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Abstract—The two fundamental problems of Test of 

Orthogonality of Projected Subspace (TOPS) based Angle of 

Arrival (AOA) estimation methods are computational 

complexity and spurious peaks. This work tries to explain 

the causes of these problems and applies a two-step 

modification to the Squared-TOPS (SQ-TOPS) procedure to 

tackle both problems. In the first step, the computational 

complexity is minimized via replacing the computationally-

intensive eigenvalue decomposition (EVD) with a novel 

Covariance Matrix (CM) subsampling methodology to 

construct Projection Matrix (PM). Second, the problem of 

spurious peaks generation is addressed by establishing a 

new squared orthogonality test between the newly created 

PM and the transferred signal subspaces (after subspace 

projection). To justify the effectiveness of the suggested 

method, a numerical example along with intensive Monte 

Carlo simulations over different scenarios are provided 

where the proposed algorithm is systemically compared 

with its rival methods. The simulation results show the 

superiority of the proposed algorithm, projection matrix 

squared TOPS (PMS-TOPS), in terms of lower complexity, 

higher accuracy, less sensitivity to correlated sources, and 

low converges time in comparison to TOPS, SQ-TOPS, and 

weighted square TOPS (WS-TOPS) methods.  

Index Terms—Angle of arrival, computational complexity, 

projection matrix, wideband signals  

I. INTRODUCTION 

Source localization using antenna array has been an 

attractive research topic due to its potential contribution 

in various applications such as sonar, radar, wireless 

communications, and Unmanned Aerial Vehicle (UAV) 

[1]-[3]. Direction/Angle of arrival (DOA\AOA) 

estimation is a primary method for both narrowband and 

wideband sources localizations. The AOA estimation 

techniques for narrowband sources, such as maximum 

likely hood (ML), multiple signal classification (MUSIC), 

estimation of signal parameters via rotational invariance 

technique (ESPRIT), have been widely studied [4], [5]. 

These algorithms, however, are not directly applicable to 

localize wideband sources. The reason for this 

inapplicability is that narrowband AOA estimation 

algorithms built based on an assumption that time delays 

 

  
 

 

between array elements can be approximated by phase 

shifts. This assumption, however, is valid only when the 

signal center frequency (fc) is significantly high compared 

to its bandwidth (BW) (i.e., fc>>BW). In wideband source 

localization, the phase difference between array sensors is 

the function of not only AOA, but also temporal 

frequency of the incident signals [6]. Thus, pre-

processing step to decompose the wideband signal into 

multiple narrowband signals using Discrete Furrier 

Transform (DFT) is usually required.  

Generally, narrowband and wideband AOA 

estimations involve time-domain and frequency-domain 

analyses, respectively. The former one seems to be 

inappropriate for wideband signals as the steering vector 

is frequency dependent rather than angle dependent only 

[7]. Additionally, the information within all frequency 

bins of the wideband signal need to be taken into 

consideration, thus frequency-domain analysis is required 

[8]. From the complexity perspective, in contrast to the 

time-domain analysis of narrowband signals in which 

array output can easily be represented with a single 

frequency, direction-finding of wideband signals in 

frequency-domain is more complex due to processing 

multiple-frequencies. However, frequency-domain 

analysis for wideband signals yields higher accurate 

result compared to the single-frequency analysis in time-

domain which may lead to missing existing valuable 

information in wideband signals [9], [10]. Therefore, in 

this paper frequency-domain analysis is adopted. 

The wideband AOA estimators are generally classified 

into two categories; Incoherent Signal Subspace (ISS) [11] 

and Coherent Signal Subspace (CSS) [12] methods. The 

former one processes all the frequency bins 

independently then the results of all the bins are averaged 

to obtain the final AOA estimation. However, poor 

estimation in one bin will negatively affect the accuracy 

of the final estimation. Therefore, this method performs 

well only in the high SNR region. To address this 

problem, CSS methods are introduced. In this category, 

an appropriate transformation matrix is used to transfer 

the covariance matrices (CMs) at different frequencies to 

a universal CM. The universal CM will have the same 

structure as narrowband CM at a specific frequency band; 

hence, it is processed by narrowband AOA algorithms 

such as MUSIC. Under low SNR condition, CSS methods 

show better estimation performance than ISS algorithms. 



Two-sided Correlation Transformation (TCT) [13] and 

Weighted average of signal subspaces (WAVES) [14] are 

the developed versions of CSS algorithms. However, the 

requirement for the initial estimation of the signal’s 

direction, known as focusing angle, is the main drawback 

for CSS methods as their accuracies depend on how close 

the focusing angle to the true AOA [15]. 

To address this problem, a new class of wideband 

AOA estimation named test of orthogonality of projected 

subspace (TOPS) was introduced [8]. The TOPS 

algorithm is different from both coherent and incoherent 

methods and tries to fill the gap between them, therefore, 

it is known as non-coherent method. The TOPS estimator 

evaluates the orthogonality between the transferred 

Signal Subspace (SS) and Noise Subspaces (NS) at 

different frequencies. The two subspaces are orthogonal 

only when the hypothesized angle in the transformation 

matrix equals to the true AOA. The main merit of the 

TOPS algorithm is that it does not need pre-processing 

for initial estimation values and performs well at mid 

SNR. In addition to its high-complexity and false peaks, 

the performance of this algorithm, however, degrades 

when wideband sources are correlated. Later, squared 

TOPS (SQ-TOPS) algorithm [16] was presented which 

uses SS and NSs twice known as squared test of 

orthogonality. This modification improves the estimation 

performance compare to the standard TOPS algorithm, 

however, at the cost of higher computational complexity. 

