
Implementation of Autonomous Driving

Algorithms on a Miniature Robot

Shreyash G. Patil and Kishanprasad G. Gunale
Dr. Vishwanath Karad MIT World Peace University, School of ECE, Pune, India

Email: shreyashpatil199601@gmail.com; Kishanprasad.gunale@mitwpu.edu.in

Abstract—The proposed work mainly attempts to implement

numerous image processing algorithms on TurtleBot3

Waffle Pi for autonomous driving using Robot Operating

System (ROS). The image processing algorithms used in this

work for developing a vision-based system for autonomous

driving. Before actual implementation on hardware, the

algorithms are first tested in simulation. The time-

synchronized data feed is collected from the sensors of the

robot. Then the collected data is further processed to

perform controlling actions using actuators. The robot's

performance is tested and optimized for the same

algorithms by varying different parameters in simulation

and on a real robot.

Index Terms—ROS, Gazebo, image processing, TurtleBot3,

robotics

I. INTRODUCTION

Robotics is becoming a popular area of research and

development for intelligent autonomous driving.

Autonomous driving has significant challenges in the

detection of objects in a natural environment. Based on

future prospects, autonomous driving must pass through

vehicle testing and validation depending on all possible

scenarios. A prototype robot can be used to test the

autonomous driving algorithms to know all potential

challenges in a physical environment. TurtleBot3 is a

standard robot for ROS, which is an open-source

framework for robotic applications. TurtleBot3 Waffle Pi

comes along with open control board for ROS and

Raspberry Pi 3 as Single Board Controller (SBC). It is

extensible and can be interfaced with various ranges of

modular actuators. Raspberry Pi, Raspberry Pi camera,

OpenCR 1.0 board, Bluetooth module, 360º LiDAR and

two Dynamixels are the main hardware components of

the TurtleBot3 Waffle Pi.

ROS supports code reuse in robotics and ready to use

development environment. It has extensive community

support, comprehensive tools, and client libraries that

help complete the robot process cycle that involves

sensing the environment and processing information and

action. ROS node is a process that performs computations

on some data for sensors and actuators. ROS nodes can

communicate with each other by sending ROS messages

Manuscript received July 9, 2021; revised August 25, 2021; accepted

September 16, 2021.

Corresponding author: Shreyash G. Patil (email:

shreyashpatil199601@gmail.com).

through topics, services, and actions. ROS topics are used

to pass ROS messages among publisher nodes and

subscriber nodes by setting connections through a master

node in this proposed work. With the help of TCPROS,

the transport layer for ROS messages and services, it is

based on TCP/IP protocol.

In this proposed work, the TurtleBot3 Waffle Pi model

is used. The autonomous driving algorithms are first

tested in the simulated world with TurtleBot3 using

Gazebo and Rviz tools that ROS supports. Gazebo plugin

is a ROS-compatible simulator tool that can create a real-

time 3D scenario for any robot [1]. The performance of

TurtleBot3 Waffle Pi in the Gazebo simulator is tested on

a simulated track that is designed for testing autonomous

driving. Simultaneous localization and mapping (SLAM),

navigation, lane detection, lane following, collision

avoidance, lane changing, traffic light detection, traffic

stop sign detection, and parking are the algorithms tested

in simulation. Image processing algorithms using

OpenCV are implemented on some nodes to detect

objects in the environment, and necessary control actions

are taken depending on the type of detected object [2].

Edge detection, masking, threshold, hough transform is

applied to the image to test the detection of lane markings.

SLAM is used to generate map of an unknown

environment. The waypoint based navigation is used to

provide the reference points to avoid moving out of the

lane. Feature matching technique is used to detect the

traffic signs. A simple blob detector is used for the

detection of traffic lights. All these algorithms are

implemented in the real world for TurtleBot3 after testing

in the simulated world.

II. RELATED WORK

Previous studies based on vision-based systems that

detect and recognize objects in natural environments use

image segmentation and feature extraction for object

identification and provide a background for comparing

different ML algorithms on a robot [3]. Based on the

detected obstacle or object, a neural network controller

can be used to control the trajectory with the help of a

neural-network based velocity controller [4]. There are

approaches to create a map of an unknown environment.

