International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 3, May 2022

A Method for Optimal Distributed Generation
Allocation Considering Load Demand
Uncertainties

Azaldo S. Machava!, Keren K. Kaberere!, and Gil A. Vilanculo®
1Pan African University Institute for Basic Sciences Technology and Innovation, Nairobi, Kenya
2 Department of Renewable Energy and Energy Efficiency, Electricidade de Mocambique, Maputo, Mozambique
Email: azaldosalvador@gmail.com; kkanuthu@eng.jkuat.ac.ke; gil.vilanculos@edm.co.mz

Abstract—This paper presents a method for optimally
allocating distributed generators in power distribution
networks for total loss minimization using genetic
algorithms technique. In the optimization process, load
demand uncertainties throughout the day were considered
with the aim of representing appropriately the real
operation of the distribution system, which allows a more
careful evaluation of the optimal bus to allocate the DG. The
proposed approach was implemented on the IEEE 13, IEEE
34, and IEEE 123 bus test systems, which possess
characteristics inherent in distribution grids.

Index Terms—Distributed generators, power distribution
systems, load demand uncertainties, loss minimizatio
optimization.

In [1], Distributed Generation (DG) j
source of energy connected directly
network or to the customer's meas
distinction between the distrilygti
networks is based on the
normally part of the regulati
each country.

Among the main
DG in the electu
reduction of active p

INTRODUCTION

e can highlight the
0sSes, improvement of the
voltage profile, and en mental gains, when using
renewable sources such & solar photovoltaic (PV) and
wind energy as primary sources [2]-[4]. To take
advantage of these potential benefits, one of the main
steps is to deal with the placement and sizing problem of
distributed sources, which consists of solving an
optimization problem whose decision variables are the
location and size of the DGs [5], [6].

In this context, many works have been developed in
the literature, producing different approaches to the DG
allocation problem. In the works reported in [7]-[10], the
use of the Genetic Algorithm (GA) is proposed to
determine the optimal location and size of the DGs, with
the main objective being to minimize the active power

Manuscript received September 11, 2021; revised December 8, 2021;
accepted January 3, 2022.

Corresponding  author:
azaldosalvador@gmail.com).

Azaldo S. Machava  (email:

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm.
doi: 10.18178/ijeetc.11.3.210-217

210

learning algorithm fi
proposed, to minj
networks. The
generation
analysis

storage devices. For the
the proposed algorithm, the
ions based on real load data and
fuzzy-Q learning and with the
algorithm,  showing  that their
is effective in minimizing the costs of DG

take into account active and reactive power
. In [12], fuzzy logic is used to solve the DG
cation and sizing problem. The authors take into
ccount a reliability index that represents the cost of non-
supplied energy. Thus, one of the objectives of the
optimization problem is to improve the reliability of the
network. To minimize active power losses, [13] propose
the power loss index (PLI) for the allocation of DG units
together with the flower pollination algorithm (FPA)
metaheuristic approach. The research carried out in [14],
[15] bring a multi-objective approach to insert and
dimension DG in radial distribution systems. The three
weighted goals are to reduce active power losses,
improve the voltage profile, and increase a voltage
stability index. In [16]-[18], the siting and sizing of DG
units is implemented using a hybrid algorithm that uses
particle swarm optimization (PSO) to locate the DGs and
GA to determine the size.

Table | brings several works referring to the optimal
allocation of DGs that directly or indirectly influenced
this work, showing the adopted objective function(s),
some comments relevant to the modeling and the adopted
solution method.

In this paper, a method for the allocation of three-
phase generators distributed in electrical distribution
systems is developed, that seeks to minimize the total
system active power losses. The optimization method is
based on the metaheuristic technique of the genetic
algorithm. In this approach, the uncertainties and
variations in load demand are considered which makes
the model be a close representation of the actual
operation of electric energy distribution systems.
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TABLE I: EXAMPLES OF WORKS REGARDING THE OPTIMAL ALLOCATION OF DGS

Solution method and

reference Objective Function

Comments about the modelling

Artificial Bee Colony
[19]

Minimize active power losses.

Two load scenarios, comparison with exhaustive search.

