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Abstract—In the manufacturing industry, quality 

degradation due to a decrease in skilled operators 

possessing domain knowledge has become a problem. 

Digitalization using IoT technology has emerged as a means 

to tackle this problem. In the resistance welding process, 

welding quality fluctuates depending on aging of electrodes. 

Experienced operators adjust the welding voltage to keep 

the quality constant. As this knowledge is difficult to share, 

the success rate of voltage changes at the time of quality 

degradation tends not to be improved. Therefore, we 

developed an automatic voltage determination system that 

improves both quality and productivity by improving the 

success rate, which is one of the main measures. The system 

learns past sensor data and voltage change logs, determines 

the voltage according to input real-time sensor data, and 

sets the voltage for the welding machine. We propose three 

voltage determination methods: a similarity search method, 

a voltage prediction method using a regression model that 

outputs voltage, and a quality prediction and voltage search 

method that searches for the optimum voltage in a 

classification model to predict the success or failure of 

voltage changes. Our evaluation of these methods shows that 

the success rate improves by up to 12.4 percentage points 

compared to when the operators performed the process 

manually. This result demonstrates that we can achieve 

quality stabilization and productivity improvement by 

implementing our system in the welding process. 

 

Index Terms—Machine learning, manufacturing quality 

improvement, factory automation 

I. INTRODUCTION 

In the manufacturing industry, digitization using 

Internet of Things (IoT) technology has been increasingly 

promoted with the aim of improving profitability. 

Digitization can be applied to a wide range of 

applications [1] including those for product design 

process improvement, yield management [2], predictive 

maintenance [3], root cause analysis [4], manufacturing 

processes improvement [5], infrastructure improvement, 

and sales forecasting. An automobile manufacturer 

recently developed a system that displays the availability 

of equipment and the manufacturing lead time for each 

product type by extracting events related to 
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manufacturing status from data related to products, 

equipment, and operators [6]. Another study has reported 

a system that analyzes IoT data obtained from 

manufacturing equipment and maintenance records and 

provides the appropriate maintenance information to 

operators, managers, and technicians according to the 

state when an equipment abnormality occurs [7]. 

The resistance welding process, which is the target of 

the present study, is also the focus of research on quality 

improvement through digitization. Various data related to 

welding machines are collected and used to establish 

optimal manufacturing conditions, analyze the causes of 

defects, and monitor products and equipment during 

manufacturing. However, since the manufacturing 

conditions and monitoring items that emerge after 

analyzing the data and domain knowledge are 

complicated, operators need to make judgments based on 

their own knowledge and experience when utilizing them. 

For example, when the weld quality fluctuates due to 

aging of electrodes and condition of the product, 

experienced operators adjust the welding voltage to keep 

the quality constant. It is particularly difficult to share the 

knowledge and experience of operators when it comes to 

quality improvement measures, and as a result the overall 

success rate of the measures does not improve. 

In the current study, we have developed an automatic 

voltage determination system that improves both quality 

and productivity by improving the success rate of voltage 

changes, which is one of the measures taken by the 

operators when quality deteriorates. Our system learns 

past sensor data and voltage change logs, determines the 

voltage on the basis of the input real-time sensor data, 

and then sets the voltage for the welding machine. 
Methods for achieving quality prediction and 

automatic control of equipment include case-based 
reasoning methods and machine learning methods. Case-
based reasoning was used in fault diagnosis of industrial 
equipment [8] and flow prediction of sewage treatment 
plants [9]. A steel industry company developed an 
intelligent optimization control system for the laminar 
cooling process [10]. At the same time, the use of 
machine learning in the manufacturing industry is 
advancing [11]. One study has reported regression 
models for the cutting parameter prediction of which 
parameters have the greatest influence on tool life, quality 
of surface, and control of machining costs in high-speed 
turning processes [12]. In the predictive maintenance of 
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industrial machines, Auto Regressive Integrated Moving 
Average (ARIMA) forecasting on the time-series data 
collected from various sensors has been utilized to predict 
the possible failures and quality defects, thus improving 
the overall manufacturing process [13]. In the context of 
a rolling mill case study, in-line quality prediction 
systems have been developed to predict the physical 
quality of intermediate products in interrelated 
manufacturing processes [14]. Another study has reported 
a reinforcement learning approach to control the main 
printing parameters online in printed circuit boards [15]. 
In addition, a method that combines case-based reasoning 
and machine learning was reported in a fast-milling 
process [16]. 