In the presence of a sensor like a laser scanner, the

GMapping, cartographer, or frontier exploration approach

can be used to obtain a map by scanning the environment

concerning the robot's pose [5]. Turtlebot has the

1

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

capability to track an object and follow it in real-time [6].

Further modification in TurtleBot3 can be done by using

Zynq7000 SOC that comes along with FPGA for faster

real-time processing of high-quality images and NVIDIA

Tesla GPU to utilize Tensorflow capabilities MNSTbot

[7]. Various sensor fusion frameworks can be

implemented to estimate better data from the sensors.

Kalman filter can be used for better estimation of the data

from two or more sensors providing similar types of data

[8]. Detection of lanes can be done by two methods:

model-based and feature-based. Hough transform can be

used easily to detect straight lane markings, while the

curved lane detection can be done by least-square fitting

[9]. The Advanced Driver Assistance System (ADAS)

features also include lane departure warnings while

detecting the lane. The concept of vanishing point can be

used to estimate lane departure based on whether the lane

curving is towards the right or towards the left. The

vanishing point remains at the center of the image frame

only if the lane is straight. It moves towards the left if the

lane is curving towards the right and vice versa [10]. In

most of the Hough transform-based lane detection

research, the image is processed to select the region of

interest, conversion to grayscale, and edge detection

followed by drawing hough lines. The processing time

and the data storage limit can be reduced by using Hough

space and fast Hough transform, parallel Hough

transform and improved Hough transform for better

results [11]. Another method to detect lane departure is

by using the Euclidean distance. The Euclidean distance

among origin, the midpoint of left lane marking, and the

midpoint of right lane marking help calculate departure

from either the left or right side of the road [12]. There

are two methods for lane changing, i.e., free lane change

and forced lane change. Free lane change operates

according to the driver command [13]. The process of

changing lanes or avoiding obstacles can be made easier

by using SLAM, especially if the surrounding

environment of the ego robot or vehicle is static. SLAM

can be used to generate a map of an unknown

environment with the help of sensors like Kinect depth-

sensing camera, LRF or LiDAR [14]. The next critical

functionality in autonomous driving is avoiding the

obstacle and changing lanes by avoiding the collision.

This is because the lane following algorithm keeps the

system in the lane, and the lane changing algorithm tries

to move the robot to another lane. It is complicated to

have another lane in the same field of view. It becomes a

challenging task when there are more obstacles to be

avoided from collision [15]. Occupancy grid map is a

very commonly used method in ROS to generate a map

using SLAM. Using waypoints or multiple goal locations

to the navigation stack, the TurtleBot3 can be made to

move in a saved map to follow a given trajectory [16].

The official manual by Robotis for Tutlebot3 provides

details of the basic functionalities to start with TurtleBot3.

The detailed information for basic operations of

TurtleBot3 like teleoperation, SLAM, navigation,

simulation, manipulation, autonomous driving, machine

learning is available in the Robotis manual for TurtleBot3

[17]. While autonomous driving, it is necessary to

continuously keep track of each frame if any traffic sign

or signal is present. Various researches have already been

implemented, e.g., using machine learning classification

for traffic sign detection or feature matching techniques

to detect particular signs. Feature detection techniques

using SIFT, SURF detectors of OpenCV give a fast

response for real-time feature matching with Brute Force

or FLANN-based matchers [18]. It is necessary to test all

algorithms, which is not always a cost-effective solution

if directly implemented on the hardware. Hence there are

simulation tools that can be used with ROS. Gazebo

plugin is a ROS-compatible simulator tool that can create

a real-time 3D scenario for any robot. It also resembles a

real-world scenario for the robot along with the

environment [19]. A complete robot description using

Unified Robot Description Format (URDF) files is

possible with Gazebo with necessary sensors and

actuators, which can be visualized in another tool called

Rviz. Further, all the algorithms to be implemented on the

real robot can be first tested in simulation. Once the

simulation results give an optimized expected response, it

can be implemented on the real robot.

III. PROPOSED WORK

The scope of this study is to use ROS for TurtleBot3

Waffle Pi and implement autonomous driving algorithms

like lane following, traffic light detection, stop sign

detection, parking sign detection, parking, obstacle

avoidance and lane changing. The Autorace package for

TurtleBot3 burger is modified to perform additional

functionalities using another model, i.e., TurtleBot3

waffle pi.

