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Abstract—Average Hausdorff distance that is an efficient 
measurement is widely used in face recognition method for 
measuring the dissimilarity between two sets of features. 
The New modified Hausdorff distance (MMHD) is a face 
recognition method, which uses average Hausdorff distance 
for measuring the dissimilarity between two sets of 
dominant points, which are features of face image. However, 
the disadvantage of the average Hausdorff distance is high 
computational complexity. Various methods have been 
proposed in recent decade with the purpose of reducing the 
complexity of Hausdorff distance computing. Local start 
search (LSS) is a state-of-art method for reducing the 
complexity of the Hausdorff distance computing. In this 
paper, we present how to use the LSS method for reducing 
the complexity of the computing the average Hausdorff 
distance. Firstly, a modification of the MMHD method, 
namely Least Trimmed New Modified Hausdorff distance 
(LT-MMHD) is proposed. The LT-MMHD method uses 
average Hausdorff distance of largest values for measuring 
the distance between two sets of dominant points. The 
proposed method gives higher recognition rate than the 
MMHD method for all conditions of face image. Finally, the 
LSS method is used for reducing the computational 
complexity of the proposed method. Experimental results 
show that by using the LSS method, the proposed method 

could reduce the computational complexity of 17%. 

 

Index Terms—Hausdorff distance, computational analysis, 

face recognition, Local start search, local feature, SSPP. 

I. INTRODUCTION 

Face recognition is an important and active topic in 

computer vision and pattern recognition field due to its 

burgeoning applications in many critical areas such as 

access control, passport verification, surveillance and so 

on. Due to this, face recognition has attracted researchers 

from various fields such as image processing, machine 

learning, computer vision, etc. In recent year, a lot of face 

recognition methods have been proposed. However, 

various problems still challenge the researchers such as 
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illumination, face expression, and pose [1]. One of the 

most important problem in face recognition filed is only 

single training sample per person [2]. In many 

applications, there is only one image for training or it is 

very difficult to collect multiple images of a person such 

as passport identification, credit card verification, driver’s 

license identification, etc. Such problem is called single 

image face recognition (SSPP). The advantages of SSPP 

is low cost of collecting image for training and low 

storage cost [3], [4]. However, the recognition rate of 

face recognition methods decreases in the SSPP situation 

[5], [6]. 

Several face recognition methods have been proposed 

in last decade for solving the SSPP problem. These 

methods could be divided into five categories: global 

feature-based methods [7]-[9], local feature-based 

methods [10]-[13], generic database-based methods [14]-

[17], virtual sample generation methods [18]-[20] and 

hybrid methods [21], [22]. In comparing with other 

methods in other categories, the face recognition methods 

based on local feature are easy implemented in real 

applications [1], invariant with non-ideal conditions of 

face image such as lighting, orientation or noise [2]. 

Edge is a local feature widely used in face recognition 

methods because of its invariant characteristic with non-

ideal lighting condition of face image [23]. Various face 

recognition methods use edge pixels as face image 

feature [24]-[30]. The New Modified Hausdorff distance 

method [31] is a face recognition method that uses 

dominant points of edge pixel as the features of face 

image. In comparing with other methods using edge 

pixels as feature of face image, the MMHD method has 

much lower storage cost, which has 80% lower storage 

cost. These methods [24]-[31] use average Hausdorff 

distance for measuring the dissimilarity between two sets 

of edge pixels or two sets of dominant points. The 

average Hausdorff distance is the average of all distances 

between pairs of corresponding points in two sets. The 

disadvantage of average Hausdorff distance is high 

computational complexity. Thus, the computational 

complexities of the face recognition methods using 

average Hausdorff distance are very high. This prevents 

the methods that used average Hausdorff distance from 

real face recognition applications.  
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Hausdorff Distance (HD), or MAX-MIN distance, is a 

useful measurement to determine the degree of 

resemblance between two point sets. Hausdorff distance 

is widely used in many domains such as pattern 

recognition, shape matching, segmentation techniques for 

medical image, CAD/CAM, etc. However, the computing 

of the HD is high complexity because it contains both 

maximization and minimization rather than just one or 

the other. In recent decade, various methods had been 

proposed with the purpose reducing the computational 

complexity of computing the HD [32]-[37]. However, 

these methods cannot be used for reducing the 

complexity of the average HD computing. 

In this paper, the state-of-art Local Start Search (LSS) 

method [35] is applied for reducing the computational 

complexity of the proposed method, which is based on 

the average Hausdorff distance. Firstly, a modification of 

the MMHD method, the Least Trimmed New Modified 

Hausdorff distance (LT-MMHD) method for face 

recognition is proposed. The LT-MMHD method uses 

dominant points set as face image feature, the same as the 

MMHD method. However, it is different from the 

MMHD method, the LT-MMHD method uses the least 

trimmed average Hausdorff distance, which is the 

average of the largest distances between pairs of 

corresponding points in two sets, for measuring the 

dissimilarity between two sets. After that, the LSS 

method is used for reducing the computational 

complexity of the proposed method, the LT-MMHD 

method. The experimental results show that the LT-

MMHD method gives higher recognition rate than 

MMHD in all experiments. Furthermore, the LT-MMHD 

method has 17% lower computational complexity than 

the MMHD method. 

