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Abstract—This paper presents a method for optimally 
allocating distributed generators in power distribution 
networks for total loss minimization using genetic 
algorithms technique. In the optimization process, load 
demand uncertainties throughout the day were considered 
with the aim of representing appropriately the real 
operation of the distribution system, which allows a more 
careful evaluation of the optimal bus to allocate the DG. The 
proposed approach was implemented on the IEEE 13, IEEE 
34, and IEEE 123 bus test systems, which possess 

characteristics inherent in distribution grids.  

Index Terms—Distributed generators, power distribution 
systems,

 
load demand uncertainties,

 
loss minimization,

 

optimization.
 

I. INTRODUCTION

In [1], Distributed Generati on (DG) is defined as a 

source of energy connected directly to the distribution 

network or to the customer's measurement location. The 

distinction between the distribution and transmission 

networks is based on the legal definition, which is 

normally part of the regulation of the electricity market in 

each country. 

Among the main benefits provided by the insertion of 

DG in the electrical system, we can highlight the 

reduction of active power losses, improvement of the 

voltage profile, and environmental gains, when using 

renewable sources such as solar photovoltaic (PV) and 

wind energy as primary sources [2]-[4]. To take 

advantage of these potential benefits, one of the main 

steps is to deal with the placement and sizing problem of 

distributed sources, which consists of solving an 

optimization problem whose decision variables are the 

location and size of the DGs [5], [6]. 

In this context, many works have been developed in 

the literature, producing different approaches to the DG 

allocation problem. In the works reported in [7]-[10], the 

use of the Genetic Algorithm (GA) is proposed to 

determine the optimal location and size of the DGs, with 

the main objective being to minimize the active power 
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losses of the system. In [11], a cooperative reinforcement 

learning algorithm for solving the economic dispatch is 

proposed, to minimize the operation costs of micro-

networks. The micro-grid model consists of distributed 

generation units and energy storage devices. For the 

analysis and validation of the proposed algorithm, the 

authors perform simulations based on real load data and 

comparisons with fuzzy-Q learning and with the 

Scenario-based algorithm, showing that their 

methodology is effective in minimizing the costs of DG 

dispatch in micro-networks. As a limitation, the author 

does not take into account active and reactive power 

losses. In [12], fuzzy logic is used to solve the DG 

allocation and sizing problem. The authors take into 

account a reliability index that represents the cost of non-

supplied energy. Thus, one of the objectives of the 

optimization problem is to improve the reliability of the 

network. To minimize active power losses, [13] propose 

the power loss index (PLI) for the allocation of DG units 

together with the flower pollination algorithm (FPA) 

metaheuristic approach. The research carried out in [14], 

[15] bring a multi-objective approach to insert and

dimension DG in radial distribution systems. The three

weighted goals are to reduce active power losses,

improve the voltage profile, and increase a voltage

stability index. In [16]-[18], the siting and sizing of DG

units is implemented using a hybrid algorithm that uses

particle swarm optimization (PSO) to locate the DGs and

GA to determine the size.

Table I brings several works referring to the optimal 

allocation of DGs that directly or indirectly influenced 

this work, showing the adopted objective function(s), 

some comments relevant to the modeling and the adopted 

solution method. 

In this paper, a method for the allocation of three-

phase generators distributed in electrical distribution 

systems is developed, that seeks to minimize the total 

system active power losses. The optimization method is 

based on the metaheuristic technique of the genetic 

algorithm. In this approach, the uncertainties and 

variations in load demand are considered which makes 

the model be a close representation of the actual 

operation of electric energy distribution systems. 
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TABLE I:  EXAMPLES OF WORKS REGARDING THE OPTIMAL ALLOCATION OF DGS 

Solution method and 
reference 

Objective Function Comments about the modelling 

Artificial Bee Colony 
[19] 

Minimize active power losses. Two load scenarios, comparison with exhaustive search. 

Fuzzy Genetic 
Algorithm [20] 

Maximize the voltage stability margin and 
revenue total net. 

