
Measurement Method for Erector Spinae Muscle 

Activity during Patient Handling Using Inertial 

Sensor and Shoe-type Force Sensor  
 

Kodai Kitagawa1, Koji Matsumoto1, Kensuke Iwanaga1, Siti Anom Ahmad2, Takayuki Nagasaki3, Sota Nakano4, 

Mitsumasa Hida1,5, Shogo Okamatsu1,6, and Chikamune Wada1 
1 Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan 

2 Malaysian Research Institute of Ageing (MyAgeing™), Universiti Putra Malaysia, Selangor, Malaysia 
3 Department of Rehabilitation, Tohoku Bunka Gakuen University, Sendai, Japan 

4 Department of Rehabilitation, Kyushu University of Nursing and Social Welfare, Tamana, Japan 
5 Department of Physical Therapy, Osaka Kawasaki Rehabilitation University, Kaizuka, Japan 

6 Department of Physical Therapy, Kitakyushu Rehabilitation College, Kanda, Japan 

Email: {kitagawakitagawa156; ken.iwanaga.bat511; shogo.okamatsu182505}@gmail.com; 

matsumoto.koji593@mail.kyutech.jp; sanom@upm.edu.my; nagasaki@rehab.tbgu.ac.jp; nakano@kyushu-ns.ac.jp; 

hidam@kawasakigakuen.ac.jp; wada@brain.kyutech.ac.jp 

 

 

 
Abstract—Because caregivers often experience lower back 
pain caused by lumbar load from patient handling, 
monitoring this load can help prevent pain. Erector spinae 
muscle activity, which is measured and monitored as 
lumbar load, is commonly measured by electromyography 
(EMG). However, EMG’s electrodes can cause skin 
irritation and be uncomfortable. Therefore, measuring 
muscle activity without electrodes is necessary. In this study, 
we propose a method for estimating erector spinae muscle 
activity using wearable sensors, specifically inertial and 
shoe-type force sensors. Inertial sensors measure 
acceleration and angular velocity of the trunk. Shoe-type 
force sensors measure vertical force of the feet. A regression 
model obtained from a machine learning algorithm can 
predict erector spinae muscle activity using inertial and 
force data. In our experiment, we evaluated the accuracy of 
our method by comparing sensor data with surface EMG 
data in patient handling. Results show that this method can 
measure erector spinae muscle activity with a small error 
(less than 5% maximal voluntary contractions) and a 
significantly high correlation with actual value (r = 0.891,  
p <0.05). In addition, a Bland-Altman plot showed no fixed 
and proportional errors. These findings indicate that our 
proposed method can accurately monitor the lumbar loads 

of caregivers. 

 

Index Terms—Erector spinae muscle, inertial sensor, 

lumbar load, machine learning, muscle activity, shoe-type 

force sensor  

I. INTRODUCTION 

Caregivers often experience lower back pain during 

patient handling because these motions require awkward 

postures, such as bending and twisting [1], [2]. Thus, 
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continuous monitoring of lumbar loads is necessary to 

prevent lower back pain. 

Erector spinae muscle activity, a lumbar load related to 

lower back pain [3], has been measured by 

electromyography (EMG) to help prevent this pain 

among caregivers [4]. However, EMG electrodes can 

cause skin irritation and are uncomfortable [5]. Therefore, 

EMG is considered unsuitable for the continuous 

monitoring of erector spinae muscle activity, and a 

measurement method without electrodes is required. 

Previous studies have developed measurement 

methods for muscle activity without using electrodes [6]-

[8]. Deffieux et al. developed an ultrafast imaging device 

for muscle contraction that could measure in vivo muscle 

contraction with high space and time resolution; however, 

this device is unwearable due to its large size [6]. Han et 

al. developed a muscle stiffness sensor using 

piezoelectric material and reported that a high correlation 

exists between the output of this sensor and surface EMG 

(sEMG); nevertheless, this sensor has variance issues 

caused by skin tissue thickness [7]. Jugade et al. 

developed PDMS−ZnO flexible piezoelectric composites 

to solve these problems; nonetheless, challenges remain, 

such as nonlinearities and hysteresis [8]. Therefore, it is 

necessary to develop a more accurate wearable method to 

measure elector spinae muscle activity during patient 

handling. 

Machine learning techniques have been applied to 

accurate measurement using wearable sensors [9], [10]. 

