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Abstract—The performance of the variable sampling 
interval (VSI) exponentially weighted moving average 
(EWMA) chart is generally investigated under the 
assumption of known process parameters. Nevertheless, the 
process parameters need to be estimated from a historical 
Phase-I dataset because they are usually unknown in 
practice. When the process parameters are estimated, the 
chart’s performance differs among practitioners as different 
number of Phase-I samples is used. This leads to different 
parameter estimates in constructing the chart’s limits and 
variation in the average time to signal (ATS). This type of 
variation is crucial to be considered when evaluating the 
performance of the control chart with estimated process 
parameters. To consider practitioner-to-practitioner 
variation, this paper investigates the performance of the VSI 

EWMA X  chart with estimated process parameters by 
using standard deviation of the ATS. Monte Carlo 

simulation results show that the VSI EWMA X  chart 
requires many Phase-I samples to achieve the desired 
performance. The results also show that a greater number 

of Phase-I samples is needed for the VSI EWMA X  chart 
when the smoothing constants are large. This is because 
larger values of smoothing constants lead to higher variation 

in the run-length distribution.  

Index Terms—EWMA control chart, expected value of the 

average time to signal, parameter estimation, standard 

deviation of the average time to signal, statistical process 

control, variable sampling interval 

I. INTRODUCTION 

Control charts are extensively used for maintaining the 

consistency of a manufacturing process in an industry. 

They are known to be the most useful tool in Statistical 

Process Control. A well-designed control chart enables 
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practitioners to detect shifts or any presence of assignable 

causes in manufacturing processes before defects occur. 

The Exponentially Weighted Moving Average (EWMA) 

control chart considers the weighted average of all 

current and past observations. This feature gives the 

EWMA chart with the advantage of being more sensitive 

in detecting small and moderate shifts. To improve the 

inspection and statistical efficiency of the EWMA chart, 

an adaptive strategy such as variable sample interval (VSI) 

is adopted to design the EWMA chart. Therefore, when a 

process shift occurs, an out-of-control signal is obtained 

more quickly by varying the sampling interval of the 

EWMA chart, compared to that of the fixed-sampling-

interval EWMA chart.  

The VSI EWMA X  chart was first proposed by [1]. 

They studied the run-length properties of the VSI EWMA 

X  chart with known process parameters by means of the 

Markov chain approach. Castagliola, Celano, and Fichera 

[2] studied the statistical performance of the VSI R 

EWMA control chart to monitor the range. Castagliola, 

Celano, Fichera, and Giuffrida [3] proposed the VSI S2-

EWMA chart to monitor process variance. To reduce the 

cost in process production cycle, economic models of the 

VSI EWMA control chart were proposed by [4] and [5] 

under normality and non-normality assumptions, 

respectively. Lin and Chou [6] investigated the VSI 

EWMA and combined VSI X –EWMA charts when the 

normality assumption of the observed data or 

measurements is violated. Furthermore, the run-length 

properties of the multivariate VSI EWMA chart were 

evaluated in Lee and Khoo [7]. Liu, Chen, Zhang, and Zi 

[8] presented the VSI nonparametric EWMA chart, which 

is a distribution-free control chart. Recently, the one-

sided EWMA t charts with and without variable sampling 

intervals for monitoring the process mean was proposed 

by [9]. They found that the VSI one-sided EWMA t chart 

is more efficient than the corresponding chart without 

VSI feature, in detecting different shift sizes. By applying 

the joint economic model, the VSI EWMA control charts 

are found to be more effective in reducing loss [10]. To 
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enhance the accuracy of the VSI EWMA chart, [11] 

adopted the auxiliary-information based scheme into the 

VSI EWMA chart. Substantially, all works on developing 

the VSI EWMA-type control charts enhance the 

statistical efficiency of the control charts compared to 

their corresponding EWMA-type charts with fixed 

sampling interval. 

There are two phases of process monitoring, namely 

Phase-I and Phase-II. An in-control dataset will be 

collected in Phase-I for the purpose of estimating process 

parameters and constructing control limits used in Phase-

II. In Phase-II, control charts involve inspection of future 

production. The main purpose of Phase-II control charts 

is to detect process shifts efficiently when the process 

moves from in-control to out-of-control condition. 

Usually, the performance of a control chart with 

estimated process parameters is evaluated in terms of the 

average time to signal (ATS) [12]-[14]. When the process 

parameters are estimated in Phase-I, the ATS becomes a 

random variable. This randomness of the chart’s 

performance among practitioners is expected. This type 

of randomness is called practitioner-to-practitioner 

variation. This variation is due to different practitioners 

adopt different number of Phase-I data. Consequently, the 

estimation of the process parameters differs from one 

practitioner to another, leading to different ATS values. 