Fuzzy Genetic
Algorithm [20]

Maximize the voltage stability margin and
revenue total net.

Fuzzifier the two objective functions into one and then apply weighted
sum, three possible load levels, do analysis for meshed systems.

Multi-objective
Particle Swarm
Optimization [21]

Maximization of DG’s entrepreneur's total net
revenue, minimization.

Calculation of operational and technical indexes for decision making, also
determines the price of the energy sale contract, three load levels, DG
capacity factor equal to 1, without differentiating the sources.

Ant Colony Maximize the present value of the network. Applies penalties on objective function, using multiple scenarios.
Optimization [22]
Dynamic DG total cost minimization Losses were monetized and included in the total DG cost.

programming [23]

Teaching Learning-
Based Optimization [24]

Minimization of active energy losses, the grid
voltage profile and the inverse of the voltage
stability index.

Comparison with PSO and GA, one load level.

Minimizing active energy losses, voltage
stability index, total voltage variation and
energy purchase costs and maximizing the
total net revenue of the GD entrepreneur.

Evolutionary Algorithm
and Game theory [25]

Two stage contract price and allocation optimization, comparison with GA
and PSO with weighted sum, contract price according to DG power.

Minimization of losses, maximization of
voltage profile improvement.

Technique for Order
Preference by Similarity
to Ideal Solution [26]

Cuckoo Search Power losses minimization.

Algorithm [27]

The main objective of this study is to determine the
strategic buses for the allocation of DGs that provide the
lowest electrical losses in the analyzed systems. To solve
the optimization problem, a program for inclusion of DGs
and calculation of the three-phase power flow is used,
which is coupled to a GA routine

Il. BASIC ASSUMPTIONS

A. Distributed Generators

The definition of DG does not define
energy generation, since the maximum
the conditions of the local distributi

In this study, the pow jspatched by the generators
can be 50, 100, 150 and, 00 kW, all with unity power
factor, connected only in three-phase buses, serving as an
active power source for the system. Fig. 1 shows a
synchronous machine representation for distributed
generators in distribution systems.

The implementation of the DGs and the solution of the
power flow to the networks are carried out using
OpenDSS. The machines are modeled with balanced
constant active power injection for a specified power
factor. The synchronous generators are modelled as
negative loads.

P Vi
—

<>

Q; i

Fig. 1. Representation of a distributed generator connected to a busbar
of an electrical system.
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nd of the loads has a certain degree of
due to measurement errors and also to the
ding variation in each bus [28], [29]. In
ere are also varying loading conditions (light,
iym and heavy) of the networks throughout the day.
us, it is necessary to incorporate the randomness of
demand and loading scenarios in the power flow for a
more realistic analysis of the distribution systems. This
randomness can be introduced by multiplying the load
demand at each node of the systems by a set of randomly
drawn numbers within value ranges that represent, in
addition to the uncertainty of demand, the network
loading scenario. The drawing of numbers can be
implemented through a function in Matlab®, as well as
the file for defining the power of the loads in each
simulation, which will be included in OpenDSS [30].

I1l. PROPOSED METHOD FOR DGS LOCATION & SIZING
TO MINIMISE LOSSES IN DISTRIBUTION SYSTEMS

The problem addressed in this work can be defined as
the determination of the optimal buses for the installation
of DGs for active power loss minimization, taking into
account the uncertainties of the demand and loading

levels of the systems throughout the day, while
maintaining voltage within acceptable limits.
A. Optimization Problem
The active power losses can be computed as:
2
P. = i Vi _Vk,j| (1)

where P, is the active power loss corresponding to
k

element k (kW), gy, is the conductance of element k, Vi
is the voltage modulus of bus i, from which element k
exits, Vi, is the voltage modulus of bus j, from which
element k exits.
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The optimization problem can be modeled as

N

OBF = min ZPLk subjectto V.., <V, <V, (2
k=1

where N is the set of lines belonging to the system.

Equation (2) represents the objective function, OBF,
subject to the voltage restriction for the evaluation of the
optimal parameters chosen in each generation of the
genetic algorithm.

