inversion 

methods will be presented in bit error rate (BER) versus 

the signal to noise ratio (SNR). A comparison between 

the SOR, GS, RI, JA, and CG methods will be provided 

in different antenna array configurations, i.e., ULA, 

URPA, UCPA, and UCA. All simulations are carried out 

with the mmWave channel model introduced in (2) which 

has five clusters Ncl=5 and the number of rays within each 

cluster is ten Nray=10. The modulation scheme is 16QAM, 

and 12618 MIMO system. The impact of n and the 

computational complexity will be discussed as well. As 

given in (14) to (17), each antenna array configuration 

has its array response vector. The wireless channel matrix 

H is a function of the array response vector as given in (2) 

so that the wireless channel matrix is based on the 

antenna array configuration. The values of the elements 

of H will be varied when the antenna array configuration 

is changed and this will result in having a different value 

of the estimated signal and BER for each antenna array 

configuration as given in (6), (8) to (10), (12), and (13). 

Fig. 6 illustrates the BER performance of the MMSE 

detector in different antenna array configurations at the 

BS. It is clear that the URPA has achieved the best 

performance while the UCPA has the lowest BER. For 

instance, the BER=104 is achieved at SNR = 9dB, 11dB, 

12dB, and 20dB in URPA, UCA, ULA, and UCPA, 

respectively. However, the MMSE-based detector is not 

desired in implementation because of a matrix inverse 

component. Therefore, iterative matrix inversion methods 

are applied. A better BER performance of the MMSE 

detector is obtained with the lower value of the difference 

between the maximum and the minimum directivity as 

illustrated in Table II. 

 
Fig. 6. Performance of MMSE detector in different antenna array 

configurations. 

Fig. 7 shows the BER performance of the GS detector 

through different antenna array configurations at the BS 

and n=8. In this detector, the UCA has obtained the best 

performance while the URPA and UCPA had the worst. 

It is clear that the UCPA and URPA require more 

iterations to achieve satisfactory performance. The 

BER=104 is achieved at SNR = 12dB and 16dB in UCA, 

and ULA, respectively. Fig. 8 illustrates the BER 

performance of the SOR detector through different 

antenna array configurations at the BS, and at n=8. In this 

detector, the UCA has obtained the best performance 

while the URPA and UCPA had the worst. It is also clear 

that the UCPA and URPA require more iterations to 

achieve satisfactory performance. The BER=104 is 

achieved at SNR = 12dB and 14dB in UCA, and ULA, 

respectively. Fig. 9 illustrates the BER performance of 

the CG detector through different antenna array 

configurations at the BS, and at n=8. In this detector, the 

UCA has obtained the best performance while the URPA 
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and UCPA had the worst. It is also clear that the UCPA 

and URPA require more iterations to achieve satisfactory 

performance. The BER=104 is achieved at SNR = 12dB 

and 14dB in UCA, and ULA, respectively. 

 
Fig. 7. Performance of the GS detector in different antenna array 

configurations. 

 
Fig. 8. Performance of the SOR detector in different antenna array 

configurations. 

 
Fig. 9. Performance of the CG detector in different antenna array 

configurations. 

Fig. 10 illustrates the BER performance of the JA 

detector through different antenna array configurations at 

the BS, and n=8. The JA detector is not applicable to the 

ULA, URPA, UCPA, and UCA. It has unsatisfactory 

performance over all iterations and antenna array 

configurations. Fig. 11 illustrates the BER performance 

of the RI detector through different antenna array 

configurations at the BS, and n=8. In this detector, the 

UCA has obtained the best performance while the URPA 

and UCPA had the worst. It is also clear that extra 

iterations are required to achieve the target BER=104. As 

indicated in Table II, it is noted that the best BER 

performance with the SOR, GS, RI, and CG detection 

methods is achieved as the values of the null-to-null 

beam-width and the difference between the maximum 

and the minimum directivity are decreased. Fig. 12 to Fig. 

15 illustrates the comparison among the proposed 

detectors over all types of antenna array configurations at 

the BS in terms of computational complexity. The 

detector based on the CG method has the lowest 

computational complexity while the RI method has the 

highest complexity. The SOR and the GS methods have a 

reasonable computational complexity. It is also 

noteworthy that the CG detector achieves the lowest 

computational complexity with satisfactory performance. 

A detector based on the JA method is not included in the 

complexity comparison chart because it is not robust in 

performance.  

 
Fig. 10. Performance of the JA detector in different antenna array 

configurations. 

 
Fig. 11. Performance of the RI detector in different antenna 

 
 

 
Fig. 12. A comparison between iterative matrix inversion methods to 

achieve the target BER when UCA is used. 
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Fig. 13. A comparison between iterative matrix inversion methods to 

achieve the target BER when UCPA is used. 

 
 

 
Fig. 14. A comparison between iterative matrix inversion methods to 

achieve the target BER when ULA is used. 

 

 

 
 

Fig. 15. A comparison between iterative matrix inversion methods to 

achieve the target BER when URPA is used. 

  

This is the first paper to examine the effect of antenna 

array configurations at the BS on the performance and 

computational complexity of massive MIMO detection 

techniques. We investigated the performance of massive 

MIMO detection techniques with different antenna array 

configurations at the BS in the mmWave channel. The 

simulation results showed that the antenna array 

configuration at the BS can influence the performance of 

the massive MIMO detection techniques. We found that 

the implementation of URPA at the BS with the MMSE 

detection algorithm outperforms the other antenna array 

configurations. The deployment of UCA at the BS 

provides the best performance with the SOR, GS, RI, and 

CG detection methods. Although a detector based on JA 

method can be easily implemented, it is not applicable to 

the ULA, URPA, UCPA, and UCA due to a slow 

convergence rate, hence, implying a high latency. In 

addition, a comparison among detection techniques has 

been conducted in terms of computational complexity. 

The detector based on the CG method has the lowest 

computational complexity while the RI method has the 

highest complexity. 
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