Recently, [15] reviewed the effect of process parameter 

estimation on Shewhart, EWMA, and CUSUM control 

charts. They also stated that even when the actual 

distribution of the data is known, this practitioner-to-

practitioner variation is small only for very large numbers 

of Phase-I data. In order to solve this problem, one of the 

proposed methods is to use bootstrap method to adjust the 

control limits based on the conditional perspective [16], 

[17]. Recently, [18] and [19] showed that under the 

conditional perspective, the performances of the 

Shewhart X  and S2 control charts, respectively, with 

estimated process parameters using the exact, 

approximate, and bootstrap methods to adjust the control 

limits, yield similar results.   

The standard deviation of the ATS (SDATS) accounts 

for practitioner-to-practitioner variability. This SDATS 

metric is more suitable in accessing the performance of 

the control charts with estimated process parameters. 

Therefore, in this paper, the performance of the VSI 

EWMA X  chart when the process parameters are 

estimated, is evaluated with the expected value of the 

ATS (AATS) and SDATS metrics. A similar metric, i.e. 

standard deviation of the average run length (SDARL) 

was proposed by Jones and Steiner [20] to evaluate the 

performance of the risk adjusted CUSUM chart with 

estimated process parameters. This metric is further used 

by other authors in evaluating the performance of 

different type of control charts when the process 

parameters are estimated [21]-[24]. Note that the aim of 

this paper is to consider the practitioner-to-practitioner 

variation in preliminary investigating the effects of the 

VSI EWMA X  chart when the process parameters are 

estimated. 

The remainder of this paper is organized as follows. In 

Section II, we present a brief overview of the VSI 

EWMA X  chart. By means of the Monte Carlo 

simulation, the results of the AATS and SDATS of the 

VSI EWMA X  chart with estimated process parameters, 

are provided in Section III. Finally, we provide some 

concluding remarks in Section IV. 

II. THE VSI EWMA X  CHART 

Assume that (
,1iY ,

,2iY ,, 
,i nY ) is a sample taken from 

Phase-II process. Here, i = 1, 2, , is the subgroup 

number. This (
,1iY ,

,2iY ,, 
,i nY ) sample consists of n 

independent normal random variables with in-control 

mean, µ0 and in-control variance, 2

0 . The VSI EWMA 

X  chart is divided into three regions, which are the safe 

region, warning region and out-of-control region as 

shown in Fig. 1.  
Let K1 (> 0) and K2 (> K1) be the warning limit 

coefficient and control limit coefficient, respectively. The 

upper (UCL) and lower (LCL) control limits, as well as 

the upper (UWL) and lower (LWL) warning limits of the 

VSI EWMA X  control chart are computed as follows: 

 2UCL / LCL = 
2

K





−
 (1) 

and 

 1UWL / LWL
2

 = K





−
, (2) 

respectively, where (0,1   is the smoothing constant. 

By referring to Fig. 1, the procedure for implementing the 

VSI EWMA X  chart is as follows: 

1. Collect a random sample of n ( > 1) observations. 

2. Specify the values of the chart’s parameters  , K1 

and K2, in order to compute the control limits and 

warning limits as in (1) and (2), respectively. 

3. Calculate the standardized sample mean, 

( ) ( )0 0i iW Y   n = −  of subgroup i and the VSI 

EWMA X  chart’s statistic, ( ) 11i i iZ  = W  + Z  −− , 

where i = 1, 2, .... 

 

Fig. 1. Graphical view of the VSI EWMA X  chart's operation. 
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4. The process is declared as in-control when Zi[LWL, 

UWL], then a long sampling interval, h1 is used for 

next sampling. 

5. The process is also declared as in-control when 

Zi[UWL, UCL] or Zi[LCL, LWL]. In this case, a 

short sampling interval, h2 is used for next sampling. 

6. The process is declared as out-of-control when 

 LCL,UCLiZ  . Then corrective actions are taken 

to investigate and omit the assignable cause(s). 

To evaluate the performance of the VSI EWMA X  

chart with known process parameters, the Markov Chain 

approach is adopted to model its run-length properties. 