In the following, a brief review of the methods for 

reducing the computation complexity of HD computing is 

given in Section II. In Section III, the proposed method, 

the LT-MMHD method, is presented. The experimental 

results are shown in Section IV. Finally, the paper is 

concluded in Section V.   

II. RELATED WORK 

Given two point sets 1 2{ , , , }PM m m m  and T= 

1 2{ , , , }Qt t t , where P and Q are the number of points in 

set M and T, respectively. The directed Hausdorff distance 

 ,h M T  from M to T is the maximum distance of a point 

m M  to its nearest neighbor t T . The directed HD 

from M to T as a mathematical formula is 

  , max min
t Tm M

h M T m t


   (1) 

where || ||  is any norm distance metric, e.g. the 

Euclidean distance. For each point mM has to calculate 

the Euclidean distance to all points tT for finding the 
minimum distance. The computational complexity of this 

task is O(Q). This task must be done with all points mM. 

So, the complexity of the HD computing as (1) is ( )O PQ . 

Note that, in general case, ( , ) ( , )h M T h T M  and thus 

directed HD is not symmetric. The HD between M and T 
is defined as the maximum of both directed HD and thus 

it is symmetric. The HD ( , )H M T  is defined as 

       , max , , ,H M T h M T h T M  (2) 

Computing HD is challenging because its character-

istic contains both maximization and minimization. Many 

efficient algorithms, in recent decades, have been 

proposed for reducing the computational complexity of 

the HD computing. Depending on the data type of two 

sets, these methods could be divided into three categories: 

1) the efficiency methods for computing the HD between 

two polygonal models, 2) the efficiency methods for 

computing the HD between two curves or mesh surfaces 

and 3) the efficiency methods for computing the HD 

between two point sets. 

However, the methods for efficiency HD computing 

between two polygonal models, two curves or two mesh 

surfaces are not general because these algorithms based 

on specific of data types [36]. The methods for efficiency 

HD computing between two point sets are more general 

and can be generally divided into two categories, 1) 

approximation HD and 2) exact HD. In the first category, 

which is approximation of HD, the algorithms try to 

efficiently find an approximation of the HD. These 

algorithms have been widely used in runtime-critical 

applications. On the other hand, the algorithms of the 

second category aim to efficiently compute the exact HD. 

The surveys in [38], [39] presented more details about 

these methods in the first category. In the face 

recognition field, exact HD is widely used for measuring 

the distance between two set of features. In this paper, we 

present some general methods for efficiency exact HD 

computing between two point sets.  

In [32], an algorithm for finding the Aggregate Nearest 

Neighbor (ANN) in database was presented. This 

algorithm uses the R-Tree for optimizing the searching 

for ANN. As the development of the algorithm in [32], 

the method in [33] presented two algorithms, the Depth-

First Hausdorff distance algorithm (DF-HD) and the 

Best-First Hausdorff distance algorithm (BF-HD). These 

methods use two R-tree structures for two point sets for 

optimizing the nearest neighbor searching. By using the 

index and the bounding distance, both of algorithms, the 

DF-HD and the BF-HD, quickly prune the non-

contributed nodes for final HD computation. Based on 

DF-HD and BF-HD, an efficient method, Incremental 

Hausdorff Distance (IHD), for HD calculation between 

two point sets was proposed. The algorithm uses two R-

Trees at the same time, each R-tree for each point set, to 

avoid the interaction of all points in two sets. The 

aggregate nearest neighbor is simultaneously determined 

in both directions. However, complex structure of above 

algorithms makes the computation cost increase and the 

R-Tree structure is not suitable for general point sets.  

A fast and efficient algorithm for computing exact HD 

between two point sets, the EARLYBREAK method, was 

proposed in [34]. The algorithm has two loops, with the 

outer loop for maximization and the inner loop for 
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minimization. If the distance between the current point in 

the outer loop and a point in the inner loop that is below 

the temporary HD, which could be named as cmax, the 

minimum value of the distances between the current point 

in the outer loop to all points in the inner loop will be 

below cmax. The distance from such point in the outer 

loop to its nearest neighbor does not make the value of 

HD change. Such point in the outer loop is called non-

contributed point for the HD computing. The computing 

can break the inner loop as soon as a distance that is 

below cmax is found and the outer loop could continue 

with the next point. Moreover, for improving 

performance, random sampling was also presented in this 

algorithm to avoid similar distances in successive 

iterations. 