Fuzzifier the two objective functions into one and then apply weighted 
sum, three possible load levels, do analysis for meshed systems. 

Multi-objective 
Particle Swarm 

Optimization [21] 

Maximization of DG’s entrepreneur's total net 
revenue, minimization. 

Calculation of operational and technical indexes for decision making, also 
determines the price of the energy sale contract, three load levels, DG 

capacity factor equal to 1, without differentiating the sources. 
Ant Colony 

Optimization [22] 
Maximize the present value of the network. Applies penalties on objective function, using multiple scenarios. 

Dynamic 
programming [23] 

DG total cost minimization Losses were monetized and included in the total DG cost. 

Teaching Learning-
Based Optimization [24] 

Minimization of active energy losses, the grid 
voltage profile and the inverse of the voltage 

stability index. 

Comparison with PSO and GA, one load level. 

Evolutionary Algorithm  
and Game theory [25] 

Minimizing active energy losses, voltage 
stability index, total voltage variation and 
energy purchase costs and maximizing the 
total net revenue of the GD entrepreneur. 

Two stage contract price and allocation optimization, comparison with GA 
and PSO with weighted sum, contract price according to DG power. 

Technique for Order 
Preference by Similarity 

to Ideal Solution [26] 

Minimization of losses, maximization of 
voltage profile improvement. 

DG allocation and sizing. 

Cuckoo Search 
Algorithm [27] 

Power losses minimization. It uses the voltage stability index and a loss sensitivity factor as 
algorithm parameters; it allocates and sizes in addition to DG, a 

synchronous compensator. 

 
The main objective of this study is to determine the 

strategic buses for the allocation of DGs that provide the 
lowest electrical losses in the analyzed systems. To solve 
the optimization problem, a program for inclusion of DGs 
and calculation of the three-phase power flow is used, 
which is coupled to a GA routine 

II. BASIC ASSUMPTIONS 

A. Distributed Generators  

The definition of DG does not define the degree of 

energy generation, since the maximum degree depends on 

the conditions of the local distribution grid, for example. 

However, it is useful to introduce categories of varying 

degrees of distributed generation. The authors in [1] 

suggest the following categories: 

- Micro distributed generation: [1W ~ 5kW]; 

- Small distributed generation: [5kW ~5MW]; 

- Medium distributed generation: [5MW ~ 50 MW];  

- Large distributed generation: [50MW ~ 300MW] 

In this study, the power dispatched by the generators 

can be 50, 100, 150 and, 200 kW, all with unity power 

factor, connected only in three-phase buses, serving as an 

active power source for the system. Fig. 1 shows a 

synchronous machine representation for distributed 

generators in distribution systems. 
The implementation of the DGs and the solution of the 

power flow to the networks are carried out using 
OpenDSS. The machines are modeled with balanced 
constant active power injection for a specified power 
factor. The synchronous generators are modelled as 
negative loads. 

 

Fig. 1. Representation of a distributed generator connected to a busbar 

of an electrical system. 

B. Demand Randomness and Loading Scenarios 

In the actual operation of electrical distribution 
systems, the demand of the loads has a certain degree of 
uncertainty, due to measurement errors and also to the 
incessant loading variation in each bus [28], [29]. In 
addition, there are also varying loading conditions (light, 
medium and heavy) of the networks throughout the day. 

Thus, it is necessary to incorporate the randomness of 
demand and loading scenarios in the power flow for a 
more realistic analysis of the distribution systems. This 
randomness can be introduced by multiplying the load 
demand at each node of the systems by a set of randomly 
drawn numbers within value ranges that represent, in 
addition to the uncertainty of demand, the network 
loading scenario. The drawing of numbers can be 
implemented through a function in Matlab®, as well as 
the file for defining the power of the loads in each 
simulation, which will be included in OpenDSS [30]. 