Due to the non-linear nature of the optimization
problem to minimize losses, classical optimization
techniques, despite the guarantee of an optimal solution,
require that all possible combinations of the search space
for solutions are evaluated. This results in a high
computational cost, making them unfeasible for energy
systems. Thus, meta-heuristic techniques are suitable for
solving the problem, enabling a convenient reduction of
the search space, implying a more efficient investigation
of solutions close to optimality, making them
computationally viable. However, metaheuristic methods
do not guarantee optimal solutions. For this work, the
Genetic algorithm technique was chosen.

B. Proposed Method

The optimization problem is solved through a GA,
having its routine implemented code in Matlab®. The
objective function of the problem seeks to minimize the
total active power losses in the test systems with the
allocation of already configured DGs. The sequence O
allocation of DGs and their respective dispatchabl

the GA are obtained. These losse
operating state of each bus at a gi

Fig. 2 shows the GA flowcha
step of the executed r )
GA.l1 - Start:
Matlab and definit®
simulations.

GA.2 — Amount of DGEZ to be allocated: The number
of DGs to be allocated in the systems is defined as input
data by the user.

GA3 Chromosome definition: the proposed
chromosome structure that will be wused in the
optimization process consists of allocation possibilities
(system buses) and the possibilities of dispatching power
from the DGs, as shown in the vector below:

X, =[Bus, | P,|Bus, | P,]...Bus, | P, |]

S.
the GA routine in
desired number of

where X, is the chromosome, Bus; is the i" bus, P; is the
active power from the DG to Busi, and n corresponds to
the number of DGs to be allocated and their respective
powers to be dispatched.

The chromosome presents the premises of interest for
each individual in the population evaluated in the
objective function (OBF), the allocation buses and,
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available powers. Each individual offers a new
configuration for the system, where each DG allocated in
buses (only three-phase buses) of the system will
contribute to the active power injection according to the
power indicated by the GA.

GA.4 — Population creation: In this step, the initial
population of individuals (chromosomes) is created, and
in the first iteration, genes are randomly drawn.

From there, the genetic operators - described in GA.6
act to update individuals.

GA.5 — Evaluation of individuals: In this step,
individuals are decoded and the allocation of DGs is
carried out to execute the power flow with each candidate
individually. Once this is done, each individual has their
performance calculated by the OBF presented previously
in (2), attributing a fitness through the GA fitness
those that provide the
a greater probability
omposition of new

function. The fittest indivige®
best results in the asses#e Y
of permanence forgthe

populations.
GA.6 - Ge

: The genetic operators
ssing, which generates new
bination of genes from the
7 The mutation, which carries out
the genes of each individual in the

C operations are applied in order to obtain new
petter individuals from those who already make up
agh population. Thus, while convergence to a viable
olution is not achieved, operators are executed to enable
genetic diversity and allow for a more comprehensive
search space.

CAL GA2
Amount of
Start DGs to be
allocated
GA4 GA3
Creation of Definition of
e o | genes for DGs
pop allocation
GA5 GAB
Evaluation of Genetics
population’s »  Operators
individuals P

A

GA
¢}
Converge?

YES

Fig. 2. Genetic algorithm flowchart.
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GA.7 — Convergence criterion: In this module, the DU.5 — Power flow execution: In this step, with the
convergence of the GA is verified. The criteria used for ~ chromosome indicated by the GA already decoded, the
convergence can be the maximum number of iterations or ~ machines allocated in the respective nodes, and the
population stagnation. For this work, the criterion  uncertainties incorporated to the demands, OpenDSS
adopted was that of population stagnation. executes the power flow.

GA.8 — Finalization and presentation of results: In DU.6 — Verification of simulated cases: it is verified
this step, after reaching the convergence criterion, the if the desired number of simulations had been carried out.
viable solution indicated by the GA with optimal location  If so, the program ends its execution, if not, it returns to
and power of the machines and minimized total loss is ~ Step DU.3.
presented. DU.7 — Finalization: at the end of the desired humber

Fig. 3 shows the flowchart for the representation and ~ Of simulations, it is necessary to define the new desired
inclusion of uncertainties in the demand of each load and  network loading scenario so that the process is restarted.