Based on the EARLYBREAK method, a state-of-art 

method, namely Local Start Search (LSS), was presented 

in [35] for efficient computing exact HD between two 

arbitrary point sets. In the LSS method, the point set is 

ordered by using the Morton code, which is also known 

as the Morton curve or the Z-order. The main idea of the 

LSS algorithm is that if the break occurs in current loop 

at the point x, it is quite possible that the break will occur 

at the position near x in the next loop. Moreover, if the 

nearest neighbor at the point x in current loop, the nearest 

neighbor in next loop is also quite possible at the point 

near x. In LSS algorithm, a variable, namely preindex, is 

used for preserving the location of break occurrence or 

the location of the nearest neighbor point in current outer 

loop. In the next outer loop, the inner loop will start from 

the preindex and scan its neighbor for both sides of the 

preindex. 

For 3D point set, a method for computing the 

Hausdorff distance between two general 3D point sets 

was presented in [36]. This method contains two sub-

algorithms Nonoverlap Hausdorff Distance (NOHD) and 

Overlap Hausdorff Distance (OHD). In [37], a framework 

of diffusion search was presented for efficient and 

accurate HD computing between two 3D models. The 

method uses two algorithms, the LSS algorithm for 

computing the HD between two sparse 3D point sets and 

the OHD algorithm for HD computing between two 

dense 3D point sets. 

In this paper, the LT-MMHD method uses the average 

HD for measuring the dissimilarity between two sets of 

dominant points, which are the 2D point sets. The 

methods in [36] and [37] are used just for 3D point sets 

HD computing and are not suitable for the 2D point sets 

HD computing. And thus, the LSS method is used for 

reducing the computational complexity of the LT-

MMHD method. 

III. PROPOSED METHOD 

A. MMHD Method 

An edge presents a rapid change in gray level of a face 

image, which reflects the geometrical structure of human 

face. Edge is used as an important feature for face 

recognition. An edge detector followed by a thinning 

process is applied to face image for generating one-pixel 

thick edge. The Dyn2S algorithm [40] is applied to binary 

edge image for removing edge pixels which have low 

curvature. The remaining edge pixels of binary edge 

image are called dominant points. 

Given two finite dominant point sets 

1 2{ , , , }PM m m m  (representing the model in the 

database) and 
1 2{ , , , }QT t t t  (representing the test 

image), the HD of the MMHD method between two sets 

is defined as 

      MMHD MMHD MMHD, max , , ,H M T h M T h T M   (3) 

where ( , )h M T  is the directed HD from M to T and 

( , )h T M  is the directed HD from T to M. The directed 

HD ( , )h M T  is defined as   

 MMHD

1
, .min

i j
j

ii j

i

m t i j
t T

m Mm t

m M

h M T W m t
W 





 


     (4) 

where 1/ 2( )
i j i jm t m tW W W   is the average merit of the 

dominant point im  and 
jt ; 

imW  and 
jtW  are the merit 

provided by the Dyn2S algorithm previously mentioned; 

|| ||i jm t  is the Euclidean distance between two 

dominant points mi and tj. 

B. Least Trimmed New Modified Hausdorff Distance 

(LT-MMHD) for Face Recognition 

Supporting 1 2{ , , , }PM m m m  and 
1 2{ , , , }QT t t t  

are the dominant point sets of the model image and the 

test image, respectively. Here, we proposed the Least 

Trimmed New Modified Hausdorff distance (LT-MMHD) 

for measuring the dissimilarity between two dominant 

point sets. The directed Hausdorff distance of the LT-

MMHD method from M to T is defined as 

 LT-MMHD

1
, min

i i
j

i j

P

m t jP t T
ii K

m t

i K

h M T W m t

W






 
  

 



    (5) 

where (min || ||)
j

j i
t T

m t


  represents the ith value in the 

sorted sequence in ascending order (min || ||)
j

j m M
t T

m t 


 ; P 

is the number of dominant points in the model image and 

K is a parameter that is defined as 

 K f P   (6) 

which f is a given fraction, that determines the 

performance of the proposed method.   

As (4), the directed HD of the MMHD method from 

set M  to set T  is the average of all distances from all 

points mM to their nearest neighbors. Different from the 

directed HD of the MMHD method, the directed HD 

from set M  to set T  of the LT-MMHD method as in (5) 

is the average of the largest distances, which are greater 

or equal to the K  ranked value, from a point mM to its 

nearest neighbor tT. A primary HD of the LT-MMHD 
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(pLT-MMHD) method has mathematical formula as 

below: 

      pLT-MMHD LT-MMHD LT-MMHD, max , , ,H M T h M T h T M  (7) 

However, the design of pLT-MMHD still has the 

following weakness. Supporting T  is the set of dominant 

points of test image and t  is a point in the set T. Mc and 

Mn are the dominant point sets of corresponding image 

and non-corresponding image, respectively, for the test 

image in the database. Due to the error in feature 

extraction process, the corresponding point mc of the 

point t in the corresponding set Mc is missing, the point t 

will take another point in set Mc as its nearest neighbor, 

the point mcn. As (5), the distance cnm t  is used for 

calculating the directed HD of the pLT-MMHD from T to 

Mc. Similarly, the point t takes the point n nm M  as its 

nearest neighbor. The distance || ||nm t  is used for 

calculating the directed distance from T to Mn. It is 

possible to have the value of cn|| ||m t  is much higher 

than that of || ||nm t , and as in (5), the distance between 

T and Mc is much higher than the distance between T and 

Mn. The test image will take the non-corresponding image 

as the matching image. This is an undesired mismatch. 