This approach involves the operation of dividing the 

interval between UCL and LCL into 2g + 1 subintervals, 

each of width 2d, where 2d = (UCL – LCL)/(2g + 1). In 

our case, the (2g + 1) × (2g + 1) matrix R of transient 

probabilities [25] is equal to 

,, 1 ,0 , 1,

1,1, 1 1,0 1, 11,

0,0, 1 0,0 0, 10,

1, 1, 1 1,0 1, 1 1,

, , 1 ,0 , 1 ,

g gg g gg g

gg

gg

g g

g g g g g g g

RR R RR

RR R RR

RR R RR

R R R R R

R R R R R

− +− − − − +− −

− +− − − − +− −

+− +−

+ − + − + + + + +

+ − + − + + + + +

 
 
 
 
 

=  
 
 
 
  
 

R   (3) 

where the generic elements 
,kR  of matrix R are equal to  

  ,

(1 ) k

k

H d H
R n


 



+ − − 
= − − 

 
 

 
(1 ) kH d H

n


 


− − − 
− 

 
, (4) 

with k,  = g− , , 1− , 0, 1, , g. Here, kH  represents 

the midpoint of the kth subinterval. The magnitude of the 

standardized mean shift is 1 0 0   = − , where 1  is 

the out-of-control mean. The standard normal cumulative 

distribution function (cdf) is represented by ( )  . As 

shown in [1], the ATS of the VSI EWMA X  chart is 

computed as follow: 

 T TATS ,= −q Qb q b  (5) 

where the fundamental matrix is ( )
1−

= −Q I R , the initial 

probability vector is q = (0, , 1, , 0)T, the vector of 

sampling intervals corresponding to the discretized states 

of Markov chain is represented by b, and the identity 

matrix is I. 

When both the process parameters, i.e. the in-control 

mean, 0 and the in-control standard deviation, 0  are 

unknown, they are necessary to be estimated from m in-

control Phase-I samples, each of n observations, i.e. {Xi, 1, 

Xi, 2, , Xi, n}, where i = 1, 2, , m. The parameter 0  is 

estimated by 

 0 ,

1 1

1
ˆ

m n

i j

i j

X
mn


= =

=  ; (6) 

while the parameter 0  is estimated by 

 pooled

0

4,

ˆ ,
m

S

c
 =  (7) 

where  

 

( )
2

,

1 1

pooled
( 1)

m n

i j i

i j

X X

S
m n

= =

−

=
−


 (8) 

 
( )

( )
4,

2 ( 1) 1 2

( 1) ( 1) 2
m

m n
c

m n m n





− +  
=

− −  

. (9) 

Here, ( )   is a gamma function. 

Each practitioner gets different estimates because 

different number of Phase-I samples is adopted. 

Therefore, sampling variation is necessary to be 

considered in the case when process parameters are 

estimated. Usually, the performance of control charts 

with estimated process parameters is assessed with AATS. 

However, the metric AATS does not reflect the 

variability between practitioners. On the other hand, the 

SDATS is used to measure the between-practitioner 

variability. Therefore, it is necessary to consider the 

SDATS in evaluating the performance of the control 

charts with estimated process parameters. In this paper, 

both the AATS and SDATS metrics are used to evaluate 

the impact of the estimation error on the performance of 

the VSI EWMA X  chart with estimated process 

parameters. We recommend that the SDATS value should 

be within 5% to 10% of the desired ATS value in order to 

achieve reasonable charts’ performance. Similar approach 

is also suggested by [21], [26], and [27]. 

III. A STUDY OF THE MONTE CARLO SIMULATION 

In this section, Monte Carlo simulation is used to 
obtain the in-control AATS (AATS0) and SDATS 
(SDATS0), as well as the out-of-control AATS (AATS1) 

and SDATS (SDATS1) of the VSI EWMA X  chart with 
estimated process parameters. This simulation program is 
written by using the Statistical Analysis System (SAS). A 
total of 100,000 simulation runs are applied in this 

simulation study. The process mean, 0̂  and process 

standard deviation, 0̂  are estimated in our simulation 

study by using the estimators in (6) and (7), respectively. 
We consider different values of m, ranging from 200 to 
4000, with a fixed sample size n = 5. Three values of 
 {0.1, 0.2, 0.5} and three (h1, h2) {(1.5, 0.5), (1.7, 

0.3), (1.3, 0.1)} combinations are employed in this paper. 
For each combination of (  , h1, h2), the values of K1 and 

K2 are calculated by using the formulae shown in Section 
II, subject to the constraint ATS0   {370, 500}. Note 
that the ATS measurement is used in the case with known 
process parameters; while the AATS measurement is 
used in the case with estimated process parameters.  
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A. In-Control Performances 

Table I to Table III display the AATS0 and SDATS0 

values for  {0.1, 0.2, 0.5}, respectively, ATS0{370, 

500}, n = 5, different values of m and different 

combinations of (h1, h2, K1, K2). The last row of each 

table, i.e. m = +  represents the case when the process 

parameters are known. Note that in Tables I to III, the 

boldfaced AATS0 values are about 98% of the desired 

ATS0 values; while the boldfaced SDATS0 values are 

about 10% of the desired ATS0 values. When the process 

parameters are known ( m = + ), the SDATS0 and 

SDATS1 are both equal to zero. 