A. Lane Following

The lane detection is done using a camera and

OpenCV. However, image processing cannot be directly

applied in ROS. Image pre-processing is required for the

lane following process, where most lane markings are

straight, shown in Fig. 1.

Fig. 1. Image pre-processing.

2

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

Fig. 2. Flowchart showing ROS image conversion to OpenCV image.

In ROS, the nodes can send and receive ROS messages,

so the image format is not the same as the OpenCV image.

Here the cv_bridge library is used to convert ROS image

message to OpenCV image shown in Fig. 2. The lane

following must work very efficiently such that no other

functionalities get disturbed due to improper lane

detection [20]. By default, the Autorace package uses

yellow lane markings in the left lane and white lane

markings on the robot's right side. But it is not always

possible to have continuous left lane marking in yellow

color. In the case of actual road scenarios across the globe,

there is a possibility of having dotted lane marking. For

this, a small test track with dotted lane marking is

prepared for lane detection. The first step of lane

detection is to select the region of interest by preparing an

appropriate mask for the input grayscale image. Further

image processing is done on the area designated by the

mask, which is trapezoidal. Then binary thresholding of

the image is performed to find the presence of lane

marking.

Hereafter, the Hough transform is applied directly to

the thresholded image without edge detection to connect

the discontinuity in all the lines. Hough transform

converts the points from the Cartesian image space to

curves in the hough space or parametric space. The

number of possible lines passing from each point

conversion is mathematically given by parametric

equation Eq. (1):

cos sinx y (1)

The performance was best for parameters set to = 1 and

=/180 with a maximum 30 number of lines passing

through one point and a maximum line gap of 250. The

bird's eye view can be obtained by changing the

perspective of the image to get an almost infinite slope

for both the lane lines. Finding the peaks of the histogram

at the lines helps to get the location of the lane lines. This

position can be implemented with a sliding window

search for getting the information about the frames

following the lines. Further, the center of left and right is

calculated by getting the mean value of both the line

locations. This center lane value is used as the input to

the Proportional Integral Derivative (PID) controller.

Output is given to the angular Z value of the topic

responsible for the turning motion of the robot. The PID

tuning is performed by varying the Kp and Kd constants

until the robot moves in an optimized way to follow the

lane Eq. (2).

angular_z = Kperror + Kd(error – last_error) (2)

where the error value is the deviated value from the

center of the lane.

B. Obstacle Avoidance and Lane Changing

The most challenging task is to perform obstacle
avoidance and lane changing since two separate nodes
cannot be used to control the same ROS topics
simultaneously. It will cause clashes between the ROS
messages, which will make the robot show oscillatory
behavior. Since one ROS message will try to move the
robot to another lane, other ROS messages will force the
robot to keep running in the same lane. Another issue
happens if one node subscribes to two different topics and
publishes the message to the same topic having different
behaviors. The same results are obtained, which causes
the robot to show clashes between two other behaviors.
The solution uses a message filters library that takes the
messages of various types from multiple sources as input
and outputs the message only if it has received it on each
of those sources with the same timestamp [21]. This lane-
changing algorithm is added to the node for controlling
the robot by using a PID controller.

An approximate time synchronizer is used in this
particular application for subscribing to messages from
ROS topics "/scan" and "/desired_center data". The topic

"/scan" provides information from the 360 laser scanner
or LiDAR required to detect obstacles and the
"/desired_center" data provides the information from the
detect_lane node required to follow the lane. The

threshold is set to 30, so the scanning angle range is

between 30 to +30. After that, PID tuning can be
required based on the curvature present in the track in the
same node. Fig. 3 shows a flowchart for obstacle
avoidance.

Fig. 3 Flowchart showing obstacle avoidance.

3

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

C. Traffic Light Detection

The detection of traffic lights requires calibration

based on hue, saturation, and value of colors for

continuous detection of the traffic signals. The separate

node for traffic light detection converts the BGR format

of the image to HSV, then it uses a simple blob detector

from OpenCV and matches it with the circular mask with

color detection. If red light gets detected, then it publishes

a "max_vel" message value equal to zero to the control

lane node, and if green light is detected, then "max_vel"

message value 0.12 is published to the control lane node.