Additionally, SQ-TOPS does not remove false peaks 

appearing in the TOPS spectrum. To tackle this problem, 

weighed squared TOPS (WS-TOPS) [17] was proposed. 

This algorithm eliminates the false peaks and enhances 

the AOA estimation accuracy through using a new 

squared matrix and applying the selective weighted 

averaging process. The performance-enhancement 

achieved through the WS-TOPS estimator, however, 

comes at the cost of adding more computational cost.  

Current researches in wideband AOA estimation 

concentrate mainly on two aspects; computational 

complexity and estimation accuracy. The accuracy of the 

traditional wideband AOA estimations is directly related 

to the accuracy of the initial values. Recently, focus on 

SS(FSS) method is proposed [18] that partially avoids the 

dependency of the initial values. However, the 

computational complexity related to the focusing matrix 

evaluation is not addressed in FSS. Co-prime array 

configuration is adopted in the latest research [19] to 

overcome the algorithm complexity. Other works have 

tried to make the improvement in both aspects [20]-[22]. 

Furthermore, recent work presented in [23] applies the 

TOPS algorithm to the coherent sources at the cost of 

more complexity added by the de-correlation process.  

From the above description, there exist two main 

problems in the TOPS and SQ-TOPS algorithms which 

are complexity and accuracy. First, the computational 

complexity of these methods is mainly due to applying 

eigenvalue decomposition (EVD) technique to each 

frequency bin to extract subspaces from the measured 

CM [9], [15]. Second, estimation accuracies of these 

algorithms are affected by the spurious peaks that makes 

it difficult to detect true signal directions [24]. The 

previous works mainly tried to balance the two 

contradictory aspects, complexity and accuracy (i.e., 

improving one of them at the cost of the other). Therefore, 

the improvement in both aspects simultaneously remains 

challenging and this has motivated the work presented in 

this paper.   

In this work, we aim to tackle these two problems by 

introducing an enhanced wideband AOA estimation 

algorithm based on the SQ-TOPS method, so named 

projection matrix squared TOPS (PMS-TOPS). To this 

end, the PMS-TOPS algorithm applies two-step 

modifications to the SQ-TOPS procedure. In the first step, 

the computationally-inefficient EVD required in each 

frequency band is replaced by an efficient Projection 

Matrix (PM) constructed based on a novel sampling 

methodology that successfully extracts most valuable 

information from the CM. This step is motivated by the 

fact that complexity of PM construction is considerably 

lower than that EVD technique [25]. In addition to 

reducing the overall computational cost, this substitution 

guarantees higher estimation accuracy within low and 

mid SNR regions and makes the algorithm to be less 

sensitive and more stable against correlated sources. In 

the second step, the proposed method employs a new 

squared evaluation matrix and runs the orthogonality test 

between the transferred SS and the constructed PM for 

each hypothesized angle. This step will eliminate the 

false peaks generated mainly due to reinforcing noise 

components resulted from dot product between NS and 

the signal null-space [26].     

To sum up, we offer the following contributions: 

• The proposed PMS-TOPS algorithm enjoys lower 

complexity compared to the TOPS, SQ-TOPS, and 

WS-TOPS algorithms. This is achieved by avoiding 

repeatedly applying the computationally-expensive 

EVD technique to each frequency band. This 

achievement leads to minimum computational cost 

and minimum execution time compared to the 

counterpart methods and makes it an appropriate 

choice for limited power applications such as IoT 

and AUV.   

• The PMS-TOPS has minimum sensitivity to the 

correlated sources and retains high performance in 

the presence of coherent sources. This is 

accomplished by applying a new subsampling 

methodology to construct PMs.  

• The introduced method eliminates the false peaks 

appearing in the TOPS and SQ-TOPS spectrums. 

This improvement is obtained by employing a new 

squared orthogonality evaluation matrix and 

avoiding noise-compounding effect.  

This paper is organized as follows. Wideband signal 

model and problem formulation are described in Section 

II. Section III reviews some of the most related works. In 

Section IV, the proposed method is presented followed by 

Section V where the simulation results are demonstrated 

and comprehensively discussed. Section VI concludes 

main points of the paper. 
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Fig. 1. AOA problem formulation with M-elements arbitrary array and L 

sources. 

II. WIDEBAND SIGNAL MODEL AND PROBLEM 

FORMULATION 

We assume that an M elements arbitrary array is used 

to collect information for estimating the AOAs of L (L<M) 

wideband sources as illustrated in Fig. 1.  

The wideband signals arrive to the array from random 

directions of (l, l), l=1, 2, , L where l and l are the 

elevation and azimuth angles of lth signal, respectively. 

The wideband signals exist over the bandwidth BW 

between lowest frequency fl and highest frequency fh. The 

received wideband signal at mth array elements can be 

represented as 

( ) ( ) ( )
1

sin cos
L

m k m k k m

k

x t s t h n t 
=

= − +           (1) 

where sk(t) represents the kth source signal, nm(t) denotes 

the Additive White Gaussian Noise (AWGN) at mth 

channel, hm=(m−1)d/c where d and c represent the spatial 

separation between adjacent array elements and speed of 

light, respectively. To analyze the wideband signals and 

estimate their AOAs, they are decomposed into P 

narrowband signals using Fast Fourier Transform (FFT) 

whose output can be modelled as follows [24]: 

( ) ( ) ( )2 sin cos

1

j m k k

L
j f h

m j k j m j

k

f f e f
  −

=

= +X S N    (2) 

( ) ( ) ( ) ( ), ,j j j jf f f f = +X A S N                       (3) 

where 
1( ) M

jf X  represents the frequency domain of 

the received signal corresponding to frequency jf , 

1( ) L

jf S  is the frequency domain representation of 

the source signal for fl <fj <fh where j=1, 2, , P, 
1( ) M

jf N  is the AWGN at each array element for jth 

frequency band.  