For example, Zago et al. successfully estimated kinematic 

parameters, such as turn speed and mechanical work 

during running, by using a combination of inertial sensors 

and a machine learning-based regression model [9]. In 

addition, Matijevich et al. estimated tibial stress during 

running with a combination of inertial sensors, shoe-type 

force sensors, and machine learning techniques [10]. 
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Learning from these studies, we considered that a 

combination of inertial sensors, force sensors, and 

machine learning techniques could realize accurate and 

wearable measurements for kinematic parameters. 

Therefore, we propose and evaluate a measurement 

method for erector spinae muscle activity using these 

sensors and techniques. 

II.  PROPOSED METHOD 

Fig. 1 shows a block diagram of our method. This 

method calculates erector spinae muscle activity during 

the patient-handling motion by using a regression model 

obtained from wearable sensors and a machine learning 

algorithm. Components of this method are described 

below.    

A. Wearable Sensors (Input) 

We selected inertial and shoe-type force sensors for 

our proposed method because previous studies have 

succeeded in measuring kinematic parameters by these 

means [9], [10]. We measured wearable sensor data at a 

1kHz sampling rate. 

An inertial sensor (Logical Product Co., Japan) was 

attached to the trunk because trunk movements such as 

bending relate to lumbar load [11]. This inertial sensor 

measured three-axial acceleration and angular velocity of 

the trunk for features of the regression model.  

 
Fig. 1. Block diagram of the proposed method. 

A shoe-type force sensor measured the ground reaction 
force that relates lumbar load during manual handling 
[12]. Insoles with 8 FlexiForce sensors (Tekscan, USA) 
were inserted into each shoe. We considered these 
suitable for measuring the force on the insole because the 
sensors are thin and flexible [13] and can be applied to 
real-time measurement because they have no linearity, 
non-repeatability, and hysteresis [14]. These FlexiForce 
sensors were calibrated dynamically by load cell and 
strain amplifier. We measured front and rear forces on 
each foot for the regression model.  Both front and rear 
forces were calculated as average of forces at 4 
FlexiForce sensors. 

B. Machine Learing−Based Regression Model 

The proposed method calculated erector muscle spinae 
activity by a machine learning-based regression model 
using features obtained from the wearable sensors. 
Support Vector Machine (SVM) was selected as the 
algorithm because SVM can provide high data 
performance in a small sample size [15]. Furthermore, 
SVM was used for previous study related to human 
movements and wearable sensors [9], [16]. 

We calculated the mean, maximum, minimum, 
standard deviation, root mean square, kurtosis, and 
skewness for each wearable sensor signal. These features 
were selected by our previous study that examined 
inertial and shoe-type force sensors [16]. The SVM and 
regression model were performed and validated by 
WEKA, which is a common data mining software [17]. 
Table I shows the SVM specifications and parameters 
used for our method.  

C. Erector Spinae Muscle Activity (Output) 

We measured actual values of erector spinae muscle 
activity using sEMG at the 1kHz sampling rate. We used 
these data to train and validate the machine learning 
algorithm.  

We used Blue Sensor P (Ambu, Ballerup, Denmark) 
and EMG Logger LP-WS1402-W (Logical Product Inc., 
Fukuoka, Japan) to measure sEMG. Electrode locations 
for right and left erector spinae muscles were determined 
as per McGill [18]. We calculated integrated 
electromyographic (iEMG) values from the rectified 
signal of the sEMG and normalized these values 
temporally by dividing by the total time of each patient-
handling motion and by using maximal voluntary 
contractions (MVC). Finally, we calculated mean values 
of right and left normalized iEMG as actual erector 
spinae muscle activity. This signal processing was 
performed using MATLAB R2020b (Mathworks Inc., 
Natick, MA, USA). 

We used the normalized iEMG data for training and 
validation of the proposed method. If our method could 
accurately calculate muscle activity in validation, 
measurement of erector spinae muscle activity without 
sEMG would be realized.  

TABLE I: SPECIFICATIONS AND PARAMETERS OF SVM 

Specification/parameter Status/value 
Training Sequential minimal optimization 
Kernel Polynomial kernel (order three) 

c (weight for slack variable) 1.0 
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Fig. 2. Patient-handling motion in the experiment. 

III. EXPERIMENT 

In our experiment, we validated whether the proposed 

method could accurately measure erector spinae muscle 

activity during patient-handling motion.  