The number of high confident corresponding pairs 

between the model image and the test image should be 

used as a measure of similarity. A point m M  finds that 

a point t T  is its nearest neighbor and the distance 

between them is lower than a given distance Np, then such 

point m is called as a high confident point. The number of 

high confident points between the test image and its 

corresponding image is much higher than between the 

test image and its non-corresponding image. A high 

confident ratio of an image is defined as the ratio 

between the number of high confident points ( hcN ) to the 

number of total dominant points (
totalN ). 

 hc totalR N N  (8) 

The disparity number between two images is defined 

as below 

 1
2

M T

n

R R
D


   (9) 

where RM and RT are the high confident ratio of the model 

image and the test images, respectively. The complete 

version of Hausdorff distance between two sets of the 

LT-MMHD method is defined as 

      
22

LT-MMHD pLT-MMHD, , n nH M T H M T W D   (10) 

where Wn is the weight of the disparity number and it is 

determined by a training process.  

By using face database of BERN university [42] for 

training process, we obtain that: Np=6 and Wn=25. 

C. Local Start Search (LSS) for LT-MMHD 

The directed distance of the LT-MMHD method as in 

(5) is the average of (PK) largest distances from a point 

m to its nearest neighbor. Assuming that (PK) temporary 

largest distances is found, and the minimum value of 

those distances is called as cmax. For computing the 

distance from a point m to its nearest neighbor, the 

distances from the point m  to all points t T  must be 

calculated and the minimum distance can be found from 

these distances, we call this is the inner loop. The key of 

reducing the running time of the LT-MMHD method is to 

reduce the average number of iterations of the inner loop. 

If the point m in the outer loop has the distance to a point 

t in the inner loop that is below the cmax, such point m is 

called non-contributed for computing the HD between 

two dominant point sets. Therefore, the calculating 

distances from the point m in the outer loop to the 

remaining points in the inner loop is not necessary. The 

algorithm could break and continue to the next point of 

the outer loop as soon as a point t in the inner that makes 

the distance from it to the current point m in the outer 

loop below cmax. If with the point m in the outer loop, the 

algorithm breaks at the position X in the inner loop, it is 

quite possible that with the next point of m in the outer 

loop, the algorithm could break at the point near X. 

Moreover, if X is the place of the nearest neighbor of the 

point m in the outer loop, the next point in the outer loop 

quite finds its nearest neighbor near X. For obtaining 

better locality of the dominant points in the set, the 

Morton code is used for ordering points. 

The Morton code was first introduced by Guy 

Macdonald Morton [39] in 1966. The Morton code is a 

function that maps multidimensional data to one 

dimension while preserving the locality of the data point. 

In this study, the Morton code is used for ordering the 

dominant points in set. As shown in Table I, each 

dimension is encoded with k bits, the Morton code will 

have 2k bits. Fig. 1 shows the order of points along the 

Morton-curve. 

TABLE I: ILLUSTRATION OF MORTON CODE 

Unordered index Coordinate Morton code Ordered index 

a (1,1) 0000 1 

b (1,2) 0001 2 

c (1,3) 0100 5 

d (1,4) 0101 6 

e (2,1) 0010 3 

f (2,2) 0011 4 

g (2,3) 0110 7 

h (2,4) 0111 8 

i (3,1) 1000 9 

J (3,2) 1001 10 

 
Fig. 1. Dominant point set ordered by Morton code. 
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Algorithm 1 describes our proposed method, using 

LSS for reducing the complexity of computing the 

directed HD of the LT-MMHD method.  Line 9 and line 

12 are called outer loop and inner loop, respectively. The 

function DIST(,) in Algorithm 1 denotes the Euclidean 

distance between two points; the symbol , denotes the 

inner product between two vectors. 

 
Algorithm 1 LSS for computing the directed LT-MMHD 

1: Input: Edge map M and T, fraction f 

2: Output: Directed Hausdorff distance H_MT 

3: Create the Z-order point set Mz 

4: Create the Z-order point set Tz 

5: rank = (1 – f) * length(Mz); 

6: hMT = zeros(2,rank); 

7: preindex = round(length(Tz)/2); 

8: minplace = 0; 

9: for i = 1:length(Mz) do 

10:    [cmax, place_hMT] = min(hMT(1,:)); 

11:    cmin = inf; 

12:    for j = 0:length(Tz) do 

13:       u = preindex – j; 

14:       v = preindex + j;  

15:       if u >= 1 then 

16:          d_left = DIST(Mz(i),Tz(u)); 

17:          if d_left < cmax then 

18:             preindex = u; 

19:             cmin = 0; 

20:             break 

21:          endif 

22:          if d_left < cmin then 

23:             cmin = d_left; 

24:             minplace = u;  

25:             W = W(Tz(u)); 

26:          endif 

27:       endif 

28:       if v <= length(Tz) then 

29:          d_right = DIST(Mz(i),Tz(v)); 