( , , ) M L

jf   A  is a steering matrix at thj frequency 

and it contains the steering vectors for L  signals. Thus, 

( , , )jf  A can be represented as follows: 

1 1( , , ) ( , , ), ( , , )j j j L Lf f f      =  A a a         (4) 

where 1( , , ) M

j k kf   a represents the steering vector 

for kth incident angle at jth frequency. In contrast to the 

narrowband signals, a is the function of both AOA and 

signal frequency. To drive ( , , )j k kf  a  for arbitrary 

array geometry shown in Fig. 1, the unit vector, uk, 

containing both k  and k  needs to be computed as 

ˆ ˆ ˆcos sin sin sin cosk k k x k k y k za a a    = + +u       (5) 

where ˆ
xa , ˆ

ya  ,and ˆ
za  represent the unite vectors for 

Cartesian coordinates. Afterwards, the second unit vector 

vi is required to determine the spatial distance between 

reference element (i.e., element 1) and the ith element of 

the array as follows:  

ˆ ˆ ˆcos sini i i x i i y i zr a r a z a = + +v                  (6) 

where i=1, 2, , M and i  represents the angle between 

x-plane and the position of the ith array element. To 

procced, the angle between uk and vi for the ith sensor 

with respect to the reference element can be computed by 

( )

1

1

1

cos

sin cos ( ) cos
    cos

    cos sin cos ( ) cos

i k

k k i i k

k k i i k

i k

i k

i k

z

.

z



   

   

−

−

−

 
=   

 

 − +
=   

 

= −



+



v u

v u

v u
           (7) 

An ML matrix can be used to represent the whole set 

of ik due to collecting L plane waves by M array 

elements as 

11 1

1

L

ik

M ML

 

 

 
 

=  
 
 

γ .                       (8) 

The time delay ik corresponding to a particular angle, 

ik, is computed as 

1

cos( )

    cos(cos (sin cos( )) cos )

    {sin cos( )) cos }

i k ik

k k i i k

k k i i k

r

r z

r z

 

   

   

−

=

= − +

= − +

     (9) 

Similarly, the total set of ik for L signals received by 

M antennas is represented as follows:  

11 1

1

.

L

ik

M ML

 

 

 
 

=  
 
 

T                      (10) 

The angular phase difference wik can be calculated 

from the multiplication between ik and propagation 

constant  as   

2
ik ik ikw


 


= = ,                       (11) 
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where  is the signal wavelength. The total phase 

differences corresponding to Tik are presented by 

11 1

1

.

L

ik

M ML

w w

w w

 
 

=  
 
 

Ξ                           (12) 

wik contains information about elevation and azimuth 

angles. Therefore, the M1 steering vector at jth 

frequency band for kth signal arrived to the arbitrary 

array shown in Fig. 1 can be modelled as follows: 

1 2( , , ) , , , .j k j k j Mk
T

jf w jf w jf w

j k kf e e e 
− − − =

 
a      (13) 

This work considers 1D AOA estimation. 

Henceforward, we represent ( , , )jf  A  and ( , , )j k kf  a  

as Aj() and aj(k), respectively. The CM of the received 
data is computed by 

 
2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

H

xx j j j

H

xx j j ss j j j M

f E f f

f f f  

=

= +

R X X

R A R Α I
    (14) 

where {}E  and ( )H denote the statistical expectation and 

conjugate transpose operator, respectively. Rss(fj) is the 

signal CM at jth frequency band. 2 ( )jf  represents the 

variance of the noise which is uncorrelated with the 

signals and MI is the M M identity matrix. Practically, 

Rxx(fj) is estimated over finite N snapshots as follows:  

1

1
( ) ( ) ( ).

N
H

xx j i j i j

i

f f f
N =

= R X X                (15) 

III. TOPS BASED AOA ESTIMATION ALGORITHMS 

When the wideband sources are totally non-correlated, 

the EVD technique is usually applied to extract SS, Fj, 

and NS, Wj, from the Rxx(fj). These subspaces can be 

represented by  

,1 ,2 ,, , , ,j j j j L
 =  F q q q                        (16) 

, 1 , 2 ,, , ,j j L j L j M+ +
 =  W q q q                 (17) 

where ,1 ,2 ,, , ,j j j Mq q q  denote the eigenvectors of Rxx(fj) 

sorted in descending order with respect to their 

corresponding eigenvalues as follows:  

2

,1 ,2 , , 1 , .j j j L j L j M     +   = = =       (18) 

After formulating Fj and Wj, TOPS based algorithms 

select a certain frequency band known as reference 

frequency for SS. To explore multiple frequency 

components, a transformation matrix is used to transfer 

the SS for the reference frequency into other frequencies. 

Finally, the orthogonality between the transferred SS and 

the NSs is tested at each hypothesized angle to estimate 

the AOA of the wideband sources. 