also the loading scenarios throughout the day. Then, the

procedure was implemented in Matlab®. IV. RESULTS
DU.1 — Function to generate random numbers: In The method proposed in Section 111. was tested using
this study, the rand function in Matlab is used to generate  |EEE 13- 34-, and 123 systems [31]. The
random numbers between O and 1. _ _ simulations were run on re i5, 2.3 GHz, 4 GB
DU.2 — Definition of the loading scenario: In this  gram, using Window¢ ¥ brating system, with
step, the loading scenario to be simulated at intervals  pjatlab R2015a a Brsion 8.1.6.1 (64-hit
between 0.2 and 1.5 is defined. For the present work, the build). i me required by the
range between 0.2 and 0.5 was considered for light  gimulations vaies system.
loading, the range between over 0.5 and 0.8 for medium 'GA was run 400 times in each
loading, and the range between over 0.8 and 1.0 for heavy system inf®s for each loading scenario. In
loading. A range between 0.5 and 1.5 was also included  gzch ai loads can assume different values,

covering, in addition to medium and heavy loads, the ;i

possibilities of overloading defined as a random load  s@nario, caysing the genetic algorithm, at the end of each
scenario. ] ) s i to indicate different bars. Due to the

DU.3 — Random number drawing: Once the desired nature of the GA, together with the
load is defined, the rand function in Matlab gcorporation of uncertainties in the load demand, an
implemented in order to draw random numbers within thé
corresponding range. These numbers are
represent, in addition to the uncertainty in 4

more prudent evaluation of the optimal buses for the
allocation of DGs in each system. The buses most
) . indicated by the GA were selected as the optimal bus in
the demands on each load for t each studied test system.
simulation. . The developed program allows the user to define any
DU.4 — Demand definition: number of DGs to be allocated. For the simulations, the
multiplied by the active and r number of machines allocated was defined to allow for a
greater diversity of bus indications. In all cases studied,
the number of DGs specified was 6.

flow. For the purpose of validating the proposed method,
simulations were carried out with generators allocated to
Definition of the — the three buses most indicated by the GA in each system.
f‘;’;ﬁé‘r’;‘t;" g D;:;f;g‘{fﬁ:g' Simulations were also carried out for the base cases, in
random loading scenario which there are no DGs. The scenarios chosen for
numbers simulation were heavy and random load scenarios, as
they represent more critical scenarios for the operation of
DU4 DU3 the network. For each case (base and allocation) ten
Definition of Random simulations were run and the arithmetic average of the
des”y‘jt’;ﬁﬁg:ffh N number drawing values obtained were made (due to the consideration of
randomness in the load demand), and then, finally, the
results were displayed in tables for case comparison and
bus  § evaluation of the method.

Power Flow o R A. Case of Study — IEEE 13 Buses Test System
OpenDSS simulated? Fig. 4 presents the single-line circuit of the 13-bus
IEEE system, the base topology of the system in question.
This is a small feeder model with a nominal voltage of
4.16 kV for analysis in distribution systems. It is
characterized by having overhead and underground lines,
a voltage regulator at the substation, shunt capacitors, a

Fig. 3. Flowchart for representation of uncertainties in demand. transformer, high and unbalanced load.
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Fig. 4. IEEE 13 bus test systems.
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Fig. 5. Incidences of strategic buses in the IEEE 13 Bus system
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In Fig. 5, the incidences of the optimal buses indicated
by the GA are presented. Each of the figures corresponds
to a loading scenario. Incidence means how many times a
given bus was indicated as optimal. The number of
incidences for each bus may vary depending on the
loading scenario, the red colors show the buses that have
the highest incidence and yellow the lowest.

According to the simulations results, the most
appropriate buses for allocation of DGs in the IEEE 13-
bus test system are 675, 671, and 692. In each loading
scenario, the indicated powers vary, mainly for Light load.
However, considering the other scenarios, the most
indicated and selected power for each machine was 200
kKW.

In Table I, it is observed that the Allocation 01
(heavy loading) and Allocation 02 (random loading)
cases, which represent the gadimal allocation of DGs,

Active power losses (kW)
85.552

60.851

109.045

78.042

e of

udy — IEEE 34 Buses Test System

shows the single-line diagram of the IEEE 34-
stem. This system is a real feeder, rated at 24.9 kV
characterized by being long, lightly loaded, having
wo Vvoltage regulators, a transformer to supply a short
feeder section at 4.16 kV, shunt capacitors, and
unbalanced loads.