It is clear from Table I to Table III that the AATS0 

values increase and approach the desired ATS0 values as 

m increases. This is because as m increases, the 

variability in the sampling distribution of the estimators 

decreases. The results also show that smaller m is needed 

to achieve AATS0 of 98% of the desired ATS0 when 

larger value of  is used. For example, when (h1, h2) = 

(1.5, 0.5), ATS0 = 370, and n = 5, the AATS0 for the VSI 

EWMA X  chart with  = 0.1 requires m = 1800 (see 

Table I) to achieve 98% of the ATS0 = 370; however, this 

m decreases to m = 950 (see Table II) when  = 0.2. It is 

further decreasing to m=250 (see Table III) when  =0.5. 

TABLE I: AATS0 AND SDATS0 VALUES FOR  = 0.1, ATS0  {370, 500}, 

AND DIFFERENT COMBINATIONS OF (h1, h 2, K1, K2), WHEN DIFFERENT 

NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 OBSERVATIONS, 
ARE USED TO ESTIMATE THE IN-CONTROL PHASE-I PROCESS 

PARAMETERS 

ATS0 = 370 
(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

K1 0.6269  0.6312  1.0916 
K2 2.7067  2.7085  2.7051 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

500 343.39 54.04  343.04 55.15  343.00 54.79 
800 352.71 41.43  352.57 42.28  352.47 42.00 
1000 356.14 36.41  356.07 37.16  355.95 36.91 
1100 357.44 34.45  357.40 35.16  357.27 34.93 
1200 358.53 32.75  358.52 33.43  358.38 33.20 
1300 359.48 31.27  359.48 31.91  359.34 31.69 
1400 360.30 29.95  360.32 30.56  360.17 30.36 
1500 361.02 28.77  361.06 29.36  360.90 29.17 
1600 361.66 27.72  361.71 28.29  361.55 28.10 
1700 362.22 26.76  362.29 27.31  362.12 27.13 
1800 362.73 25.89  362.81 26.42  362.64 26.25 
1900 363.19 25.10  363.28 25.61  363.10 25.44 
2000 363.61 24.37  363.70 24.87  363.53 24.70 
2100 363.98 23.70  364.09 24.18  363.91 24.02 
2200 364.33 23.07  364.44 23.54  364.26 23.39 
+  370.00 0  370.00 0  370.00 0 

ATS0 = 500 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 
K1 0.6485  0.6591  1.1000 
K2 2.8145  2.8141  2.8166 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

500 460.29 78.76  459.43 80.10  459.70 80.00 
800 473.88 60.57  473.27 61.602  473.52 61.53 
1000 478.92 53.29  478.39 54.20  478.64 54.13 
1100 480.83 50.44  480.33 51.30  480.58 51.23 
1200 482.45 47.96  481.98 48.78  482.22 48.72 
1300 483.84 45.79  483.40 46.57  483.64 46.51 
1400 485.05 43.87  484.64 44.61  484.87 44.56 
1500 486.12 42.15  485.72 42.87  485.96 42.81 
1600 487.06 40.60  486.68 41.30  486.92 41.24 
1700 487.90 39.21  487.54 39.87  487.78 39.82 
1800 488.66 37.93  488.31 38.58  488.54 38.53 
1900 489.34 36.77  489.00 37.40  489.23 37.35 
2000 489.96 35.70  489.63 36.31  489.86 36.26 
2100 490.52 34.71  490.20 35.30  490.43 35.26 
2200 491.03 33.80  490.73 34.37  490.96 34.33 
+  500.00 0  500.00 0  500.00 0 

TABLE II: AATS0 AND SDATS0 VALUES FOR  = 0.2, ATS0  {370, 

500}, AND DIFFERENT COMBINATIONS OF (h1, h 2, K1, K2), WHEN 

DIFFERENT NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 

OBSERVATIONS, ARE USED TO ESTIMATE THE IN-CONTROL PHASE-I 

PROCESS PARAMETERS 
ATS0 = 370 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 
K1 0.6352  0.6744  1.1315 
K2 2.8650  2.8574  2.8602 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