A. Standard TOPS Algorithm 

Assume that i is selected as a reference frequency and 

the SS at this band is transferred into other bands by 

( ) ( ), ,   j j i i j  =  U Ψ F                  (19) 

where Uj () is the transferred SS from i to j, Fi is the 

SS at reference frequency, j=j −i, and ( , )j Ψ  is 

a full rank and diagonal transformation matrix, which 

transfers Fi to other frequencies, and defined as follows: 

( , ) diag{ ( , )}.j M M j    = Ψ a                (20) 

The mth element on the diagonal of ( , )j Ψ is as 

follows:  

( , ) exp sin( ) .j jm m

md
j

c
   



 
  = −  

 
Ψ        (21) 

We apply this transformation at each hypothesized 

search angle  to test the orthogonality between the 

transferred SS and NSs over all the scanned ranges as: 

( ) ( , ) .j j i i j  =  U Ψ F                  (22) 

Afterwards, we define an L(P−1)(M−L) matrix, D() 

as follows: 

2 2 3 3( ) .H H H

P P  =  D U W U W U W         (23) 

The estimator matrix D() becomes rank-deficient (i.e., 

losses its rank) if  is equal to the true angle of the 

incident signal. The AOA estimation accuracy directly 

related to the accuracy of the CM estimation. The values 

of N and SNR (which are not controllable by the array 

processor) determine the precision of the CM estimation. 

Some of the errors within D() can be reduced by 

applying subspace projection as follows: 

( )
1

( ) ( ) ( ) ( ) ( )H H

j M j j j j    
−

= −P I a a a a           (24) 

where Pj()is the projection onto the null space of ( )j a . 

The transformed signals subspace can be updated by 

( ) ( ).j j j  =U P U                           (25) 

The estimator matrix D() is modified as 

2 2 3 3

2 2 2

( ) ( ) ( ) ( )

         = ( ) ( ) ( ) ( ) .

H H H

P P

H H H H

P P P

   

   

    =  

  

D U W U W U W

U P W U P W
   (26) 

Better estimation accuracy can be obtained by using 

( )D rather than D(). This is because the errors 

produced due to interfering some SS component into Wj 

is removed by the projection matrix Pj(). Thus, the 

spatial spectrum of the standard TOPS algorithm is 

generated as follows:  

TOPS

min

1
( ) arg max ,

( )
Y 

 

 
=  

 
              (27) 

where min ( )  denotes the smallest singular value of 

( )D .  
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B. Squared TOPS (SQ-TOPS) 

Using the transferred SS in (25) and NS Wj the SQ-

TOPS establishes a squared evaluation matrix Z() as 

follows:  

( ) [ ( ) ( )],H H

j j j j   =Z U W W U  for 2 j P     (28) 

Similar to (27), the SQ-TOPS spectrum is generated by  

SQ-TOPS

,min

1
( ) arg max ,

( )Z

Y 
 

 
=   

 
       (29) 

where ,min ( )Z  is the minimum singular value of Z(). 

The sensitivity to detect rank-deficiency in Z() is 

improved compared to (27) because all the elements (i.e., 

rows and columns) of Z() have to be close to zero when 

 equals one of the true AOAs. This will enhance 

estimation performance of SQ-TOPS in comparison to 

the standard TOPS method. This modification, however, 

adds more complexity to the standard TOPS algorithm 

and it is unable to resolve the false peaks problem in the 

spatial spectrum. 

C. Weighted Squared TOPS (WS-TOPS) 

WS-TOPS algorithm conducts two enhancements to 

the SQ-TOPS method. The first improvement removes 

the false peaks through adding a new term to the 

evaluation matrix Z() in (28) as follows:  

 

( ) ( ) ( )

1
( ) ( ) ,

H H

j j j j j

H H

j j j j L
M

  

 

 = +H U W W U

a W W a I
       (30) 

 ( ) ,j =Z H   for 2 j P                   (31) 

where IL is an L L  identity matrix. The estimated 

AOAs correspond to the smallest singular values of 

( )Z . In the second enhancement, a new weighting 

factor, i , was added to the spatial spectrum equation in 

(29) and defined as 

,min

,max

s

i

n





= ,                                (32)  

where 
,mins and 

,maxn are the minimum signal eigenvalue 

and maximum noise eigenvalue, respectively. This 

weighting factor may seriously affect the estimation 

accuracy when the frequency bands are too noisy. To 

solve this, the frequency bands with a weighting factor i 

greater than a pre-defined threshold th, are only used. 

These two modifications are combined and the spatial 

spectrum of the WS-TOPS is generated based on the 

following formula:   

WS-TOPS

,min

1

( ) arg max ,
1

( )
i

P

i

i

P
Y

P



  

=

 
 
 =
 
 
 
 Z

        (33) 

where P  is the number of frequency bands with thi  . 

These two steps improve estimation accuracy and 

removes false peaks. However, these improvements come 

at the cost of higher computational complexity. Meaning 

that the computational cost of the WS-TOPS is 

considerably higher than both standard TOPS and SQ-

TOPS algorithms. In the following section, we propose a 

new SQ-TOPS based AOA estimation that outclasses the 

presented methods in terms of not only estimation 

accuracy, but also computational complexity.    

IV. PROPOSED METHOD 

The proposed PMS-TOPS algorithm applies two key 

modifications to the SQ-TOPS algorithm. First, it avoids 

the complex EVD technique through constructing a low-

complex PM based on a novel CM sampling technique. 

Thus, in the proposed method the extraction of Wj is 

totally avoided. This modification curtains the overall 

complexity of the algorithm, makes it less sensitive to the 

correlated sources, and improves estimation accuracy at 

low and mid SNR regions. Second, PMS-TOPS 

establishes a new squared orthogonality evaluation matrix 

between the transferred SS and the newly created PM at 

each frequency band. This step will diminish the false 

peaks generated primarily due to projecting the NS to the 

signal null-space [26] in the traditional TOPS-based 

methods. These two steps are detailed below.  