30:          if d_right < cmax then 

31:             preindex = v; 

32:             cmin = 0; 

33:             break 

34:          endif 

35:          if d_right < cmin then 

36:             cmin = d_right; 

37:             minplace = v;  

38:             W = W(Tz(v)); 

39:          endif 

40:       endif 

41:    endfor 

42:    if cmax < cmin then 

43:       hMT(1,place_hMT) = cmin; 

44:       hMT(2,place_hMT) = 0.5*(W+W(Mz(i))); 

45:       preindex = minplace; 

46:    endif 

47: endfor 

48: return H_MT = hMT(1,:),hMT(2,:) /sum(hMT(2,:)); 

 
The main steps of Algorithm 1 are summarized as 

follows. 
 Create the Z-order of two dominant point sets. 

Initialize a matrix hMT for saving the (PK) 
temporary largest distances from a point m  in the 

outer loop to its nearest neighbor tT in the inner 

loop || ||m t . The variable cmax is assigned as the 

minimum value of these distances. The variable 
preindex is used as the starting location of the inner 
loop. The variable minplace is assigned as the 
location of the nearest neighbor of the previous point 
in the outer loop.  

 The outer loop traverses all points in zM . A variable, 
namely cmin, is used for preserving the minimum 
value of the distances from the current point in the 
outer loop to points in the inner loop. 

 The inner loop executes a searching on zT at the 
starting location preindex. Both forward and 
backward searches are performed as the same time 

on zT . 
 If a distance d between the point t in the inner loop to 

the current point in the outer loop is below the value 

cmax, the algorithm will break the inner loop and 

continue with next point in the outer loop. The place 

that the break occurs is used for updating the value 

of preindex. If the break does not occur, the value of 

d is used for updating cmin. The starting location of 

inner loop preindex  is also updated by using the 

variable minplace.  
 The value of cmin is used for updating the matrix 

hMT. 
It is noted that the algorithm does not break during first 

(1 )f P  iterations of the outer loop, where P is the 

number of dominant points of the model image, because 

the value of cmax is equal to zero during these iterations, 

and the distance between two points d cannot be below 

the value of cmax. 

D. Computational Complexity Analysis 

Supporting P and Q are the number of points in the 

point sets M and T, respectively. For calculating the 

directed Hausdorff distance of the MMHD method as in 

(5), it is required to calculate distances from each point 

mM to all points tT for finding the minimum value, 

which is the distance from m  to its nearest neighbor. 

This task must be performed for all points mM. The 

directed Hausdorff distance of the MMHD method is the 

average of all distances from m to its nearest neighbor. 

The complexity of the directed Hausdorff distance 

MMHD computing is O(PQ). 

The Algorithm 1 has computational complexity is 

O((1f )PQ) for the best case, where the algorithm breaks 

at the first iteration of the inner loop. For the worst case, 

the break does not occur for all iterations, the 

computational complexity is O(PQ). Hence, the 

computational complexity of the MMHD method is the 

lower bound of the computational complexity of our 

proposed method. In general case, the computational 

complexity of the proposed method is O((1f )PQ+fPR), 

where R denotes the average number of iterations in the 

inner loop. The lower value of R, the better of 

performance of the proposed method. Now let us discuss 

the value of R in general case through the analysis of 

probability theory.  

In the Algorithm 1, considering that a random point 

tT in the inner loop, and finding a distance d between 

point t to the current point m in the outer loop. We define 

the event e to be the non-appearance of the break in the 

algorithm, or the event of that finding distance d larger 

than cmax, which is the minimum value of the temporary 

largest distances from a point m  in the outer loop to its 
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nearest neighbor tT in the inner loop as above 

mentioned. Assuming that the event e occurs with the 

probability P(e)=q. Obviously, the event e  means the 

appearance of the break in the algorithm and the 

probability of this event is   1P e q p   .  

We also define a random variable R as the number of 

successive the event e  until the event e  occurs. The 

variable R also means the average number of iterations 

before an early break occurs. This is equivalent to 1R  

distances from the current point of the outer loop m  to 

the points 1 2 1, , , Rt t t   namely 
1 2 1, , , Rd d d 

 are higher 

than cmax and one distance dR is below cmax. The 

probability density function of random variable R  is 

given by 

   1 max 1 max max

1

, , ,r r

r

f r P d c d c d c

q q p q p





   

    
     (11) 

The expectation of average number of iterations until 

an early break occurs equivalent to the expected value of 

f (r). 

     1

1 1

r

r r

E R rf r rq p
 



 

    (12) 

Then, equation (12) can be rewritten in the form of a 

polynomial as follow 

   2 32 3 4E R p qp q p q p      (13) 

A simpler formula of this sum could be found by 

multiplying both side with q, subtracting the resulting 

equation from (12) and then dividing by p 

 
   2 3

1 1
1

1

E R q
q q q

p q


     


 (14) 

Obviously, by using q=1p to (12), the convenient 

formula is given as 

  
1

E R
p

  (15) 

Equation (15) tells the important fact that the number 

of iterations until a break occurs only depends on p, 

which is the probability of finding a distance between two 

points below the value of cmax. The higher of p is, the 

lower of number iterations in the inner loop, and vice 

versa. Thus, the high probability p, we can reduce the 

average number of iterations in the inner loop. But the 

question is how high is p and what does it depend on? 