500 354.93 54.85  353.90 55.38  354.43 55.36 
800 360.89 42.65  359.92 43.06  360.45 43.04 
900 362.07 40.04  361.11 40.43  361.63 40.41 
950 362.57 38.90  361.61 39.27  362.14 39.25 
1000 363.03 37.85  362.07 38.21  362.60 38.19 
1050 363.44 36.88  362.49 37.23  363.02 37.21 
1100 363.83 35.97  362.88 36.31  363.41 36.30 
1150 364.18 35.13  363.23 35.46  363.76 35.45 
1200 364.50 34.34  363.56 34.67  364.09 34.65 
1250 364.80 33.60  363.86 33.92  364.39 33.91 
+  370.00 0  370.00 0  370.00 0 

ATS0 = 500 
(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

K1 0.6605  0.6682  1.1437 
K2 2.9633  2.9634  2.9623 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

500 477.76 79.15  477.41 80.47  477.34 80.08 
800 486.31 61.59  486.09 62.62  485.99 62.31 
900 488.00 57.83  487.81 58.80  487.70 58.51 
950 488.73 56.19  488.55 57.12  488.43 56.84 
1000 489.39 54.67  489.22 55.58  489.10 55.31 
1050 489.99 53.26  489.83 54.15  489.71 53.89 
1100 490.54 51.96  490.39 52.82  490.39 52.82 
1150 491.04 50.74  490.90 51.59  490.77 51.33 
1200 491.51 49.61  491.37 50.43  491.25 50.18 
1250 491.94 48.54  491.81 49.35  491.68 49.11 
+  500.00 0  500.00 0  500.00 0 

TABLE III: AATS0 AND SDATS0 VALUES FOR  = 0.5, ATS0  {370, 

500}, AND DIFFERENT COMBINATIONS OF (h1, h 2, K1, K2), WHEN 

DIFFERENT NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 

OBSERVATIONS, ARE USED TO ESTIMATE THE IN-CONTROL PHASE-I 

PROCESS PARAMETERS 
ATS0 = 370 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 
K1 0.6272  0.6616  1.1555 
K2 2.9852  2.9792  2.9783 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

200 361.18 95.79  360.73 96.94  360.61 96.48 
250 363.12 85.22  362.68 86.23  362.56 85.83 
300 364.51 77.50  364.07 78.42  363.96 78.06 
350 365.56 71.54  365.12 72.39  365.01 72.06 
400 366.37 66.77  365.93 67.56  365.83 67.25 
450 367.03 62.84  366.59 63.58  366.49 63.29 
500 367.56 59.52  367.12 60.22  367.03 59.95 
800 369.45 46.80  369.02 47.35  368.93 47.14 
1000 370.11 41.77  369.68 42.26  369.59 42.08 
1100 370.35 39.80  369.93 40.27  369.84 40.09 
1200 370.56 38.08  370.14 38.53  370.04 38.36 
1300 370.74 36.57  370.31 36.99  370.22 36.83 
1400 370.89 35.22  370.46 35.63  370.37 35.48 
1500 371.02 34.01  370.60 34.41  370.50 34.26 
1600 371.13 32.92  370.71 33.30  370.62 33.16 
+  370.00 0  370.00 0  370.00 0 

ATS0 = 500 
(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

K1 0.6468  0.6628  1.1542 
K2 3.0744  3.0755  3.0712 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

200 487.75 137.05  487.94 139.46  487.46 138.42 
250 490.32 121.86  490.51 123.98  490.04 123.07 
300 492.18 110.78  492.37 112.70  491.91 111.88 
350 493.58 102.25  493.78 104.01  493.32 103.26 
400 494.68 95.41  494.88 97.05  494.43 96.35 
450 495.57 89.78  495.76 91.31  495.31 90.66 
500 496.29 85.03  496.49 86.48  496.04 85.87 
800 498.86 66.83  499.08 67.97  498.63 67.49 
1000 499.77 59.65  499.99 60.66  499.54 60.24 
1100 500.11 56.83  500.32 57.79  499.88 57.39 
1200 500.40 54.37  500.61 55.29  500.17 54.91 
1300 500.63 52.21  500.85 53.09  500.41 52.72 
1400 500.84 50.28  501.06 51.13  500.62 50.78 
1500 501.02 48.56  501.24 49.38  500.80 49.03 
1600 501.18 47.00  501.40 47.79  500.96 47.46 
+  500.00 0  500.00 0  500.00 0 
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As noticed in Table I to Table III, the values of 
SDATS0 diminish when the number of m increases. In 
order to achieve a stable AATS performance when the 
process parameters are estimated, SDATS is suggested to 
be around 10% of the ATS values. It is obvious from 

Table I to Table III that as  decreases, the SDATS0 
values decreases for the same m. A smaller SDATS value 
indicates a lower level of practitioner-to-practitioner 
variability. By referring to Table I to Table III, the 
required m generally increases with an increase of ATS0. 