D. Traffic Sign Detection

Traffic sign detection node uses Fast Library for

Approximate Nearest Neighbor (FLANN) based on

feature matching technique with Scale Invariant Feature

Transform (SIFT). For each traffic sign, one reference

image is kept in a directory. The same traffic sign is used

on track for detection. Once the traffic sign is visible in

the camera feed, the feature matching algorithm detects

similar pixels from the camera feed and reference image.

If the number of pixels matching is more than a threshold

value, then the sign is classified as parking or stop sign.

After detecting a particular sign, the message is

published through the sensor messages, which are then

subscribed by a respective node. Based on the sign

detection, necessary control actions are performed. If a

parking sign is detected, the robot will search for vacant

parking and stop for the given time. If the stop sign gets

detected, all the processes will be stopped after making

the velocity of TurtleBot3 zero.

IV. SIMULATION AND RESULTS

A. Lane Following

The discontinuous lane markings are joined to form a

continuous lane marking using hough transform by

applying a mask to a particular region of interest, as

shown in Fig. 4. HoughlinesP method of OpenCV is used

to draw lane marking at discontinuities that uses

probabilistic Hough transform. It is observed that the

Hough transform works better for straight lines; however,

it cannot effectively join the discontinuous lane markings

for curvature. For curvature, a 2nd order polynomial:
2 0ax bx c (3)

Fig. 4. Lane following simulation.

Equation (3) is used for the line formed by peaks of the

histogram. In the simulation, it performs well for the

curvature with proper PID tuning at the controller end.

The PID controller is tuned such that the deviation from

the lane results in an increased error value; it is then

compared with the previous error value and fed to the

turn function to bring the robot back to the lane. The

desired rise time and setting time for smooth motion

without any oscillation were achieved by manually

varying the Kp and Kd constant values. Finally, Kp=0.0025

and Kd=0.007 were finalized for better performance. Thus,

whenever the error value increases, it gets compared with

the previous error and multiplied by the Kp and Kd

constants, increasing the turning in opposition to the

deviation from the lane.

B. Obstacle Avoidance and Lane changing

1) Obstacle avoidance

As the obstacle gets detected precisely in the scan

range of 0 degrees and the distance range of 0.5m, the

message is published to the "cmd_vel" topic. It changes

the velocity of TurtleBot3 to zero until the obstacle

remains detected in the gazebo simulator. The robot stops

at a distance of approximately 0.5m with an expected

tolerance of 0.1m, as shown in Fig. 5.

Fig. 5. Obstacle avoidance simulation.

Fig. 6. Gazebo topic visualizer.

2) Lane changing

The exact distance between Turtlebot3 and obstacle

can be seen in the Gazebo topic visualizer tool shown in

Fig. 6. The performance of the lane changing algorithm in

simulation is not entirely efficient because there are two

different sensor messages used for lane changing. The

first one belongs to the image message coming from the

4

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

camera to keep in the same lane, and the other is a scan

message coming from the laser scanner to change the lane

due to a detected obstacle. The ROS message filters

property is used to work in a time-synchronized manner.

The approximate time synchronizer method is used to

allow multiple subscribers for ROS messages of two

different topics. But if the message's arrival is before the

expected time in a callback, then that message is ignored,

which sometimes causes the robot to turn at an undesired

angle. The problem does not occur for 8 out of 10 trials,

and the robot successfully changes lane. Successful lane

changing is shown in Fig. 7.

Fig. 7. Obstacle avoidance and lane changing.

Fig. 8. Red traffic signal simulation.

Fig. 9. Green traffic signal simulation.

C. Traffic Light Detection

1) Red traffic light

After converting the image from BGR to HSV, it

becomes easy to differentiate the colors in an image by

applying the mask for a range of particular colors. The

traffic light detection algorithm performs well by using a

simple blob detector of openCV by finding the circularity

within a fixed range. In the case of red color, each object

in the range of red color is further checked whether the

circularity is present within a certain radius and if it is in

the desired degree of HSV format for red.