Other methods include automatic control using 
mathematical models [17] and a combination of 
mathematical models and case-based ones used in the 
steel industry [18]. 

We propose three voltage determination methods: a 
similarity search, a voltage prediction method using a 
regression model that outputs voltage, and a quality 
prediction and voltage search method that searches for 
the optimum voltage in a classification model to predict 
the quality after voltage change. The similarity search 
method is an application of the case-based reasoning 
method that associates a case created by dividing the 
input space of the explanatory variables with the 
objective variable in the learning phase, and then 
estimates the objective variable using the information of 
the case to which the input value belongs and the cases 
around it in the prediction phase [9]. The voltage 
prediction method is an application of a machine learning 
method that implements regression models to predict the 
withdrawal force of a crimped connection in ultrasonic 
crimping [19]. The quality prediction and voltage search 
method, which is our original design, is also an 
application of a machine learning method. This method 
generates a quality prediction model (as in [19], [20]) and 
uses it to search for the optimum voltage. 

After evaluating the three methods, we found that the 
quality prediction and voltage search method had the 
highest performance. This result demonstrates that it is 
possible to achieve quality stabilization by implementing 
the automatic voltage change in the welding process. 

In Section II, we briefly describe the background and 
current challenges. Our automatic voltage determination 
system is explained in Section III. In Section IV, we 
report the evaluation results of the voltage change 
methods. We conclude in Section V with a brief summary 
and mention of future work. 

II. BACKGROUND AND CHALLENGES 

A. Background 

Quality degradation due to a decrease in skilled 

operators possessing domain knowledge has become a 

problem in the manufacturing industry. Digitalization 

using IoT technology has recently emerged to tackle this 

problem, where the aim is to reduce the reliance on 

individual domain knowledge by collecting, analyzing, 

and visualizing data from products and devices. The 

target process of this research uses an automatic welding 

machine. When the quality deteriorates, the operators 

need to decide which countermeasures to implement on 

the basis of their own knowledge and experience. In this 

paper, we report our efforts to improve quality by 

automating the implementation of countermeasures in 

this process. 

Yield is typically used as a quality evaluation KPI, as 

its reduction effect is directly linked to cost reduction, but 

it is not possible to measure short-term quality without 

defects. Therefore, we utilize a process capability index, 

which represents the ability to produce a product within a 

defined standard, as a short-term quality KPI that 

includes a defect period. There are many different types 

of capability indices, but we use Cpk to estimate what the 

process can produce, considering that the process mean 

may not be centered between the specification limits. (1) 

shows the formula for calculating Cpk where the upper 

and lower specification limits are USL and LSL, and the 

mean and standard deviation of the measured values are  

and . 

USL LSL
Cpk min ,  

3 3

 

 

  
  

 
               (1) 

B. Challenges 

The judgment of which countermeasures to implement 

when quality deteriorates tends to vary, and because the 

judgment depends on the operator’s domain knowledge, 

the quality does not always necessarily improve. Failure 

of countermeasures reduces not only quality but also 

productivity, as equipment downtime increases when the 

number of countermeasures increases. In this research, 

we propose a system that automates voltage changes as a 

countermeasure against quality deterioration. There are 

three reasons for focusing on the voltage change: (i) it has 

the highest number of implementations, (ii) full 

automation is possible because parts replacement is not 

required, and (iii) difficulty is high because it is necessary 

to determine the changed voltage value as well as the 

implementation decision. At present, the success rate of 

voltage changes is only 74.4%. We interviewed several 

operators to investigate why this is so and found that they 

sometimes took measures they were not sure would 

succeed, or did not take measures even when the quality 

deteriorated.  
Our system makes it possible to change the voltage 

without relying on the knowledge and experience of the 
operators, and it can achieve a higher success rate than 
the operators can. There are three requirements when it 
comes to the voltage change determination method: 

1) High success rate 

2) High availability under various conditions 

3) Highly acceptability in the field 

III. PROPOSED AUTOMATIC VOLTAGE DETERMINATION 

SYSTEM 

A. System Architecture and Preprocessing 

Fig. 1 shows an overview of the automatic voltage 

determination system. The system obtains the sensor data 

from the welding machine, determines the voltage value 
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that will improve the quality, and sets the voltage value. 