A. Replacing EVD with Direct PM Construction via CM 

Subsampling 

In AOA estimation problem, a PM V is constructed, 

whose null space equals to the SS. It is easy to show that 

the solution of V is as follows: 

( )
1

,H H

M

−

= −V I Q Q Q Q               (34) 

where Q is an M L  matrix which its columns span the 

same space as SS. When the sources are independent, L 

columns from the CM can be extracted to obtain the 

sampled matrix Q [25]. From this perspective, we 

construct the PM based on the CM columns. Different 

sampling methodologies proposed in literature to 

formulate sampled matrix Q from the direct extraction of 

CM columns [25], [27], [28]. However, none of the 

existing sampling methodologies takes the correlations 

between the selected columns into consideration. This 

will have negative effect on the PM construction and 

hence on AOA estimations.  To extract as much non-

redundant information about the incident signals as 

possible, we propose to select the L independent columns 

from the CM to form the matrix sketch Q. In such case, 

the PM is constructed based on the L columns of the CM 

that are least-dependent. In addition to reducing the 

complexity, this modification makes the AOA estimation 

method to be less affected by the correlated sources due 

to removing the dependency with steering vector [27]. 

The observed CM in (15) can be re-written as follows:    
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11 1

1

( ) ( )

( ) .

( ) ( )

j M j

xx j

M j MM j

r f r f

f

r f r f

 
 

=  
 
 

R            (35) 

The fundamental question now is which L columns 

need to be used out of M columns to construct the sketch 

matrix Q. The recently developed method in [28] selects 

L columns randomly. However, this is not an optimum 

selection as the dependency between the selected 

columns has been ignored. Additionally, in case of 

correlated sources, Rxx(fj) becomes rank-deficient and 

some columns of Q, eventually become redundant. 

Alternatively, we select L columns at jth frequency band 

to construct matrix Q(fj) as follows:  

1 1( ) ( )

( ) ,

( ) ( )

b j b j

j

Mb j Mb j

r f r f

f

r f r f

 
 

=  
 
 

Q             (36) 

where b=bk given that bk is a non-repeated random 

variable within the set and defined as 

{1,2, , },  for 1Mb M k L= =     

It is well known that the off-diagonal components of 

the CM represent the correlation between signals 

collected from different array elements. To extract more 

non-identical information about the incident signals, we 

select the value of b such that the corresponding columns 

contain least correlation between signals collected from 

the different array elements. This can be accomplished by 

selecting columns with minimum norm, which directly 

implies that the correlation coefficient within that column 

is minimum, as illustrated in Fig. 2. 

Selecting columns based on the presented method 

results minimum dependency between adjacent columns 

within the sampled matrix ( ) M L

jf Q . Therefore, Q( fj ) 

provides a good representation of the general trend of the 

CM and retains more valuable information about the 

wideband source directions. Hence, we construct the PM 

at thj frequency band, V(fj), by projecting onto the null- 

space of sampled matrix Q(fj) as follows:  

 
Fig. 2. Conceptual illustration of selecting\extracting four columns (L=4) 

from the CM 10 10CM   using the new sampling methodology to 

form the sampled matrix Q(fj) required for PM construction. 

( )
1

( ) ( ) ( ) ( ) ( ).H H

j M j j j jf f f f f
−

= −V I Q Q Q Q    (37) 

It is stated in [27] that the dimension of V(fj) can be 

reduced from M M  to M L without sacrificing 

estimation accuracy. 

To prevent high-complexity of computing evaluation 

matrix, we apply the following dimension reduction to 

V(fj): 

( ) ( ) ,j j M Lf f = V V I                 (38) 

where M LI  is defined as follows:  

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

M L

 
 
 
 

=  
 
 
 
  

I  

To what follows, ( ) M L

jf V is represented as Vj. 

B. A New Squared Evaluation Matrix 

Following the guidance of [23], [29], one of the 

appropriate choices of reference frequency is central 

frequency. Therefore, in this work center frequency is 

selected for the SS. A new transferred SS Hj() is formed 

by  

( ) ( , ) ,j j c  = H Ψ F                   (39) 

where j j c   = − , for j c  , c is the central 

frequency, and Fc is the SS at c. Then, similar to the 

TOPS based methods, we apply subspace projection as 

follows:    

( ) ( ) ( ) .j j j   =H P H                   (40) 

As mentioned above, the TOPS, SQ-TOPS, and WS-

TOPS algorithms conduct the orthogonality test between 

transferred SS and NSs. So, the jth partition of their 

evaluation matrices can be expanded as  

( ) ( ) .H H

j j j j j  =U W U P W             (41) 

It is shown in [26] that the dot-product between Wj and 

Pj(), which is termed as signal null-space, reinforces the 

noise components and contributes to the reasons of 

generating the false peaks in the spectrum of the TOPS-

based algorithms. It is found that using an efficient PM 

instead of the NS in (28) will reduce the effect of this 

problem and eventually minimizes false peaks. This has 

motivated our second modification; employing 

orthogonality between transferred SS and the newly 

created PM rather than NS.  Thus, the proposed algorithm 

modifies the contents of Zi() and employs a new 

squared orthogonality evaluation matrix for each AOA 

assumption as follows: 

( ) ( ) ( ) ,H H

j j j j    =  G H V V H  for 2 j P       (42) 

when l =  for1 l L  , the following equality yields. 
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( ) ( ) 0H H

j j j j   H V V H .                (43) 

The proof of (43) is straightforward as follows: Let us 

assume that one of the null spaces of the PM is spanned 

by the bases of matrix
1 2[    ]M L

j j j jL

 =E e e e . 