For instance, when  = 0.2, (h1, h2) = (1.7, 0.3), and n = 5, 
we observe that m = 1050 are required when ATS0 = 370, 
but it increases to m = 1200 when ATS0 = 500 (see Table 
II). This is because the larger the ATS0, the larger the 
values of K1 and K2, leading to wider warning and control 
limits. 

From Table I to Table III, it is clear that depending 
solely on the AATS criterion will lead to select incorrect 

m, especially when  is large. Using the SDATS criterion, 
a more stable practitioner-to-practitioner variability in 
control chart’s performance will achieve. For example, 

when  = 0.5, ATS0 = 370, (h1, h2) = (1.3, 0.1), and n = 5, 
we need m = 250 if AATS criterion is used and the 
corresponding SDATS0 is 85.83, which is around 23% of 
the desired ATS0 (see Table III). This 23% is very high 
and unfavorable. On the other hand, for the same case, we  

TABLE IV: AATS1 AND SDATS1 VALUES FOR   = 0.2,  = 0.2, 

ATS0  {370, 500}, AND DIFFERENT COMBINATIONS OF (h1, h 2), WHEN 

DIFFERENT NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 

OBSERVATIONS, ARE USED TO ESTIMATE THE IN-CONTROL PHASE-I 

PROCESS PARAMETERS 
ATS0 = 370 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 
m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

500 36.61 9.01  33.43 8.74  33.32 8.88 
800 36.11 6.91  32.93 6.69  32.81 6.80 
1000 35.94 6.12  32.76 5.92  32.64 6.02 
1200 35.83 5.55  32.65 5.37  32.53 5.46 
1400 35.76 5.11  32.58 4.95  32.46 5.03 
1600 35.70 4.76  32.52 4.61  32.40 4.69 
1800 35.65 4.48  32.47 4.33  32.35 4.40 
2000 35.62 4.24  32.44 4.10  32.32 4.17 
2200 35.59 4.04  32.41 3.90  32.29 3.97 
2400 35.56 3.86  32.38 3.73  32.26 3.79 
2600 35.54 3.70  32.36 3.58  32.24 3.64 
2800 35.53 3.56  32.35 3.45  32.22 3.50 
3000 35.51 3.44  32.33 3.33  32.21 3.38 
3200 35.50 3.33  32.32 3.22  32.19 3.27 
3400 35.49 3.23  32.31 3.12  32.18 3.17 
3600 35.47 3.13  32.30 3.03  32.17 3.08 
3800 35.47 3.05  32.29 2.95  32.16 2.99 
4000 35.46 2.97  32.28 2.87  32.15 2.92 
+  35.19 0  32.02 0  31.90 0 

ATS0 = 500 
(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 
500 42.85 11.19  38.61 10.76  38.58 10.96 
800 42.20 8.56  37.96 8.21  37.92 8.37 
1000 41.99 7.57  37.75 7.26  37.71 7.40 
1200 41.85 6.86  37.61 6.58  37.57 6.70 
1400 41.75 6.32  37.51 6.05  37.47 6.17 
1600 41.67 5.89  37.43 5.64  37.39 5.75 
1800 41.61 5.53  37.37 5.30  37.33 5.40 
2000 41.57 5.24  37.33 5.01  37.29 5.11 
2200 41.53 4.98  37.29 4.77  37.25 4.86 
2400 41.50 4.76  37.26 4.56  37.22 4.65 
2600 41.47 4.57  37.23 4.37  37.19 4.46 
2800 41.45 4.40  37.21 4.21  37.17 4.29 
3000 41.43 4.25  37.19 4.06  37.15 4.14 
3200 41.41 4.11  37.17 3.93  37.13 4.01 
3400 41.40 3.98  37.16 3.81  37.11 3.88 
3600 41.38 3.87  37.14 3.70  37.10 3.77 
3800 41.37 3.76     37.13 3.60  37.09 3.67 
4000 41.36 3.66  37.12 3.51  37.08 3.57 
+  41.02 0  36.80 0  36.75 0 

require m = 1300 if SDATS criterion is used and the 
corresponding AATS0 is 370.22 (see Table III). This 
method of selection of m does not cause much issue as 
the AATS0 (= 370.22) is very near to the desired ATS0 (= 

370). For  = 0.1, ATS0 = 370, (h1, h2) = (1.3, 0.1), and n 
= 5, we require m = 1000 if SDATS criterion is used and 
the corresponding AATS0 is 355.95 (see Table I). This 
AATS0 value is about 96% of the desired ATS0, which is 
still within 4% errors of the ATS0 value.  