In fact, p depends mainly on the value of cmax. The 

larger cmax is, the easier to find a point in the inner loop 

that makes the distance to the current point of outer loop 

below cmax, which means the higher value of probability p 

and vice versa. Fig. 2 illustrates the relation between cmax, 

probability p and the distribution of pairwise distance 

between two points. Here, the normal distribution is used 

for illustration. The example in Fig. 2 shows that the 

value of p does not depend on the size of point set, but 

rather on the value of cmax and the distribution of the 

pairwise distance. 

 
Fig. 2. Distribution of pairwise distance assuming a normal distribution 

for illustration: (a) Relation between cmax and probability p, (b) Large 

value of cmax thereby increasing p, and (c) Small value of cmax thereby 

decreasing p. 

The value of cmax is determined by the fraction f. The 

larger of f is, the lower of number of largest distances are 

used for computing directed distance of the LT-MMHD 

method as in (5) and (6), which means the higher value of 

cmax and vice versa. 

IV. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed 

method, the LT-MMHD method, is evaluated for face 

recognition application. The recognition rate, which is the 

ratio of number of images correctly classified to the total 

number of images in the test set, is used for evaluating. 

The recognition rate of the proposed method is also 

compared with the MMHD method that uses average 

Hausdorff distance.  

In this study, the face database from the University of 

Bern [42] and the AR face database from Purdue 

University [43] are used. Bern university face database 

contains frontal views of 30 people. Each person has 10 

gray images with different head pose variations: two 

frontal pose images, two looking to the right images, two 

looking to the left images, two looking upward image and 

two looking downward images. The AR face database 

contains 2599 color face images of 100 people (50 men 

and 50 women), there are 26 images for each person and 

be divided into 2 sessions separated by two-week interval. 

Each session has 13 images which are the frontal view 

faces with different facial expressions, illumination 

conditions, and occlusions (sun glasses and scarf). 

However, one of frontal face image is corrupted (W-027-

14.bmp) and only 99 pairs of face image are used for 

examining the performance of system for face recognition 

under normal conditions. In our experiment, a 

preprocessing before recognition process is used for 

locating the face. All images are normalized such that the 

two eyes are aligned roughly at the same position with a 

distance of 80 pixels. After that, all images are cropped 

with size 160160 pixels. The experiments are conducted 

on the PC with 2.5GHz CPU and 4GHz RAM. 
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Fig. 3. The influence of fraction f on the recognition rate of the LT-

MMHD method with the Bern and AR database.  

A. Influence of Fraction f on the Perfomance of the 

Proposed Method 

In the proposed method, fraction f is used for 

determining the number of dominant points which are 

used for calculating the directed distance of the LT-

MMHD method as in (3). If the value of f is high, a low 

number of dominant points are used for calculating the 

directed distance of the LT-MMHD method. The outliers 

are commonly the points that have the very large distance 

to its nearest neighbor. This means, if the value of f is 

high, most of dominant points used for calculating the 

directed distance of the LT-MMHD method are the 

outliers. And thus, the recognition rate of proposed 

method is very low. On the other hand, if the value of f is 

too low, high number of dominant points in the set are 

used for calculating the directed distance of the LT-

MMHD method. This means not only the dominant 

points in discriminated regions of faces but also the 

dominant points in similar regions of faces are used for 

calculating. And thus, the contribution of dominant points 

in discriminated regions of faces become low and the 

recognition rate of proposed method might slightly 

decrease. 

Fig. 3 shows the recognition rate of the proposed 

method with various value of fraction f using the Bern 

database and the AR database with frontal face images. 

The value of fraction f is changed from 0 to 0.9. The 

value f of 1 is meaningless because there are no dominant 

points used for calculating the directed distance of the 

LT-MMHD method. As the result shown in Fig. 3, the 

recognition rate of the proposed method reaches the 

highest value at f = 0.6 for the AR database and at f   0.7 

for the BERN database. 

Beside recognition rate, the fraction f also influences 

the computational complexity of the proposed method. 

The low value of f means the longer size of matrix hMT 

in the Algorithm 1, and thus, the lower value of cmax. The 

low value of cmax makes the average number of iterations 

in the inner loop increase, and also makes the 

computation cost of proposed method increase. The value 

of fraction f is chosen at 0.6 for following experiments in 

this section. 

The complexity of the computing directed distance of 

MMHD is O(PQ). With the value 0.6 of fraction f, the 

proposed method has the computational complexity of 

O(P(0.4Q+0.6R)), where R is the average number of 

iterations in the inner loop. As in [36], the value of R is 

lower than Q. And thus, the proposed method has lower 

computational complexity than the one of the MMHD 

method. Table II shows the average number of iterations 

in the inner loop when computing directed Hausdorff 

distances of the MMHD method and the LT-MMHD 

method with a pair of face image in the AR database and 

the database of BERN University. The proposed method 

has approximately 17% lower average number of 

iterations in the inner loop and it has also lower 

computational complexity, than the MMHD method. 