2) Green Traffic Light

Similarly, for green color, the desired range is set using

proper HSV values for green. In the simulation, the

successful detection of traffic lights for red and green

colors is shown in Fig. 8 and Fig. 9, respectively.

D. Traffic Sign Detection

1) Parking sign

The traffic sign detection in simulation performs

remarkably well for both parking and stop signs. It is to

be noted that as the FLANN-based feature matching

technique is used in sign detection, the images of objects

used in simulation should match the image of the

reference directory. It limits the traffic sign detection to

exactly the two traffic signs which are used in this

proposed work.

2) Stop sign

The parking sign detection is shown in Fig. 10, and

stop sign detection is shown in Fig. 11 in the simulation.

Fig. 10. Parking sign detection simulation.

Fig. 11. Stop sign detection simulation.

5

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

V. IMPLEMENTATION AND RESULTS

A. Lane Following

The lighting conditions of the environment affect the

performance of the image processing algorithms.

Therefore, camera calibration must be done to set the

desired parameters. Intrinsic calibration involves

parameters like focal length, distortion, skew, which is

done using the checkerboard. Extrinsic camera calibration

involves lightness, hue, saturation, selection of the region

of interest, and left and right lane visibility. All these

calibration parameters are saved in YAML files. The lane

following algorithm is shown in Fig. 12. Actual

implementation uses a similar approach which is used in

the simulation for TurtleBot3 waffle pi. In the simulation,

the Hough transform is applied on a bird's eye view.

However, in the case of actual implementation, it is

applied to the camera feed as it produced better response.

The presence of lane marking is detected by using the

histogram peaks and fed to draw sliding windows at the

points generated by histogram peaks. These points are

followed to estimate the curvature. Using the polyfit

function, the lane lines are drawn on curved lanes, as

shown in Fig. 13. Depending on the remote PC

processing speed, the number of sliding windows can be

varied to obtain better results, such as n=40 and n=20, as

shown in Fig. 14 and Fig. 15, respectively. Further, the

center of the lane is calculated and used as an input to the

PID controller for lane following.

Fig. 12. Lane Following.

Fig. 13. Drawing lane lines to follow.

Fig. 14. Sliding windows 40.

Fig. 15. Sliding Windows 20.

Fig. 16. Stop sign detection.

Fig. 17. Parking sign detection.

B. Traffic Sign Detection

The image of the traffic sign used for actual

implementation must be kept in the reference directory

used for matching 8images from the camera frame. The

fixed distance between the matched pixels while feature

matching can be varied by using a multiplier set to 0.7 to

maintain the ratio. Parking is executed by keeping track

of the scan ranges 60º to 120º. If there is no obstacle in

the scan ranges, then the robot performs the parking

function. Fig. 16 and Fig. 17 show the stop sign detection

and parking sign detection, respectively.

C. Traffic Light Detection

The algorithm used in actual implementation remains

the same as the simulation. However, the radius of the

circular light parameter is modified to recognize the

traffic light from the desired distance.

Fig. 18. Traffic light green detection.

6

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

Fig. 19. Traffic light red detection.

The green and red traffic light signals are detected as

shown in Fig. 18 and Fig. 19, respectively. All the

necessary parameters like hue, saturation, and value for

red and green colors are calibrated while performing

extrinsic calibration for traffic light detection.

D. Waypoint Based Navigation

In [22] Zandra B. Rivera et. al. simulated waypoint

based navigation system for Wheeled Mobile Robot

(WMR) using the Gazebo simulator. Comparison

between Gazebo Simulation of WMR with MATLAB

Simulink model is presented by author.

In the proposed approach various lane detection

algorithms are first simulated in Gazebo envirnoment and

then real time testing is carried out using Turtlebot3.

Further lane changing algorithm is also implemented if

obstacle gets detected. However sharp curvatures may

cause robot to move out of the lane, so to avoid this

waypoint references can guide the robot to keep in same

lane.

The SLAM node is used to generate a map of unknown

environment. The red arrows are the waypoints that are

set using a pose array using visualizing tool Rviz. The

path travelled by the robot is shown in Fig. 20.

Fig. 20. Waypoint based navigation.