From linear algebra, if Null( )A B , then Col( )⊥A B . 

From this fact, the following equality yields. 

1 1 2 2 0.H H H H

j j j j j j jL jL
 =  E V e v e v e v        (44) 

By definition the SS Hj is in the null-space of Vj, that 

is Null( )j jH V , and so does
j
H  Therefore, we can 

conclude that the following equation is satisfied: 

( ) 0,H

j j Η V                            (45) 

which justifies that the orthogonality between the 

transferred SS and the newly created PM is preserved.  

Finally, the spatial spectrum of the proposed algorithm 

is generated as follows:  

proposed

,min

1
( ) arg max ,

( )
Y 

 

 
=   

 G

           (46) 

where ,min ( ) G
 represents the minimum singular values 

of Gi(). The following steps summarize proposed 
method: 

• Step 1: Divide the output of the antenna array into 

multiple identical sized blocks where the number of 

samples in each block equals to the DFT points. 

• Step 2: Apply temporal DFT to each block and 

compute Rxx(fj) using (15).  

• Step 3: Construct the PM Vj based on the presented 

methodology using (36), (37), and (38). 

• Step 4: Apply one EVD to extract the SS at reference 

frequency and construct ( )j Η  using (40).     

• Step 5: Establish a new squared orthogonality 

evaluation matrix G() using (42). 

• Step 6: Estimate the AOAs of wideband sources 

using (46).    

C. The Computational Complexity Analysis 

Low complexity is of significant practical importance 

since limited power applications, such as IoT and UAV, 

call for low-complex AOA estimation algorithms 

particularly when array size is large. The overall 

complexity of the TOPS based algorithms can be divided 

into three main stages. First, extracting the subspaces 

from the CM, we called subspaces acquisition stage. 

Second, computation of the evaluation matrix 

( ,  ,  , and )D Z Z G . Third, spectrum construction through 

calculation of minimum singular values of 

, , ,  and D Z Z G    

The complexity of subspaces acquisition dominants the 

overall computational burden of the TOPS based methods. 

This is because the complexity of EVD applied to an 

M M  matrix is
3( )O M  [30] and this process has to be 

repeated for P frequency bins to extract Wj where 

1 j P  . However, the proposed method needs only one 

EVD to extract SS at Fc and the rest 1P− EVDs are 

replaced by the low complex PM construction (Vj) 

(which requires
2( )O M L arithmetic operations [25], [27]. 

Further, the proposed method has comparably lower 

complexity in the second stage particularly when M L . 

This is because the dimensions of Wj and Vj, respectively, 

are ( )M M L −  and M L . Therefore, the computation 

of matrix G which is the function of the PM Vj needs less 

operations compared to matrices D, Z, and Z  which are 

the functions of Wj. Besides, the WS-TOPS algorithm 

needs extra 2(2 ( ) ( ))O ML M L L M L− + − operations to 

calculate the new term in (30). All the algorithms have 

comparable complexity in the third stage except WS-

TOPS that needs to repeat SVD P  times. The overall 

computational complexities for all the presented 

algorithms are listed in Table I. 

As the signal processing costs for all algorithms 

mainly depend on the array size, a numerical example of 

the computational complexity versus different values of 

M for all the presented algorithms is conduced and 

illustrated in Fig. 3. Due to the need for P extra signal 

processing, computational cost of the WS-TOPS is higher 

than all the other methods. It is also observable that SQ-

TOPS needs higher arithmetic operations compared to the 

standard TOPS algorithm. This is due to performing 

squared test of orthogonality in matrix Z. Importantly, the 

figure clearly justifies that the proposed algorithm has 

much less complexity among its rival methods. The gap 

between the complexity of the proposed method and its 

counterparts become even wider as the physical array 

dimension increases. This low complexity of the 

suggested method, in turn, will have a positive impact on 

its execution speed and, consequently, enables it to 

localize sources with relatively minimum amount of time 

as will be shown in the following section. 

TABLE I:  COMPUTATIONAL COMPLEXITY COMPARISON 

Algorithm 
Over all signal processing cost 

Subspace acquisition Computation of , , ,andD Z Z G  SVD of , , ,andD Z Z G  

TOPS 3( ( ))O M P  ( )( )( 1)O ML M L P+ − −  2[ ( ) ( 1)]O L M L P+ − −  

SQ-TOPS 3( ( ))O M P  
2{[2 ( ) ( )]( 1)}O ML M L L M L p+ − + − −  

3[ ( 1)]O L P+ −  

WS-TOPS 3( ( ))O M P  ( )2 2 '2 ( ) ( ) {2 ( ) ( )}( 1)O ML M L L M L ML M L L M L P P+ − + − + − + − −  ( )3 '( 1)O L P P+ −  

Proposed 3 2( ( 1))O M M L P+ −  
2 3[(2 )( 1)]O ML L P+ + −  

3[ ( 1)]O L P+ −  
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Fig. 3. Computational complexity versus the number of antennas within 

the array for the proposed algorithm, TOPS, SQ-TOPS, and WS-TOPS 

algorithms, 3, 20L P= = . 

V. SIMULATION RESULTS AND DISCUSSION 

In this section, we evaluate the performance of the 

proposed algorithm by comparing it to the well-known 

TOPS based AOA estimation methods from various 

perspectives. In all the simulation scenarios, the data are 

generated from unit-power complex Gaussian process 

with zero mean. All the signals have identical frequency 

within 200lf = MHz and 400hf = MHz. 