Operators can view the sensor data and work 

recommendation on a tablet and record the action logs. 

The system learns past sensor data and voltage change 

logs to determine the voltage. The obtained sensor data 

consists of one record for each weld shot, including 

voltage, current, pressure, and thickness before and after 

welding. 

The preparation process of the training data is as 

follows. First, the voltage change time is obtained from 

the voltage change log. Then, the sensor data of 20 

records before and 20 records after the voltage change 

(about two minutes) is extracted. Finally, the feature 

values shown in Table I are created from the extracted 

sensor data. 

Welding machine
PC

Manufacturing data

Server

Voltage setting

Voltage setting

Operator Tablet Action logs

Dashboard

Database

 
Fig. 1. Overview of automatic voltage determination system. 

TABLE I: LIST OF FEATURES 

 

B. Similarity Search Method 

Fig. 2 shows the process flow of the similarity search 

method (SSM) that searches the training data each time 

without creating a model to determine the voltage. 

Training data

Similarity searchReal-time data

Objective variableExplanatory variableQuery
 

Fig. 2. Workflow of similarity search method. 

First, this method calculates the feature values V  , T  , 

SDT   corresponding to the train data 
bV , T , SDT  from the 

sensor data of the last 20 records, and then extracts the 

train data 
bV , T , SDT  similar to the last feature values 

bV  , T  , SDT  . The conditions of similar search are 

b V
V 


  , 

T
T 


  , and 

SDSD TT  
  , where the thresholds of 

,  ,  Db ST TV     are 
V



, 

T



, 

SDT  , respectively. If there is no 

similar data, the method assumes that voltage change is 

necessary and does not output anything. Next, the method 

calculates the success rate  of the voltage change, which 

is the percentage of cases where the process capability 

increased for every V of all cases from the extraction 

result. The method calculates, for each 
DV , the success 

rate of the voltage change, which is the ratio of cases in 

which Cpk has increased (L=1) to the total cases from the 

extraction results. We defined the success rate as 51% if 

the result count of similar search is less than 2, due to low 

reliability. Finally, 
DV  with the highest success rate and 

50% or more is determined as the voltage change value 

ˆ
DV . 

The thresholds of similar search 
V



, 

T



, 

SDT   are 

optimized using Optuna [21]. In the optimization, 2-fold 

cross-validation is performed, and the score to maximize 

is shown in (2), which is calculated from the success rate 

S, output rate O, and weight  (in this report, =0.5).  

 2

2

1
Score

SO

S O









                           (2) 

Since the system output voltage and the voltage change 

log are often related to different cases, the success rate is 

considered the same case if the difference between these 

voltages is within 0.02. The output rate is the ratio of 

outputting voltages in the case of low quality (Cpk<1.1). 

C. Voltage Prediction Method 

Fig. 3 shows the process flow of the voltage prediction 

method (VPM) using a regression model that outputs 

voltage. In the training phase, this method extracts the 

data that is L=1 from the train data and then uses a tree-

based regression algorithm such as Random Forest [22] 

(VPM-RF) or XGBoost [23] (VPM-XG) to create a 

regression model with 
DV  as the explanatory variable and 

,  ,  b SDTV T  as the objective variables. The hyper-

parameters of each model are optimized using Optuna to 

minimize the mean squared error with 2-fold cross-

validation.  

Training data

Training phase

Regression model

Regression modelReal-time data

Objective variableExplanatory variable

Voltage determination phase

 
Fig. 3. Workflow of voltage prediction method. 

In the voltage determination phase, the method inputs 

the feature values ,  ,  Db ST TV     created from the sensor 

data of the last 20 records into the model and determines 

the output ˆ
DV  as the voltage change value. Note that 

ˆ
DV =1 is treated as no voltage change, and the method 

outputs nothing. 