B. Face Recognition under Normal Condition 

The frontal face images in normal conditions in the 

BERN university database and the AR database are used 

for evaluating the performance of the proposed method. 

Each person has two images, one for test set and one for 

the model set. The recognition rates of different methods 

are given in Table III. The recognition rates of all 

methods with BERN university database are higher than 

those with the AR database because two reasons. The 

first reason is the difference between a pair image of each 

person in the AR database is larger than the BERN 

database. And the second reason is the illumination of 

model image and test image in AR database is also 

different. The proposed method gives 7% higher 

recognition rate with the BERN database and 10 % higher 

recognition rate with the AR database than the MMHD 

method.  

Moreover, in the case f = 0, the LT-MMHD method is 

equal to adding the disparity number as in (7) to the 

MMHD method. As the result in Table III, by adding the 

disparity number, the recognition rate of the MMHD 

method will increase. However, the recognition rate of 

the LT-MMHD method is 1% higher than the recognition 

rate of the MMHD method with the disparity number in 

the case of the AR database. This means that the average 

Hausdorff distance of largest values gives better 

performance than the average Hausdorff distance. 

TABLE II: NUMBER OF AVERAGE INNER ITERATIONS OF DIRECTED 

HAUSDORFF DISTANCE BETWEEN PAIR IMAGE USING THE BERN AND AR 

DATABASES 

Method 
BERN database AR database 

MMHD LT-MMHD MMHD LT-MMHD 

Average number of 

inner loop (103) 
1204 1003 792.9 660.8 

Decrease (%) -  16.67 -  16.66 

TABLE III: RECOGNITION RATE IN NORMAL CONDITION 

Method MMHD 
MMHD with disparity 

number 
LT-MMHD 

Bern database 93.33% 100% 100% 

AR database 74.75% 82.83% 83.84 % 
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TABLE IV: RECOGNITION RATE FOR DIFFERENT LIGHTING CONDITIONS 

Method MMHD MMHD with disparity 
number LT-MMHD 

Left light on 71% 81% 85% 
Right light on 64% 74% 80 % 
Both light on 49% 61% 76% 

Average 61.33% 72% 80.33% 

 
Fig. 4. The influence of fraction f on the recognition rate of the LT-

MMHD method with under varying lighting conditions. 

C. Face Recognition under Varying Lighting Conditions 

The performance of the proposed method is also 

compared with the MMHD method for face recognition 

under varying lighting conditions of face image. For 

evaluating the performance of the methods under varying 

lighting conditions of face image, the images in the AR 

database are used. Frontal face images in normal lighting 

condition for 100 people are used as model set. The face 

images with a light source on the left side of face, a light 

source on the right side of face and two light sources on 

both sides of face, are divided into three test sets with 100 

images for each set. The recognition rates of the methods 

are given in Table IV. 

The proposed method gives higher recognition rate of 

approximate 19% than the MMHD method for different 

lighting conditions of face image on average. Especially, 

the LT-MMHD method gives higher recognition rate of 

approximate 8% than the MMHD method with disparity 

number.  

Fig. 4 describes more detail about the influence of 

fraction f on the recognition rate of the LT-MMHD 

method for different lighting conditions. With the 

condition of left light on, the recognition rate of the LT-

MMHD method reaches the maximum value at f = 0.6 

and 4% higher than the recognition rate at f = 0. With the 

condition of right light on, the recognition rate of the LT-

MMHD method reaches the maximum value at f = 0.6 

and 5% higher than the recognition rate at f = 0. 

Especially, with condition of two light sources on both 

sides of face, the recognition rate of the LT-MMHD 

method reaches the maximum value at f = 0.7, 4% higher 

than the recognition rate at f = 0.6 and 10% higher than 

that at f = 0. This means that the average Hausdorff 

distance of largest values gives better performance than 

the average Hausdorff distance. 

TABLE V: RECOGNITION RATE FOR DIFFERENT FACE EXPRESSIONS 

Method MMHD MMHD with disparity 
number LT-MMHD 

Smile 34% 35% 76% 
Angry 50% 62% 84% 
Average 42% 48.5% 80% 

 
Fig. 5. The influence of fraction f on the recognition rate of the LT-

MMHD method with different face expression. 

D. Face Recognition for Different Face Expressions 

For evaluating the performance of the methods with 

different face expressions, the face images with different 

face expressions in the AR are used. The face images 

with two face expressions, smile and angry, are divided 

into two test sets with 100 images for each set. The 

frontal face images with neutral expression of 100 people 

are used as the model set. The Table V shows the 

recognition rates of the methods. 

The proposed method gives higher recognition rate of 

38% than the one of the MMHD method for different 

face expressions, on average. The proposed method also 

gives higher recognition rate of 31% than MMHD 

method with disparity number.  

