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Abstract—Production variations are crucial factors that 
cause the reduction of production efficiency. These 
variations are often unpredictable and difficult to be 
interpreted directly from the production activity of the 
working station. Automated diagnostic of the causes to 
variations is therefore the key to overcome the issue. The 
system should also detect and diagnose variations for all the 
machines which are placed in the same manufacturing line 
at the same instance to prevent misaligned of production 
volume. To achieve this, Internet of thing (IoT) technology is 
proposed. The technology enables automatic data transfer 
without the need of human intervention. Through IoT, 
manufacturers are able to keep track the production activity 
and resolve problems encountered immediately. In addition, 
a typical random forest classification model is developed to 
analyze the production patterns and subsequently identify 
the causes to the unwanted variations. To the best of 
authors’ knowledge, this paper presents a first-time work on 
implementation of a mobile production monitoring system 

based on IoT and random forest classification.

 The 

methodology and technical matter to realize the 
implementation are highlighted and discussed. Overall, the 
proposed system has been tested accordingly and visualized 

through a developed mobile application. 

 

Index Terms—Internet of Thing (IoT), Mobile monitoring, 
production control chart, production monitoring, random 
forest classification 

I. INTRODUCTION 

Manufacturing industry is one of the major sectors 
which constitute the largest profit for the developed 
countries [1]. Despite being the crucial pillars for world 
economies, current manufacturing platform lacks 
connectivity of machines and cloud storage facility [2]. 
With the absent of machines networking, monitoring of 
machines can only be conducted manually. In the case of 
machine failure, prompt handling of the machine is 
rendered impossible thus creating unwanted idle time and 
hence loss of efficiency [3]. In this context, a real-time 
remote monitoring system to observe and provide 
feedback control to production stations is essential to 
ensure efficient management of the manufacturing 
processes. 
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In the advent of Industry 4.0, modern manufacturing is 
shifting to this technological advancement for 
competitive advantages. The fourth industrial revolution 
lies on digitization of physical devices communicated to 
the cyber world and is often being related to internet of 
thing (IoT) [4]. Nowadays, with the increasing amount of 
data generated throughout the manufacturing processes, 
manual monitoring and control of manufacturing 
processes are considered non-ideal. On the other hand, 
IoT technology allows data acquisition and interface of 
production analytics to user in real-time. Manufacturers 
that incorporate IoT aim to improve schedule stability, 
product quality and efficiency of the production stations. 
Till date, applications of IoT span from production 
scheduling [5] to health monitoring [6], monitoring of 
agricultural product [7], force monitoring of grippers [8] 
and to applications of intelligent manufacturing. 

In recent years, a study on cloud monitoring of 
machines has been conducted by Zhong et al. [9] on IoT 
basis. Nevertheless the work merely implemented 
networking to milling machines and to monitor mainly 
information on vibration. Furthermore, the architecture 
was also in short of a decision-making function to 
interpret data within the IoT model. Motivated by this, 
the objective of this work is to design and implement an 
IoT based remote monitoring system integrated with 
decision-making support for feedback control of 
production stations. Nevertheless, a mobile monitoring 
platform is essential to feedback information in real-time 
to manufacturer without the need of manual look up on 
the production status of the machines. Under this scope, 
the IoT model is categorized into four processes: data 
acquisition, data processing, data analysis or computation, 
and application interface. 

Data acquisition: Measurements recorded by sensors 
are collected as data transmitted to the server. The 
sensors installed on the manufacturing model include 
temperature sensor, humidity sensor, transmitter and 
receiver installed on each machine stations. 

Data processing: Through a microcontroller module, 

the raw data acquitted can be preprocessed to fit into 

appropriate format for data computing in the later stage. 

Generally, this stage is responsible for extraction, 

filtering, and conditioning on the raw measurements 

collected from the sensors in previous stage. 
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Data computation: A decision-making model is 
applied to analyse the processed data. The model employs 
machine learning or artificial intelligence to simulate and 
compute the analysis of the manufacturing system. Final 
process of this stage observes a decision of operation 
inferred from the computation and the feedback 
command is updated back to the machine stations through 
application interface. 

Application interface: A mobile monitoring platform 
can be applied to display the computed data. The 
interface serves as a remote channel for monitoring and 
visualization of the manufacturing operation in real-time. 

In this paper, an internet of thing based remote 
monitoring system is presented for visualization of 
manufacturing status based on activity of machines. The 
IoT model is implemented by networking physical 
devices to a server hosted on Raspberry Pi. Overall, the 
remote monitoring process consists of data acquisition, 
data processing and data analysis for interpreting the 
production data. Visual interpretation of the 
manufacturing operation is interfaced via a mobile 
monitoring platform. As a summary, the developed 
monitoring system is able to visualize process control 
chart, environment condition, and overall equipment 
effectiveness of the machine in real-time. 

The remainder of this paper is structured as follows: 
Section II outlines the related works. Section III describes 
the initial implementation of the monitoring system. 
Section IV evaluates the performance of the prototype 
and the information processed is being displayed via 
mobile monitoring platform. Section V draws the 
conclusions, limitations and future improvements of the 
work. 