848=T=
——346
844 et

(42

860 836 840

e—
800 802 806 808 812814 850 816 824 |826 gg»

828

830 8
Fig. 6. IEEE 34 bus test system.

The incidences of the optimal buses indicated in the
IEEE 34 bus system considering the availability of 6 DGs
for allocation in the network are presented in Fig. 7.

For the simulations in this system, buses 844, 836, 832
and 860 were obtained as optimal. Again, the indicated
powers vary according to the load scenario, however,
considering all scenarios, the optimal power indicated for
each machine was 200 kW.

The results in Table Il show, as expected, a
significant reduction in active losses in the network, with
56.17% for the heavy load scenario and 39.96% for the
random load scenario.

TABLE I11: 34 BUS TEST SYSTEM: RESULTS COMPARISON

Loading condition [Scenario Active power losses (kW)
- Base case without DGs [225.78
Heavy loading G BGs 98.95
- Base case without DGs [240.80
Random loading Gy HGs 174.57
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C. Case of Study — IEEE 123 Buses Test System

Fig. 8 shows the single-line of the IEEE 123 bars
system, which operates at a nominal voltage of 4.16 kV,
providing problems related to voltage drops that must be
solved by installing equipment and actuating control
devices. The system is characterized by having overhead

NG
L ﬁ?
S ] 1] *

800 802 806 808812 §14 850 876 824 826 |

862-=p=

[ INCDENCEOF1.10. srme | E3Bans and underground lines, voltage regulators, unbalanced
=1 INCIDENCE OF 31-70 o 54 gs5t loads with constant power, impedance, and current nature.
B INCIDENCE OVER 150 Fig. 9 and Fig. 10 show the buses indicated by the GA
(a) Light load and their incidences for Heavy and Random load
248-(J= Iti i
e condition respectively.
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Fig. 10. Incidences of strategic buses in the IEEE 123 Buses (Random
Load) system.

HT

TABLE IV: 123 Bus TEST SYSTEM: RESULTS COMPARISON

Loading condition |Scenario Active power losses (kW)
Heavy loading Ba_se case without DGs [76.91

With DGs 51.41
Random loading Ba_se case without DGs [97.35

With DGs 62.95

For the simulations carried out in the 123-bus system,
the optimal buses were obtained as buses 65, 76, 49, and
108. As for the other systems studied, the indicated
Fig. 8. IEEE 123 bus test system. powers vary according to the load, being in the case of

-
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the 123 buses, the widest range of indications happening
for the light load scenario. Still, considering all the
simulated scenarios, the optimal power is specific and
adequate for each DG for 200kW.

The results obtained in Table Ill, shown that for the
case study system, there was a relevant reduction in total
active losses in the network, with a reduction of 33.15%
for the heavy load scenario and for the random load
scenario of 35.33%, once again showing the effectiveness
of the method in this proposed work.

V. CONCLUSION

In this paper, an approach for optimal allocation of
distributed generators in power distribution systems using
genetic algorithm has been presented. In the optimization
process, the randomness of each load, as well as the
system’s light, medium and heavy loading conditions
were considered. The objective of the optimal allocation
of DGs was the minimization of total active losses,
respecting the operational restrictions of the systems.

With this method, it was possible to obtain several
strategic buses for the allocation of generators, observe
which buses are most suitable and most appropriate for
this purpose, and also which is the optimal bus (most
suitable, considering all loading scenarios, including
overloads) for installation of DGs. It was also possible to
observe the influence of loading scenarios and demand
uncertainties in the indication of the optimal buses al
the power dispatched by each DG. In scenarios with ligh
loading, the indicated powers vary more
indications of the buses for DG installation
in a more dispersed way in the systems, a

feeder branches. Another observ#on
buses that were previously j#cated
scenarios were not indicate
with a lower incidence.

The results for purpg
the optimal installatjs
reducing losses attes
covered with a signifi gduction in losses in each
system studied, allowing e installation of generators
efficiently, improving the performance of the distribution
systems.
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