III. PROPOSED METHOD FOR DGS LOCATION & SIZING 

TO MINIMISE LOSSES IN DISTRIBUTION SYSTEMS 

The problem addressed in this work can be defined as 

the determination of the optimal buses for the installation 

of DGs for active power loss minimization, taking into 

account the uncertainties of the demand and loading 

levels of the systems throughout the day, while 

maintaining voltage within acceptable limits. 

A. Optimization Problem 

The active power losses can be computed as: 

2

, , ,kL k ij k i k jP g V V= −                          (1) 

where 
kLP  is the active power loss corresponding to 

element k (kW), gk,ij is the conductance of element k, Vk,i 

is the voltage modulus of bus i, from which element k 

exits, Vk,j is the voltage modulus of bus j, from which 

element k exits. 
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The optimization problem can be modeled as 

m

1

in max  subject to OBF min  
k

N

L

k

i VP V V
=

=        (2) 

where N is the set of lines belonging to the system. 

Equation (2) represents the objective function, OBF, 

subject to the voltage restriction for the evaluation of the 

optimal parameters chosen in each generation of the 

genetic algorithm.  

Due to the non-linear nature of the optimization 

problem to minimize losses, classical optimization 

techniques, despite the guarantee of an optimal solution, 

require that all possible combinations of the search space 

for solutions are evaluated. This results in a high 

computational cost, making them unfeasible for energy 

systems. Thus, meta-heuristic techniques are suitable for 

solving the problem, enabling a convenient reduction of 

the search space, implying a more efficient investigation 

of solutions close to optimality, making them 

computationally viable. However, metaheuristic methods 

do not guarantee optimal solutions. For this work, the 

Genetic algorithm technique was chosen. 

B. Proposed Method  

The optimization problem is solved through a GA, 

having its routine implemented code in Matlab®. The 

objective function of the problem seeks to minimize the 

total active power losses in the test systems with the 

allocation of already configured DGs. The sequence of 

allocation of DGs and their respective dispatchable 

powers in the systems are indicated by the GA. After that, 

the power flow is executed in OpenDSS, from which the 

total losses for the respective DG allocations provided by 

the GA are obtained. These losses depend on the 

operating state of each bus at a given moment, varying 

according to the voltage magnitude and angle, and power 

injection of the DGs at each instant. 

This section sets out to show how the approach works. 

Fig. 2 shows the GA flowchart. The description of each 

step of the executed routine is as follows. 
GA.1 – Start: Initialization of the GA routine in 

Matlab and definition of the desired number of 
simulations. 

GA.2 – Amount of DGs to be allocated: The number 
of DGs to be allocated in the systems is defined as input 
data by the user. 

GA.3 – Chromosome definition: the proposed 
chromosome structure that will be used in the 
optimization process consists of allocation possibilities 
(system buses) and the possibilities of dispatching power 
from the DGs, as shown in the vector below: 

   1 1 2 2 Bus | | Bus | | Bus | |n n nX P P P=   

where Xn is the chromosome, Busi is the ith bus, Pi is the 
active power from the DG to Busi, and n corresponds to 
the number of DGs to be allocated and their respective 
powers to be dispatched. 

The chromosome presents the premises of interest for 
each individual in the population evaluated in the 
objective function (OBF), the allocation buses and, 

available powers. Each individual offers a new 
configuration for the system, where each DG allocated in 
buses (only three-phase buses) of the system will 
contribute to the active power injection according to the 
power indicated by the GA. 

GA.4 – Population creation: In this step, the initial 
population of individuals (chromosomes) is created, and 
in the first iteration, genes are randomly drawn. 

From there, the genetic operators - described in GA.6 
act to update individuals. 

GA.5 – Evaluation of individuals: In this step, 
individuals are decoded and the allocation of DGs is 
carried out to execute the power flow with each candidate 
individually. Once this is done, each individual has their 
performance calculated by the OBF presented previously 
in (2), attributing a fitness through the GA fitness 
function. The fittest individuals are those that provide the 
best results in the assessment, with a greater probability 
of permanence for the future composition of new 
populations. 