The bandwidth of all the wideband signals BW 

400 200h lf f= − = − MHz and the fc and sampling 

frequency fs, respectively, are 300 MHz and twice the 

signal’s bandwidth. FFT is applied to decompose the 

received wideband signal into 20P =  narrowband signals 

each with 200 / 20 10= MHz bandwidth. To avoid 

aliasing, the distance between adjacent array element d is 

set to be / 2  where   is a wavelength corresponding to 

the highest frequency of the received signals. The 

hypothesized search angle is used over the grid of −90 to 

90 with the 0.5 step size. As the measure of 

performance, average root mean square error (ARMSE) 

and probability of successful detections (PSDs) are 

computed for all the evaluated algorithms as follows:  

( )
2

1

1 1 ˆARMSE= ,
K

k k

iK L
 

=

 −
  

           (47) 

 

1PSD(AOA) = ,

K

i

i

KL


=


                        (48) 

where K represents the number of Monte Carlo iterations, 

k and ˆ
k are true and estimated AOA, respectively.  i  

denotes the number of successful detections at thi  

iteration.  

A. Spatial Spectrum: Numerical Example 

The spatial spectrum illustrates the AOA estimation 

results for each hypothesis angle where the peaks indicate 

estimated angles. This section illustrates the effectiveness 

of the proposed method to remove the false peaks 

appearing in the spatial spectrum of the TOPS, and SQ-

TOPS methods. We assume that three wideband signals 

with the properties mentioned above impinging on the 

seven-elements receiver array (M=7) at −33, 0, and 33 

elevation angles. In this scenario, the SNR and number of 

snapshots (N) are 10 dB and 100, respectively. The 

spatial spectrum of the proposed method is compared 

with those for the TOPS, SQ-TOPS and WS-TOPS 

algorithms in Fig. 4. The figure shows that all methods 

have detected all three AOAs but with different 

resolutions.   

 
Fig. 4. Illustration of spatial spectrums of the TOPS, SQ-TOPS, WS-

TOPS algorithms and proposed method. 

It is observable that TOPS and SQ-TOPS methods 

share a common problem which is the high-power false 

peaks at wrong directions. Noticeably, the power of the 

false peaks in the standard TOPS algorithm is higher than 

the power of the true peaks. These side fluctuations 

mislead the estimator to detect actual AOAs and, 

eventually, results false estimation. On the other side, the 

proposed algorithm along with WS-TOPS do not show 

any fluctuations at wrong angles. However, the WS-

TOPS obtained this improvement at the cost of adding 

more computational cost. It is worth mentioning that, in 

addition to its low complexity, the proposed method is 

superior and shows best resolution and highest noise 

immunity among the compared methods. 

B. Performance Comparison Based on SNR Variations 

Due to multipath fading phenomenon, high SNR may 

not be always available and its values usually fluctuates. 

Thus, it is particularly important for the estimator to 

perform well within various SNR ranges. In this 

experiment, the AMRSE and PSD of the proposed 

algorithm are computed and compared to those of other 

methods with different SNR levels.  The SNR is 

postulated to vary from 0 dB to 20 dB with 5 dB 

increments. We apply the same simulation parameters 

used in Section V-A except M=8. For each SNR value, 

one-hundred Monte Carlo simulations (K=100) are 

applied to all the algorithms independently and their 

estimation errors and PSDs are calculated and plotted as 

shown in Fig. 5 and Fig. 6, respectively.  
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Fig. 5. ARMSE vs SNR for the three incident angles shown in Fig. 4. 

 
Fig. 6. PSDs vs SNR for the three incident angles shown in Fig. 4. 

Fig. 5 shows that remarkable advantages in terms of 

low ARMSE has been achieved over SNR range from 0 

dB to 16 dB due to applying the proposed method 

compared to the other methods. Beyond 16 dB, SQ-TOPS 

and WS-TOPS shows lower estimation errors. It is worth 

mentioning that the SQ-TOPS and WS-TOPS reduces 

estimation error at the cost of higher computational 

complexity.  Nevertheless, Fig. 6 depicts that the newly 

applied method outperformed its counterparts in terms of 

highest PSDs over 0 to 10 dB SNR ranges. From 15 dB, 

WS-TOPS shows the same performance as the suggested 

method. It is observable that at high SNR (20 dB), the 

PSDs of the all methods become identical and reach to 

their highest values. This high performance of the 

proposed method comes along with considerably lower 

complexity in comparison to the compared methods.    

C. Performance Comparison Based on Correlation 

Levels between Incident Signals 

The TOPS based algorithms assume that incident 

signals are independent and the measured CM has a full 

rank property. To deal with correlated signals, they need 

a pre-processing step [23] which adds extra cost to the 

algorithm’s procedure. Therefore, it is particularly 

important to deal with coherent sources intelligently 

without adding extra-complexity. In this section, the 

accuracy of the proposed algorithm is compared to its 

competitors in cases where the incident wideband signals 

are slightly, moderately, and strongly correlated. In this 

simulation, three wideband signals incident to the 

receiver array (M=8) at −33, 0, and 33 angles, 

respectively. It is assumed that the first signal is 

independent and the last two signals are correlated with 

each other but uncorrelated with the first one. That is to 

say, there are only two signals and the last one at 33 

resulted from the reflection of the second one. We 

consider three correlation levels CC2,3=[0.1, 0.5, 0.99], 

where CC2,3 is the correlation coefficient between the 

second and third signals. The SNR is set to be 10 dB and 

we conduct the same number of Monte Carlo iterations as 

Section V-B for each value of CC2,3. The ARMSE and 

PSDs for all the algorithms are computed independently 

as shown in Fig. 7 and Fig. 8, respectively.  