Fig. 5 describes more detail about the influence of 

fraction f on the recognition rate of the LT-MMHD 

method for different face expressions. With the smiling 

face image, the recognition rate the LT-MMHD method 

reaches the maximum value at f = 0.7, 1% higher than the 

recognition rate at f = 0.6 and 5% higher than that at f = 0. 

Especially, with the angry face image, the recognition 

rate of the LT-MMHD method reaches the maximum 

value at f = 0.8, 6% higher than the recognition rate at f = 

0.6 and up to 13% higher than that at f = 0. In the case of 

face recognition with different face expressions, the 

average Hausdorff distance of largest values gives much 

better performance than the average Hausdorff distance. 

E. Face Recognition for Different Face Poses 

The face database of BERN University is used for 

evaluating the performance of the methods with different 

face poses. The test sets contain images of 30 peoples 

with different poses, e.g. looking to the left and right, 

looking up and looking down. The model set contains 30 

frontal face images of 30 people. The recognition rates of 

the methods for different face poses are presented in 

Table VI. 
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TABLE VI: RECOGNITION RATE FOR DIFFERENT FACE POSES 

Method MMHD 
MMHD with 

number disparity 
LT-MMHD 

Looks left 40% 53.33% 53.33% 
Looks right 53.33% 63.33% 66.67% 
Looks up 60% 56.67% 60% 

Looks down 53.33% 63.33% 66.67% 

Average 51.67 59.17% 61.67% 

 
Fig. 6. The influence of fraction f on the recognition rate of the LT-

MMHD method with different face poses. 

On average, the proposed method gives 10% higher 

recognition rate than the MMHD method. In comparing 

with the MMHD method with disparity number, the LT-

MMHD method also gives 2% higher recognition rate on 

the average. 

Fig. 6 describes more detail about the influence of 

fraction f on the recognition rate of the LT-MMHD 

method with different face poses. With the face looking 

left, the recognition rate of the LT-MMHD method 

reaches the maximum value at f = 0.7 and it equals to that 

at f = 0. With the face looking right, the recognition rate 

of the LT-MMHD method reaches the maximum value at 

f = 0.4, 3% higher than the recognition rate at f = 0.6 and 

7% higher than that at f = 0. With the condition of the 

face looking up and looking down the recognition rate of 

the LT-MMHD method reaches the maximum value at f 

= 0.6 and 3% higher than that at f = 0. In the case of face 

recognition with different face poses, the average 

Hausdorff distance of largest values gives higher 

performance than the average Hausdorff distance. 

V. CONCLUSION 

Face recognition is an important research due to its 

burgeoning applications in modern life. In last three 

decades, a lot of face recognition methods have been 

proposed.  However, the SSPP problem, which has only 

one image for each person in the database, still challenges 

the researchers in computer vision and pattern recognition 

fields. In last decade, several face recognition methods 

have been proposed for solving the SSPP problem. These 

methods could be divided into five categories: global 

feature-based methods, local feature-based methods, 

virtual image generation methods, generic database-based 

methods and the hybrid methods. In comparing with other 

methods, the methods in local feature-based category are 

simple and easy to deploy in real face recognition 

applications.  

Edge is an important local feature, which is variant 

with non-ideal conditions of face image, especially under 

varying lighting conditions of face image. Various face 

recognition methods for solving the SSPP problem uses 

edge pixels as the features of face image. These methods 

use average Hausdorff distance for measuring the 

dissimilarity between two sets of features of two face 

images. However, the average Hausdorff distance has 

very high complexity of computing. And thus, the 

computational complexities of the face recognition 

methods use average Hausdorff distance are very high. 

The MMHD method is a face recognition method use 

features of face image are the dominant points of edge 

pixels of face image. This method has very low storage 

cost in comparing with the face recognition methods use 

edge pixels as features of face image. However, the 

disadvantage of the MMHD method is high 

computational complexity because the average Hausdorff 

distance is used in the MMHD method for measuring the 

distance between two sets of dominant points. 

In this paper, a modification the MMHD method, the 

LT-MMHD method for face recognition, was proposed. 

The LT-MMHD method also uses the set of dominant 

points as feature of face image, the same as the MMHD 

method. However, different from the MMHD method, the 

LT-MMHD method uses the average Hausdorff distance 

of largest values for measuring the distance between two 

sets of dominant points. The experimental results show 

that, the average Hausdorff distance of largest values 

gives better recognition rate than the average Hausdorff 

distance in all conditions of face image. This means 

replacing the average Hausdorff distance by the average 

Hausdorff distance of largest values leads to the 

improvement of recognition rates of face recognition 

methods using average Hausdorff distance.  

Moreover, in this paper, the LSS method, a state-of-art 

method for reducing the complexity of the Hausdorff 

distance computing, was used for reducing the 

computational complexity of the LT-MMHD method. 

The experimental result shows that the computational 

complexity of the LT-MMHD method is approximate 

17% lower than that of the MMHD method.  
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