B. Out-of-Control Performances 

Table IV and Table V present the AATS1 and SDATS1 

values, for  = 0.2, various m, each with n = 5 
observations, (h1, h2)   {(1.5, 0.5), (1.7, 0.3), (1.3, 0.1)} 

and ATS0{370, 500}, when  {0.2, 0.4}, respectively. 
For illustration, when ATS0 = 370,   = 0.2, and (h1, h2) 

= (1.5, 0.5), the combination of chart's parameters (  , K1, 

K2) = (0.2, 0.6352, 2.8650) as shown in Table II, is used 
to compute the AATS1 and SDATS1 values for various m 
in Table IV. The boldfaced entries represent the 
minimum number of m required to obtain the AATS1 
value within 2% errors of the corresponding ATS1 value 
(when m= + ); while the boldfaced SDATS1 value is 
within 10% of the corresponding ATS1 value (when m 
= + ).  

TABLE V: AATS1 AND SDATS1 VALUES FOR   = 0.2,  = 0.4, 

ATS0  {370, 500}, AND DIFFERENT COMBINATIONS OF (h1, h 2), WHEN 

DIFFERENT NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 

OBSERVATIONS, ARE USED TO ESTIMATE THE IN-CONTROL PHASE-I 

PROCESS PARAMETERS 

ATS0 = 370 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

200 7.48 1.40  6.09 1.20  5.60 1.17 

250 7.44 1.23  6.06 1.05  5.57 1.03 

300 7.42 1.11  6.04 0.95  5.54 0.93 

350 7.40 1.02  6.02 0.87  5.53 0.85 

400 7.39 0.95  6.01 0.81  5.51 0.79 

450 7.38 0.89  6.00 0.76  5.51 0.74 

500 7.37 0.84  5.99 0.72  5.50 0.70 

550 7.36 0.80  5.99 0.68  5.49 0.67 

600 7.36 0.76  5.98 0.65  5.49 0.64 

650 7.35 0.73  5.98 0.63  5.48 0.61 

700 7.35 0.71  5.97 0.60  5.48 0.59 

750 7.35 0.68  5.97 0.58  5.48 0.57 

800 7.34 0.66  5.97 0.56  5.47 0.55 

850 7.34 0.64  5.96 0.54  5.47 0.53 

900 7.34 0.62  5.96 0.53  5.47 0.51 

+  7.29 0  5.92 0  5.42 0 

ATS0 = 500 

(h1, h2) (1.5, 0.5)  (1.7, 0.3)  (1.3, 0.1) 

m AATS0 SDATS0  AATS0 SDATS0  AATS0 SDATS0 

200 8.11 1.57  6.45 1.32  5.88 1.28 

250 8.06 1.38  6.41 1.16  5.84 1.12 

300 8.03 1.25  6.39 1.04  5.82 1.01 

350 8.01 1.15  6.37 0.96  5.80 0.93 

400 8.00 1.07  6.36 0.89  5.78 0.86 

450 7.98 1.00  6.35 0.83  5.77 0.81 

500 7.97 0.95  6.34 0.79  5.76 0.76 

550 7.97 0.90  6.33 0.75  5.76 0.73 

600 7.96 0.86  6.33 0.71  5.75 0.69 

650 7.95 0.82  6.32 0.68  5.75 0.66 

700 7.95 0.79  6.32 0.66  5.74 0.64 

750 7.95 0.76  6.31 0.64  5.74 0.62 

800 7.94 0.74  6.31 0.61  5.74 0.60 

850 7.94 0.72  6.31 0.60  5.73 0.58 

900 7.94 0.69  6.31 0.58  5.73 0.56 

+  7.88 0  6.26 0  5.68 0 
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From Table IV, for (h1, h2) = (1.7, 0.3), it is observed 
that at least m = 1200 are needed to achieve an AATS1 

within 2% errors of the ATS1 (m=+) when ATS0 = 370; 
whereas at least m = 1400 are needed when ATS0 = 500. 
On the other hand, the SDATS1 results show that at least 
m = 3200 are needed in order to obtain an SDATS1 value 
that is within 10% of the corresponding ATS1 value 

(m=+) when ATS0 = 370; while at least m = 3600 are 
required when ATS0 = 500. The selection criterion based 
on the SDATS metric shows that a large amount of m is 
required to sufficiently reduce the variability in VSI 

EWMA X  chart’s performance. These results are 
consistent with the findings shown for other control 
charts, see [17], [21], [22], and [27].  