D. Quality Prediction and Voltage Search Method 

Fig. 4 shows the process flow of the quality prediction 
and voltage search method (QPM) that searches for the 
optimum voltage in a classification model to predict 

Symbol Parameter Section Aggregation method 

bV  Voltage Before Average 

T  Thickness Before Average 

TSD Thickness Before Standard deviation 

Cb Cpk of thickness Before Formula (1) 

aV  Voltage After Average 

Ca Cpk of thickness After Formula (1) 

DV  Voltage Diff aV  bV  

CD Cpk Diff CaCb 

L Label – if CD>0 then 1 else 0 
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quality after voltage change. In the training phase, this 
method uses Random Forest (QPM-RF) or XGBoost 

(QPM-XG) to create a classification model with T , TSD, 

DV  as the explanatory variables and L as the objective 

variable. The hyperparameters are optimized using 
Optuna with 2-fold cross validation. Since the model 
needs to be able to predict the quality due to the 
differences in V, the importance of V is added to the score 
in addition to the accuracy rate. Specifically, the score to 
maximize is A+IV/10, where the accuracy is A and the 

importance of 
DV  is IV. 

Training data

Training phase

Classification model

Classification model

Optimum voltage searchReal-time data

Objective variableExplanatory variable

Voltage determination phase

 
Fig. 4. Workflow of quality prediction and voltage search method. 

In the voltage determination phase, the method first 

inputs the feature values T  , 
SDT   created from the sensor 

data of the last 20 records to the optimum voltage search 
process, which is shown in (3).  

 
0.02 0.02

ˆ min arg max , ,SD
v

D vV f T T
  

                   (3) 

The classification model f outputs a classification 
probability regarding whether the quality can be 
improved by changing the voltage. f receives values in 

the range of 0.02 to 0.02 every 0.01 as a voltage 

candidate 
DV   and then determines a voltage change value 

ˆ
DV  with the smallest absolute value among the 

DV   

having the highest classification probability. Note that 

ˆ
DV =0 is treated as no voltage change, and the method 

outputs nothing. The reason for selecting ˆ
DV =0 with the 

smallest absolute value is that it is better to minimize the 
changes to the welding machine if the same quality 
improvement effect can be obtained. 

IV. EVALUATION 

A. Evaluation Conditions 

We evaluated our voltage change method using the 
actual sensor data and voltage change log collected from 
a welding machine in an automobile parts factory. 

Table II shows an overview of the evaluation data 
created by the method described in Section III-A. This 
data covers a period of about four years, during which 
3750 cases of voltage change were executed and 2791 of 
them improved the quality. The success rate before 
introducing our system was 74.4%. We divided this 
evaluation data into 2000 cases for training and 1750 
cases for test while maintaining the success rate. 
Furthermore, in order to evaluate the relationship 
between the number of train data and the performance, 
we created 16 patterns of train data by changing the data 
number from 500 to 2000 in increments of 100. 

TABLE II: EVALUATION CONDITIONS 

Content Description 

Data period 4 years (2016–2019) 

No. of records (train/test) 3750 (2000/1750) 

No. of success cases (train/test) 2791 (1489/1302) 

Success rate 74.4% 

Three evaluation scores are used: success rate, 

coverage rate, and output rate. The higher these scores, 

the better. The success rate is the ratio of cases where 

Cpk is improved when the difference between the system 

output and the voltage change log is within 0.02. 

Although the success rate can tell us the accuracy of 

the voltage determination method, it can be high even if 

the system outputs nothing, so the success rate alone is 

not sufficient for our evaluation. Coverage rate and 

output rate are therefore used as indices for evaluating the 

rate at which the system can determine the voltage. 

The coverage rate is the ratio of the successful cases 

extracted when the success rate is calculated to the total 

successful cases of the test data, and it represents how 

much the successful cases by the operators are covered.  

The output rate is the rate of outputting some voltage 

when the quality is low (Cb<1.1).  

The drawback of the coverage rate is that it is not 

possible to evaluate when the output voltage is different 

from that of the operators. In contrast, the drawback of 

the output rate is that the result of voltage change due to 

the output voltage cannot be evaluated. In this evaluation, 

both scores are used to make up for each defect. 