GA.6 – Genetic operations: The genetic operators 

used are the crossover or crossing, which generates new 

individuals from the combination of genes from the 

“parent” chromosomes. The mutation, which carries out 

random changes in the genes of each individual in the 

population. And finally, elitism, which guarantees the 

permanence of the fittest individuals to form the next 

population. 

Genetic operations are applied in order to obtain new 

and better individuals from those who already make up 

each population. Thus, while convergence to a viable 

solution is not achieved, operators are executed to enable 

genetic diversity and allow for a more comprehensive 

search space. 

Start

Amount of 

DGs to be 

allocated

Definition of 

genes for DGs 

allocation

Creation of 

population

Evaluation of 

population s 

individuals

Genetics 

Operators 

Converge?

End
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NO

GA.8

GA.1 GA.2

GA.3GA.4

GA.5 GA.6

GA.7

 
Fig. 2. Genetic algorithm flowchart. 
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GA.7 – Convergence criterion: In this module, the 

convergence of the GA is verified. The criteria used for 

convergence can be the maximum number of iterations or 

population stagnation. For this work, the criterion 

adopted was that of population stagnation. 

GA.8 – Finalization and presentation of results: In 

this step, after reaching the convergence criterion, the 

viable solution indicated by the GA with optimal location 

and power of the machines and minimized total loss is 

presented. 

Fig. 3 shows the flowchart for the representation and 

inclusion of uncertainties in the demand of each load and 

also the loading scenarios throughout the day. Then, the 

procedure was implemented in Matlab®. 

DU.1 – Function to generate random numbers: In 

this study, the rand function in Matlab is used to generate 

random numbers between 0 and 1. 

DU.2 – Definition of the loading scenario: In this 

step, the loading scenario to be simulated at intervals 

between 0.2 and 1.5 is defined. For the present work, the 

range between 0.2 and 0.5 was considered for light 

loading, the range between over 0.5 and 0.8 for medium 

loading, and the range between over 0.8 and 1.0 for heavy 

loading. A range between 0.5 and 1.5 was also included 

covering, in addition to medium and heavy loads, the 

possibilities of overloading defined as a random load 

scenario. 
DU.3 – Random number drawing: Once the desired 

load is defined, the rand function in Matlab is 
implemented in order to draw random numbers within the 
corresponding range. These numbers are used to 
represent, in addition to the uncertainty in demand, the 
loading scenario to be simulated and subsequently define 
the demands on each load for the corresponding 
simulation. 

DU.4 – Demand definition: The drawn numbers are 
multiplied by the active and reactive power in each load 
in the systems, defining the network load and demand 
randomness, which will be incorporated into the power 
flow. 

Definition of the 

function to 

generate 

random 

numbers

DU.1

Define interval 

representing 

loading scenario

Random 

number drawing

Definition of 

demand of each 

system load

Power Flow 

Execution on 

OpenDSS

Last case 

simulated?

End

DU.2

DU.3DU.4

DU.5

DU.6

DU.7

NO

YES

 
Fig. 3. Flowchart for representation of uncertainties in demand. 

DU.5 – Power flow execution: In this step, with the 
chromosome indicated by the GA already decoded, the 
machines allocated in the respective nodes, and the 
uncertainties incorporated to the demands, OpenDSS 
executes the power flow. 

DU.6 – Verification of simulated cases: it is verified 
if the desired number of simulations had been carried out. 
If so, the program ends its execution, if not, it returns to 
step DU.3. 

DU.7 – Finalization: at the end of the desired number 
of simulations, it is necessary to define the new desired 
network loading scenario so that the process is restarted. 

IV. RESULTS 

The method proposed in Section III. was tested using 

IEEE 13-, 34-, and 123- bus systems [31]. The 

simulations were run on an Intel Core i5, 2.3 GHz, 4 GB 

RAM, using Windows 10 Pro operating system, with 

Matlab R2015a and OpenDSS version 8.1.6.1 (64-bit 

build). The computational time required by the 

simulations varies in each test system. 