Table VI shows the minimum number m, each of size 

n=5 required for the VSI EWMA X  chart with estimated 
process parameters. The first row of each cell presents the 
minimum m for obtaining AATS1 value within 2% errors 
of the corresponding ATS1 value. The second row of each 
cell presents the minimum m for getting the SDATS1 
value within 10% of the corresponding ATS1 value. Also, 
Table VI considers   {0.6, 0.8, 1.0}, ATS0  {370, 

500}, and  = 0.2. Note that similarly as in Tables IV 

and V, the boldfaced AATS1 in the first row of each cell 
is the AATS1 value within 2% errors of the corresponding 
ATS1 value (when m= + ); while the boldfaced SDATS1 
in the second row of each cell is the SDATS1 value 
within 10% of the corresponding ATS1 value (when m = 

+ ). Because VSI EWMA X  chart is effective in 
detecting small and moderate sustained shifts, we only 
consider 1.0   in this paper. From Tables IV to VI, we 

notice that the minimum number m needed to achieve the 
acceptable SDATS1 is large for small shifts (   0.4). 

Nevertheless, the minimum number m drops significantly 
for moderate and large process mean shifts (  0.6). 

TABLE VI: (AATS1, SDATS1) VALUES AND THE CORRESPONDING 

MINIMUM NUMBER OF PHASE-I SAMPLES m, EACH HAVING n = 5 

OBSERVATIONS, WHEN ATS0  {370, 500},  = 0.2, AND   {0.6, 0.8, 

1.0} 

ATS0 = 370 

(h1, h2) (1.5, 0.5) (1.7, 0.3) (1.3, 0.1) 

  (m, AATS1, SDATS1) (m, AATS1, SDATS1) (m, AATS1, SDATS1) 

0.6 (100, 3.29, 0.53) (100, 2.55, 0.43) (110, 2.25, 0.37) 

 (260, 3.26, 0.32) (280, 2.52, 0.25) (290, 2.22, 0.22) 

0.8 (50, 1.90, 0.34) (60, 1.40, 0.24) (60, 1.22, 0.22) 

 (160, 1.88, 0.18) (180, 1.39, 0.14) (200, 1.21, 0.12) 

1.0 (40, 1.23, 0.21) (40, 0.86, 0.16) (40, 0.72, 0.16) 

 (120, 1.22, 0.12) (140, 0.85, 0.08) (190, 0.71, 0.07) 

ATS0 = 500 

(h1, h2) (1.5, 0.5) (1.7, 0.3) (1.3, 0.1) 

  (m, AATS1, SDATS1) (m, AATS1, SDATS1) (m, AATS1, SDATS1) 

0.6 (100, 3.49, 0.57) (110, 2.65, 0.43) (110, 2.31, 0.38) 

 (270, 3.46, 0.34) (290, 2.62, 0.26) (290, 2.28, 0.23) 

0.8 (50, 2.01, 0.36) (60, 1.46, 0.25) (60, 1.26, 0.23) 

 (160, 1.98, 0.19) (180, 1.44, 0.14) (190, 1.24, 0.12) 

1.0 (40, 1.30, 0.22) (40, 0.90, 0.17) (40, 0.75, 0.16) 

 (120, 1.29, 0.12) (140, 0.89, 0.09) (190, 0.74, 0.07) 

IV. CONCLUSION 

Process parameters are usually unknown in practical 
situations and they are estimated from an in-control 
Phase-I dataset. Hence, the SDATS is a favorable metric 
used to account for practitioner-to-practitioner variation. 

In this paper, we investigate the in-control and out-of-

control performances of the VSI EWMA X  chart with 
estimated process parameters, in terms of the AATS and 
SDATS. Recommendations for the required minimum 
number of Phase-I samples m are provided, in order to 
achieve the desired performance based on the SDATS 
metric. 

Our simulation results show that the VSI EWMA X  
chart requires large number of Phase-I samples to achieve 
consistent chart’s performance among practitioners. In 

addition, we observe that the VSI EWMA X  chart 
designed with large values of smoothing constant  , has 

high variability in the ATS distribution (see Tables I to 
III). Hence, large amount of Phase-I samples m is needed 

for large smoothing constant . However, the 
recommended large m is impractical; thus, future research 
may adopt the bootstrap method to adjust the control 

limits of the VSI EWMA X  chart with estimated process 
parameters by using practical numbers of m. 
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