From Fig. 7, it is shown that standard TOPS algorithm 

has highest estimation errors in all the correlation cases 

followed by the SQ-TOPS, WS-TOPS, and then the 

proposed method, respectively. According to the Fig. 8, 

when CC2,3=0.1 the PSD of the SQ-TOPS and WS-TOPS 

are almost the same and higher than that for the TOPS 

algorithm. Furthermore, the performance of SQ-TOPS 

and WS-TOPS degrades more than original TOPS when 

signals are moderately (CC2,3=0.5) and strongly 

(CC2,3=0.99) correlated. 

 
Fig. 7. ARMSE of the proposed and other algorithms where the two 

signals at 0 and 33 angles are slightly, moderately, and strongly 

correlated. 

 
Fig. 8. PSDs of the proposed and other algorithms where the two signals 

at 0 and 33 angles are slightly, moderately, and strongly correlated. 
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From both figures, the proposed method attains best 

estimation accuracy (i.e., minimum ARMSE and highest 

PSDs) at all the correlation levels where the TOPS, SQ-

TOPS, and WS-TOPS methods experience significant 

vulnerability. This is because subspace acquisition using 

EVD are more sensitive to the correlated sources due to 

decreasing the CM rank from 1 to M −1 depending on 

the correlation levels. On the other side, the proposed 

method partially solves this problem by replacing 

subspaces extraction to a novel PM constructed based on 

a new sampling methodology that removes the 

dependency with the steering vector. Consequently, the 

proposed AOA estimation algorithm shows more 

robustness and less sensitivity to the correlated signals. 

D. Execution Time Comparison 

In this section, the execution time of the proposed 

method is compared with that for TOPS, SQ-TOPS and 

WS-TOPS algorithms in an identical situation. The 

property of the PC used for computation is Intel CPU i3-

2330M (2.20GHz), 4GB Installed RAM. The program is 

run using MATLAB R2021a. The exact values of the 

consumed time for each algorithm could be different 

from the values presented below depending on the 

machine capability for computation, however, the relative 

execution time differences between the algorithms must 

remain unchanged. 

1) EVD and PM Construction 

We firstly compare the time needed to extract 

subspaces using EVD and the required time to construct 

the PM based on the proposed technique. To achieve this, 

we apply one-hundred Monte Carlo iterations (K=100) to 

extract subspaces using EVD and construct PMs using 

the proposed sampling approach. For each iteration, the 

execution time is calculated for each methodology and 

then plotted as a cumulative distribution function (CDF). 

As illustrated in Fig. 9, EVD applied to CM consumes 

significantly more time than the PM constructions based 

on the presented technique. This, in turn, makes the 

proposed AOA estimation method much faster than its 

rival algorithms.  

 
Fig. 9. CDF of execution time required for subspace acquisition using 

EVD and PM construction based on the new sampling technique 

adapted in the proposed method, 3, 10, 100L M N= = = . 

 
Fig. 10.  Execution time versus number of array elements, 3L = . 

2) Overall Execution Time Versus the Number of Array 

Elements 

The complexity of all the presented algorithms is 

mainly driven by the array size as shown in Table1. 

Therefore, it is reasonable to observe the speed of these 

algorithms with different values of M. The overall 

execution times for all the algorithms are computed 

against different array sizes, that is M=[5 10 15 20 25 30] 

as shown in Fig. 10. The figure depicts that the proposed 

algorithm is the fastest method among the compared 

algorithms and needs least-time to converge. Whereas, 

the WS-TOPS is the slowest method and has relatively 

highest execution time followed by the SQ-TOPS and 

TOPS methods, respectively.  

The reason for that high speed of the proposed 

algorithm is that it does not need EVD technique adapted 

in the compared algorithms. Noticeably, the execution 

time differences between proposed and its counterpart 

methods becomes even wider as the array size increases.   

3) Overall Execution Time Versus Simulation Rounds 

To further confirm the speed of the suggested method, 

all the simulation parameters including L=3 and M=10 

are fixed then the program is run for all the algorithms 

independently over two-hundred simulation rounds 

(K=200). For each simulation round, the execution time 

for all the algorithms is recorded and the obtained results 

are illustrated in Fig. 11. The figure clearly shows that the 

proposed algorithm outclasses other algorithms with 

lowest consumed time for all the simulation rounds.  

 
Fig. 11. Execution Time for 200 simulation rounds. 
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VI. CONCLUSION 

The TOPS, SQ-TOPS and WS-TOPS algorithms share 

a common limitation which is the high complexity 

resulted from applying EVD to achieve subspaces from 

the CM. Besides, false peaks appearing in the TOPS and 

SQ-TOPS spectrums is another problem for these 

algorithms. The objective of this work was to 

simultaneously address these two problems. The first 

problem (i.e., high-complexity) has been tackled through 

substituting EVD by a computationally-efficient PMs 

based on a new subsampling methodology. Therefore, 

one of the most desirable merits of the devised method is 

low-complexity. The second problem (i.e., false peak 

generations) has been solved by employing a new 

evaluation matrix which tested the orthogonality between 

the transferred SS and the newly created PMs rather than 

NS. Additionally, the presented methodology to create 

the PM has made the proposed AOA estimation 

algorithm to be more robust against coherent sources 

where the performances of the rival algorithms have 

deteriorated. The achieved results also showed that the 

suggested algorithm is much faster than its competitors in 

localizing wideband sources. These preferable features 

make the proposed algorithm to be more feasible for 

limited power and real time applications.  
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