B. Evaluation Results 

Fig. 5 shows the success rate, coverage rate, and output 

rate scores for 18 patterns of train data. Compared to the 

operators’ result (77.4%), the success rate for SSM, 

VPM-RF, and VPM-XG only improved by a few 

percentage points, but the success rate for QPM-RF and 

QPM-XG improved by about 10 percentage points. 

Moreover, Random Forest had a better success rate than 

XGBoost in both VPM and QPM. The coverage rates of 

QPM-RF and QPM-XG were about twice those of SSM, 

VPM-RF, and VPM-XG. The output rates of SSM, QPM-

RF, and QPM-XG were around 96–99%, and the output 

rates of VPM-RF and VPM-XG were almost always 

100% except for outliers. 

Table III lists the cases where the success rate was 

highest in each method among the results shown in Fig. 5. 

Compared to the operators’ result (77.4%), the success 

rate improved by 5.1 percentage points for SSM, 5.9 

percentage points for VPM-RF, and 12.4 percentage 

points for QPM-RF. In these cases, the coverage rate of 

QPM-RF was about twice that of SSM and VPM-RF, and 

the output rates were all similar. 

TABLE III: RESULTS FOR CASES WITH THE HIGHEST SUCCESS RATE 

Method Success rate Coverage rate Output rate 

QPM-RF 86.8% 27.8% 100% 

QPM-XG 85.3% 28.4% 100% 

VPM-RF 80.3% 60.0% 95.9% 

VPM-XG 79.9% 60.0% 97.9% 

SSM 79.5% 29.8% 97.5% 
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Fig. 5. Score for each method. 

 

C. Discussion 

SSM had a low success rate, coverage rate, and output 

rate, but it is highly explainable in the field because it 

outputs the past voltage changes of the operators. 

VPM had a high coverage rate and could make voltage 

decisions that were similar to successful cases by 

operators.  This suggests that VPM can determine the 

voltage without considering the failure cases, as the 

training data contains only success cases. 

On the other hand, it seems that QPM improved the 

success rate by making different voltage determinations 

than operators, as indicated by its high success rate and 

output rate, and low coverage rate. One reason for this 

may be that QPM uses the train data only for quality 

prediction, not for optimal voltage search. However, this 

evaluation only clarified that the success rate is high 

when the voltage is close to the operators' result, while in 

reality, there are many voltages different from the 

operators'. Therefore, additional evaluations in the field 

are required to determine whether the success rate can be 

improved when the system makes a different voltage 

decision from the operators. 

From the above results, we conclude that QPM-RF 

should be used to achieve a higher success rate, and 

VPM-RF should be used to achieve automated voltage 

change that is close to the operators'. However, a highly 

explanatory SSM was adopted at the actual site we 

examined because operators valued reliability over 

improving the success rate. In the future, in order to apply 

QPM and VPM, which have a high success rate 

improvement effect, it will be necessary to improve their 

explainability. 

V. CONCLUSION 

In this research, we developed an automatic voltage 

determination system to improve both quality and 

productivity by improving the success rate. The system 

learns past sensor data and voltage change logs, 

determines the voltage as input real-time sensor data, and 

sets the voltage value for the welding machine. We 

proposed three voltage determination methods: a 

similarity search method (SSM), a voltage prediction 

method (VPM) using a regression model that outputs 

voltage, and a quality prediction and voltage search 

method (QPM) that searches for the optimum voltage in a 

classification model to predict the success or failure of 

the voltage changes. Evaluation results showed that the 

success rate was improved by 5.1 percentage points for 

SSM, 5.9 percentage points for VPM, and 12.4 

percentage points for QPM compared to the operators' 

result. Therefore, QPM should be used to achieve a 

higher success rate, and VPM should be used to achieve 

automated voltage change that is close to the operators' 

voltage change. These results demonstrate that it is 

possible to achieve quality stabilization by implementing 

the automatic voltage change in the welding process. 

However, a highly explanatory SSM was adopted at 

the actual site because the reliability of the system was 

emphasized by the operators there. For future work, we 

will improve the explainability of the system so that it 

can achieve high acceptability. After that, we will deploy 

this system to other processes and factories. 
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