A. Participants 

The participants acting as caregivers were four young, 

healthy men (24.75 ± 0.83 years, 1.72 ± 0.05 m, 67.00 ± 

10.79 kg). None had experiences as caregivers. One 

young, healthy man (25.00 years, 1.69 m, 70.00 kg) 

participated as a simulated patient. All participants 

provided their verbal informed consent to the experiment.  

B. Procedure 

Fig. 2 shows the patient-handling motion in this 

experiment. The participants provided postural changes 

of a patient on a bed. We selected this motion because it 

causes lower back pain in caregivers [19]. Each 

participant performed this motion for 10 trials. We 

measured the data from the wearable sensors and sEMG 

for actual erector spinae muscle activity during each 

motion. 

C. Statistical Analysis 

Our proposed method calculated erector spinae muscle 

activity by data obtained from 40 trials. We performed 

training and validation using 10-folds cross validation in 

WEKA [17]. We calculated the mean absolute error 

(MAE) of muscle activity between the proposed method 

and actual value, as well as Spearman’s rank correlation 

coefficient, to evaluate accuracy.  

Furthermore, we evaluated the fixed and proportional 

errors of our proposed method using a Bland−Altman 

plot. Using this plot, we calculated limits of agreement 

(LOA) to evaluate fixed errors. We used Spearman’s rank 

correlation coefficient of this plot to evaluate proportional 

errors. We performed these statistical analyses using EZR 

[20], with p<0.05 considered as significant. 

 
Fig. 3. Scatter plot of erector spinae muscle activity: where the solid line 

represents shoes regression line obtained from linear regression. 

 
Fig. 4. Bland−Altman plot: Solid line shows mean of difference. Dashed 

lines show limits of agreement (LOA). 

IV. RESULTS 

Fig. 3 shows the scatter plot of erector spinae muscle 

activity. The MAE of the proposed method was 4.02% 

MVC. A significantly high correlation exists between 

muscle activity calculated from the proposed method and 

actual value (r = 0.891, p<0.05). These results show that 

the proposed method could measure muscle activity close 

to actual value. 

Fig. 4 shows the Bland−Altman plot. In the Bland-

Altman plot, when LOA include zero, there is no fixed 

error. In addition, significant correlation between 

difference and average in the Bland-Altman plot indicates 

proportional error. This result shows there is no fixed 

error because LOA of this Bland-Altman plot includes 

zero. Furthermore, this result shows no proportional error 

because there is no significant correlation between 

difference and average of this Bland-Altman plot (r = 

0.0675, p > 0.05). 

V. DISCUSSION 

Results showed that our proposed method could predict 

erector spinae muscle activity with a small error (<5% 

MVC) and a significantly high correlation with the actual 

value (r = 0.891, p < 0.05). The variation of erector 

spinae muscle activity during patient-handling motion is 

larger than the error of our proposed method [21]. 

Furthermore, the results of the Bland−Altman plot 

showed no fixed or proportional errors. From these 

results, our proposed method can be applied to measure 

erector spinae muscle activity without electrodes. In 

addition, a combination of wearable sensors and machine 

learning techniques is effective for muscle activity 

measurement.  

Our proposed method measured erector spinae muscle 

activity using only inertial and shoe-type force sensors. 

Our previous study proposed a posture recognition 

method for caregivers using these wearable sensors [16]. 

Therefore, a wearable prevention system for lower back 

pain based on biofeedback for lumbar loads and posture 

guidance can be realized using these methods. 

One of the limitations of this study was that our 

proposed method was applied to only one patient-

handling technique. This should be tested and generalized 

for several other patient-handling motions related to 

lower back pain [19], [22]. In addition, the participants 

were only young men without experience with caregiving 
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activities. Previous studies have reported that patient 

handling techniques differ depending on experience and 

gender [23]-[25]. Thus, our method should also be tested 

with actual caregivers in the clinical field. Moreover, this 

study evaluated only SVM as the machine learning 

technique. Other techniques using wearable applications 

such as artificial neural network and reduced error 

pruning tree (REPTree) [26], [27] should be evaluated 

and compared for our method. 

VI. CONCLUSION 

In this study, we proposed and evaluated the 

measurement method for erector spinae muscle activity 

during patient-handling motion using inertial sensors, 

shoe-type force sensors, and a machine learning 

technique. Results showed that our proposed method can 

measure erector spinae muscle activity with great 

accuracy. In addition, we found no fixed or proportional 

errors. 

In future work, we will modify our proposed method 

through experiments using other patient-handling motions. 

Furthermore, we will develop a wearable prevention 

system for lower back pain among caregivers.  
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