For the case studies, the GA was run 400 times in each 

system, being 100 times for each loading scenario. In 

each simulation, the loads can assume different values, 

within the range that defines the network operation 

scenario, causing the genetic algorithm, at the end of each 

simulation, to indicate different bars. Due to the 

stochastic nature of the GA, together with the 

incorporation of uncertainties in the load demand, an 

extensive number of simulations is necessary, favoring a 

more prudent evaluation of the optimal buses for the 

allocation of DGs in each system. The buses most 

indicated by the GA were selected as the optimal bus in 

each studied test system. 

The developed program allows the user to define any 

number of DGs to be allocated. For the simulations, the 

number of machines allocated was defined to allow for a 

greater diversity of bus indications. In all cases studied, 

the number of DGs specified was 6. 
For the purpose of validating the proposed method, 

simulations were carried out with generators allocated to 
the three buses most indicated by the GA in each system. 
Simulations were also carried out for the base cases, in 
which there are no DGs. The scenarios chosen for 
simulation were heavy and random load scenarios, as 
they represent more critical scenarios for the operation of 
the network. For each case (base and allocation) ten 
simulations were run and the arithmetic average of the 
values obtained were made (due to the consideration of 
randomness in the load demand), and then, finally, the 
results were displayed in tables for case comparison and 
evaluation of the method. 

A. Case of Study – IEEE 13 Buses Test System  

Fig. 4 presents the single-line circuit of the 13-bus 
IEEE system, the base topology of the system in question. 
This is a small feeder model with a nominal voltage of 
4.16 kV for analysis in distribution systems. It is 
characterized by having overhead and underground lines, 
a voltage regulator at the substation, shunt capacitors, a 
transformer, high and unbalanced load. 
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Fig. 4. IEEE 13 bus test systems. 

 
(a) Light Load) 

 
(b) Average load 

 
(c) Heavy Load 

 
(d) Random load 

Fig. 5. Incidences of strategic buses in the IEEE 13 Bus system 

In Fig. 5, the incidences of the optimal buses indicated 
by the GA are presented. Each of the figures corresponds 
to a loading scenario. Incidence means how many times a 
given bus was indicated as optimal. The number of 
incidences for each bus may vary depending on the 
loading scenario, the red colors show the buses that have 
the highest incidence and yellow the lowest.  

According to the simulations results, the most 
appropriate buses for allocation of DGs in the IEEE 13-
bus test system are 675, 671, and 692. In each loading 
scenario, the indicated powers vary, mainly for Light load. 
However, considering the other scenarios, the most 
indicated and selected power for each machine was 200 
kW. 

In Table II, it is observed that the Allocation 01 
(heavy loading) and Allocation 02 (random loading) 
cases, which represent the optimal allocation of DGs, 
compared to the base cases 01 (heavy loading) and 02 
(random loading), present a reduction in total losses of 
28.87% and 28.43%, respectively, validating the method 
discussed. 

TABLE II: 13 BUS TEST SYSTEM: RESULTS COMPARISON 

Loading condition Scenario Active power losses (kW) 

Heavy loading 
Base case without DGs 85.552 
With DGs 60.851 

Random loading 
Base case without DGs 109.045 
With DGs 78.042 

B. Case of Study – IEEE 34 Buses Test System  

Fig. 6 shows the single-line diagram of the IEEE 34-
bus system. This system is a real feeder, rated at 24.9 kV 
and characterized by being long, lightly loaded, having 
two voltage regulators, a transformer to supply a short 
feeder section at 4.16 kV, shunt capacitors, and 
unbalanced loads. 

 
Fig. 6. IEEE 34 bus test system. 

The incidences of the optimal buses indicated in the 
IEEE 34 bus system considering the availability of 6 DGs 
for allocation in the network are presented in Fig. 7. 

For the simulations in this system, buses 844, 836, 832 
and 860 were obtained as optimal. Again, the indicated 
powers vary according to the load scenario, however, 
considering all scenarios, the optimal power indicated for 
each machine was 200 kW. 