VI. LIMITATIONS AND FUTURE DIRECTIONS

The actual TurtleBot3 must be tested in an

environment with controlled lighting conditions since

most detection algorithms require image processing.

Reinforcement learning approach and adding reference

waypoints while following lanes can help tackle problems

related to lighting conditions in image processing. The

lane markings are not visible if the obstacle in front of the

robot is significant. Due to this, the robot avoids obstacles;

however, it cannot change the lane as the lane marking is

not visible in the camera frame. Path planning can be

used to implement proper lane changing. The processing

speed of SBC is limited to 30 FPS for high-quality frames,

and sometimes if the frames get dropped, it can miss the

object that needs to be detected. The robot fails to turn for

curvature with a significantly smaller radius during lane

finding. It can move out of the lane for such cases.

Kalman filters using parabolic and circle equations for

estimating the curvatures in lanes can reduce these

problems. This system can be implemented on different

SBC with higher processing speeds to achieve better

response. The traffic signs and the traffic lights used must

match the predefined type. Image classification using

machine learning may be preferred to detect all possible

traffic signs. Variation in these conditions and signs leads

to changes in image files and methods.

VII. CONCLUSION

In this research work, we have implemented

autonomous driving algorithms on TurtleBot3 waffle pi

with ROS. Various algorithms like lane following,

obstacle avoidance, and lane changing were implemented

and verified. Detection of the traffic light, stop sign,

parking sign algorithms were tested in simulation, and on

an actual robot, subject to the objects placed in the

surroundings must be static. The Hough transform is a

proven technique to eliminate discontinuity in lane

markings. Under the simulation environment, if the gap

between the lane markings in a lane increases, then the

robot tends to oscillate. Proper PID tuning is necessary to

prevent oscillatory behavior and to improve stability.

ROS tools and packages are used to access the data

efficiently from sensors and process it to generate a

proper response for the actuators to perform necessary

actions. However, the performance of these algorithms is

limited to the processing power of the computer. Image

processing that is used is sufficient to perform proper

detection of surrounding objects but is limited to the

environmental lighting conditions. These studies are

required for a prototype robot to know all potential

challenges in a physical environment for autonomous

driving.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Authors Shreyash Patil and Kishanprasad Gunale

contributed to the research; Shreyash Patil worked on

simulation and implementation of the proposed work.

Conceptualization, Shreyash, Kishanprasad; formal

analysis, Shreyash; software, Shreyash; supervision,

7

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

Kishanprasad; writing—original draft, Shreyash,

writing—review and editing, Kishanprasad.

ACKNOWLEDGMENT

The authors acknowledge the infrastructure and

support offered by Automotive Research Association of

India (ARAI), the interdisciplinary R&D organization of

in India. The authors would like to thank Dr.V.D. Karad

MIT World Peace University, School of Electronics and

Communication Engineering for lab facilities and a

highly encouraging work environment, which helped in

the completion of this proposed work.

REFERENCES

[1] R. Mishra and A. Javed, “ROS based service robot platform,” in

Proc. of 4th Int. Conf. on Control, Automation and Robotics, 2018,

pp. 55-59.

[2] OpenCV Python Tutorials. [Online]. Available: https://opencv-

python-tutroals.readthedocs.io/en/latest/

[3] M. Mainampati and B. Chandrasekaran, "Evolution of machine

learning algorithms on autonomous robots," in Proc. 10th Annual

Computing and Communication Workshop and Conf., 2020, pp.

0737-0741.

[4] K. Khnissi, C. Seddik, and H. Seddik, “Smart navigation of

mobile robot using neural network controller,” in Proc. Int. Conf.

on Smart Communications in Network Technologies, 2018, pp.

205-210.

[5] W. A. Syaqur, A. S. A. Yeon, A. H. Abdullah, et al., “Mobile

robot based simultaneous localization and mapping in UniMAP's

unknown environment,” in Proc. Int. Conf. on Computational

Approach in Smart Systems Design and Applications, 2018, pp. 1-

5.

[6] I. K. E. Purnama, M. A. Pradana, and Muhtadin, “Implementation

of object following method on robot service,” in Proc. Int. Conf.

on Computer Engineering, Network and Intelligent Multimedia,

2018, pp. 172-175,

[7] K. Mori, Y. Saitoh, and N. Nakasato, “Introduction of MNSTbot,”

in Proc. Int. Conf. on Field-Programmable Technology, 2018, pp.