The results in Table III show, as expected, a 
significant reduction in active losses in the network, with 
56.17% for the heavy load scenario and 39.96% for the 
random load scenario. 

TABLE III: 34 BUS TEST SYSTEM: RESULTS COMPARISON 

Loading condition Scenario Active power losses (kW) 

Heavy loading 
Base case without DGs 225.78 
With DGs 98.95 

Random loading 
Base case without DGs 240.80 
With DGs 174.57 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 3, May 2022

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm. 214

RETRACTED



 
(a) Light load 

 
(b) Average load 

 

(c) Heavy load 

 
(d) Random load 

Fig. 7.  Incidences of strategic buses in the IEEE 34 – bus system. 

 
Fig. 8. IEEE 123 bus test system. 

C. Case of Study – IEEE 123 Buses Test System  

Fig. 8 shows the single-line of the IEEE 123 bars 

system, which operates at a nominal voltage of 4.16 kV, 

providing problems related to voltage drops that must be 

solved by installing equipment and actuating control 

devices. The system is characterized by having overhead 

and underground lines, voltage regulators, unbalanced 

loads with constant power, impedance, and current nature. 

Fig. 9 and Fig. 10 show the buses indicated by the GA 

and their incidences for Heavy and Random load 

condition respectively. 

 
Fig. 9. Incidences of strategic buses in the IEEE 123 Buses (Heavy 

Load) system. 

 
Fig. 10. Incidences of strategic buses in the IEEE 123 Buses (Random 

Load) system. 

TABLE IV: 123 BUS TEST SYSTEM: RESULTS COMPARISON 

Loading condition Scenario Active power losses (kW) 

Heavy loading 
Base case without DGs 76.91 

With DGs 51.41 

Random loading 
Base case without DGs 97.35 

With DGs 62.95 

 

For the simulations carried out in the 123-bus system, 

the optimal buses were obtained as buses 65, 76, 49, and 

108. As for the other systems studied, the indicated 

powers vary according to the load, being in the case of 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 11, No. 3, May 2022

©2022 Int. J. Elec. & Elecn. Eng. & Telcomm. 215

RETRACTED



the 123 buses, the widest range of indications happening 

for the light load scenario. Still, considering all the 

simulated scenarios, the optimal power is specific and 

adequate for each DG for 200kW. 

The results obtained in Table III, shown that for the 

case study system, there was a relevant reduction in total 

active losses in the network, with a reduction of 33.15% 

for the heavy load scenario and for the random load 

scenario of 35.33%, once again showing the effectiveness 

of the method in this proposed work. 

V. CONCLUSION 

In this paper, an approach for optimal allocation of 

distributed generators in power distribution systems using 

genetic algorithm has been presented. In the optimization 

process, the randomness of each load, as well as the 

system’s light, medium and heavy loading conditions 

were considered. The objective of the optimal allocation 

of DGs was the minimization of total active losses, 

respecting the operational restrictions of the systems. 

With this method, it was possible to obtain several 

strategic buses for the allocation of generators, observe 

which buses are most suitable and most appropriate for 

this purpose, and also which is the optimal bus (most 

suitable, considering all loading scenarios, including 

overloads) for installation of DGs. It was also possible to 

observe the influence of loading scenarios and demand 

uncertainties in the indication of the optimal buses and 

the power dispatched by each DG. In scenarios with light 

loading, the indicated powers vary more and the 

indications of the buses for DG installation they happen 

in a more dispersed way in the systems, and then, as the 

network load increases, they are concentrated in common 

regions of each system, more specifically at the end of the 

feeder branches. Another observation was that some 

buses that were previously indicated in some load 

scenarios were not indicated in others, or were indicated 

with a lower incidence. 

The results for purposes of comparison, evaluation of 

the optimal installation of DGs, and their contribution to 

reducing losses attest to the effectiveness of the method 

covered with a significant reduction in losses in each 

system studied, allowing the installation of generators 

efficiently, improving the performance of the distribution 

systems. 
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