397-399.

[8] S. Gangadhar, “Sensor fusion framework and simulation on a

TurtleBot3 robotic vehicle,” M.S. thesis Electrical Engineering,

North Carolina University, 2017.

[9] G. Deng and Y. Wu, “Double lane line edge detection method

based on constraint conditions Hough transform,” in Proc. 17th Int.

Symp. on Distributed Computing and Applications for Business

Engineering and Science, 2018, pp. 107-110.

[10] S. Gupta and D. Yadav, “Lane-finding based on structure analysis

of lane and computer vision,” in Proc. Int. Conf. on

Communication and Electronics Systems, 2019, pp. 1513-1519.

[11] P. Maya and C. Tharini, “Performance analysis of lane detection

algorithm using partial Hough transform,” in Proc. 21st Int. Arab

Conf. on Information Technology, 2020.

[12] P. N. Bhujbal and S. P. Narote, “Lane departure warning system

based on Hough transform and Euclidean distance,” in Proc. Third

Int. Conf. on Image Information Processing, 2015, pp. 370-373.

[13] Y Liu and D. Wang, “Vehicle lane changing model to safety avoid

obstacles,” in Proc. World Automation Congress, 2012, pp. 1-4.

[14] X. Li, S. Li, S. Jia, and C. Xu, “Mobile robot map building based

on laser ranging and kinect,” in Proc. IEEE Int. Conf. on

Information and Automation, 2016, pp. 819-824.

[15] M. Haris and J. Hou, “Obstacle detection and safely navigate the

autonomous vehicle from unexpected obstacles on the driving

lane,” Sensors vol. 20, no. 17, 2020.

[16] Alberto Ezquerro. Sending goals to the navigation stack using

waypoints. [Online]. Available: https://theconstructsim.com

[17] Manual by robotics for Turtlebot3. [Online]. Available:

https://emanual.robotis.com/docs/en/platform/turtlebot3/applicatio

ns/#applications

[18] R. Renjith, R. Reshma, and K. V. Arun, “Design and

implementation of traffic sign and obstacle detection in a self-

driving car using SURF detector and Brute force matcher,” in

Proc. IEEE Int. Conf. on Power, Control, Signals and

Instrumentation Engineering, 2017, pp. 1985-1989.

[19] R. K. Megalingam, D. Nagalla, R. K. Pasumarthi, V. Gontu, and P.

K. Allada, “ROS based, simulation and control of a wheeled robot

using gamer's steering wheel,” in Proc. 4th Int. Conf. on

Computing Communication and Automation, 2018.

[20] ROS Tutorial. [Online]. Available: http://wiki.ros.org/ROS/

Tutorials

[21] ROS tutorial on message filters property. [Online]. Available:

http://wiki.ros.org/message_filters

[22] Z. B. Rivera, M. C. De Simone, and D. Guida, “Unmanned ground

vehicle modelling in gazebo/ROS-based environments,” Machines

vol. 7, no. 2, 2019.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Shreyash Patil received the electronics and telecommunication

engineering degree from Rashtrasant Tukdoji Maharaj Nagpur

University, India, in 2018. Currently, he is pursuing a master of

technology in VLSI and Embedded systems from Dr. Vishwanath Karad

MIT World Peace University, Pune, India. He worked as a project intern

at the Automotive Research Association of India in Pune, India in the

year 2020-21 for project work based on ROS 1 for autonomous driving

of TurtleBot3.

Kishanprasad Gunale received a Ph.D. degree in electronics and

telecommunication from SPPU, Pune. Currently, he is working as an

asst. professor at School of Electronics and Communication

Engineering at Dr. Vishwanath Karad MIT World Peace University,

Pune, India. His areas of research is computer vision, automotive

electronics. He is a member of SAE, IETE, and IET. To his credit six

journal publications and six conference publications and two published

patents are present.

8

International Journal of Electrical and Electronic Engineering & Telecommunications

©2021 Int. J. Elec. & Elecn. Eng. & Telcomm.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