II. RELATED WORKS 

The aim of this research is to develop a mobile 
visualization system to monitor the manufacturing status 
based on production activity of machines. The study of 
monitoring system based on IoT has been conducted by 
several researchers. In 2015, the monitoring of water 
quality in IoT environment was studied by Vijayakumar 
and Ramya [10]. The proposed IoT monitoring platform 
can be used to measure conductivity, temperature, 
turbidity and pH of water in real-time. A year later, Grgic 
et al. [11] developed a web based monitoring system to 
monitor the temperature and moisture level of an 
agricultural drying process. The methodology allowed 
real-time tracking and display of the sensing parameter 
using Message Query Telemetry Transport (MQTT) 
protocol. During the same year, F. Zhang et al. [12] 
developed IoT based online monitoring platform to 
determine status of steel casting. The model encompassed 
data processing, data filtering and data conversion. Often, 
the process requires integration of wireless sensor 
network for effective communication between the 
physical devices and the cloud platform [13]. Besides 
drying process, IoT technology can be adapted to monitor 
cultivation of oyster mushroom [7]. In 2018, an IoT based 
energy monitoring framework was presented by Chen et 
al. [14] for machining workshop. By collecting 
information from the machine in real-time, the optimum 
cutting parameters can be adjusted corresponding to the 

designated efficiency. Similar framework has also been 
observed in IoT based power monitoring of sewing work 
[15]. 

The IoT based remote monitoring system enabled 
automatic data transfer in real-time and remote 
troubleshooting of machine in advance. Subsequently, the 
resources can be well managed and thus the efficiency of 
production increased. In view of the potential benefit 
brought by the advancement of IoT, the application of the 
technology in health monitoring can also be found. In 
2018, a wireless electrode system to detect pain 
expression was integrated into an IoT model by Yang et 
al. [16]. The proposed system was merged with cloud and 
was able to display the signal to a graphical user interface 
(GUI) in real-time. In addition to pain expression, IoT 
based monitoring system can be integrated with data 
analytics to monitor and diagnose diseases [17], [18]. 

On top of this, some researchers have demonstrated the 
application of decision-making feature in IoT platform. In 
2018, Boveiri et al. [19] developed a probabilistic based 
decision-making model to compute the task of the 
variables for task scheduling. An IoT based monitoring 
system to detect severity in health was proposed by 
Pathinarupothi et al. [20]. Nevertheless, the data on 
severity were mapped to a particular alert level based on 
the proposed Critically Measure Index (CMI). S. Park et 
al. [21] applied machine learning to classify casting 
condition based on quality and parameters of die casting. 
The machine learning such as support Vector Machine 
(SVM), K-Nearest Neighbour (K-NN) and Multi-Layer 
Perception (MLP) have been integrated to IoT to identify 
diseases [17]. According to the experimental finding, 
Kaur et al. claimed that random forest technique scored 
the highest accuracy among other machine learning 
techniques in recognizing dermatology related diseases. 
Based on the literature review, it can be observed that the 
application of IoT based monitoring system varied with 
the algorithm and methods employed. To extract the 
fullest potential of IoT technology in remote monitoring, 
proper architecture to address the data transfer scheme is 
required. The performance of IoT based monitoring 
system lies on its latency and throughput and as such the 
IoT framework then become the key restriction for 
efficient information transfer between the physical 
devices and the cloud platform [1].  

III. PROPOSED METHODOLOGY 

The work proposes the development and implementa-
tion of a mobile production monitoring platform based on 
internet of thing technology. In this study, Huawei Nova 
2i was used for running the developed mobile application 
and the proposed system was tested at Automation 
Laboratory of the affiliated institution. Under the project 
scope, the prototype should monitor the production status 
based on activity of machines. For simplicity, physical 
devices such as laptop and computer (PC1 and PC2) were 
implemented as data transferring machine for the 
application. Essential information such as machine run 
time, quantity of products, and measurements of physical 
environments are transferred from the devices to the 
server. The architecture of the proposed system is 
illustrated in Fig. 1.  
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Fig. 1. System architecture of the proposed mobile production 

monitoring platform. 

TABLE I: ENVIRONMENT MEASUREMENT OF THE TESTING SITE 

Features 
Normal condition Abnormal condition 

Mean STD Mean STD 

Temperature, (Celcius) 24.6784 0.2209 27.5272 1.4189 

Humidity, (%) 81.1525 1.0481 80.2975 1.3040 

Air quality index, (PPM) 323.6937 14.8081 399.3327 10.6785 

 

During data acquisition, physical devices treated as 

manufacturing stations in a particular manufacturing 

layout are networked to an embedded (Raspberry Pi) 

server. Information such as production runtime and 

quantity are transferred from the devices to the server for 

data interpretation. In this work, Texas Instruments LM 

35 temperature sensor, Adafruit LLC DHT22 humidity 

sensor, and MQ135 air quality sensor are applied for 

monitoring the conditions of the physical environment. 

The measurements are sent to the server hosted in 

Raspberry Pi through a networking development board, 

WeMos. Table I presents the physical environment 

measurement of the testing site. 

Overall, the data acquisition methodology follows 

HTTP protocol in which the physical device is required to 

transfer a coded signal namely HTTP POST request to 

acknowledge the server for data transfer. Upon successful 

data transmission, the server then return the HTTP code 

to the physical device to complete the operation. Should 

there be any unsuccessful connection to the server or 

invalid HTTP header, data transfer from the physical 

devices to server are then repeated. Next, all the data 

collected are then processed and stored in MySQL 

database hosted on the Raspberry Pi server. The server 

can be remotely configured with virtual network 

computing viewer on a local PC via secure shell (SSH) 

protocol. The server apply a basic data size filtering 

function to the data collected before being stored in the 

database. This prevents processing of outlier data in the 

database and therefore ensures validity of the 

measurements recorded.  

The production information is then displayed on a 

mobile application developed with ANDROID STUDIO 

in real-time. Similar to the data acquisition process, the 

server transmits HTTP POST header signal to the mobile 

device to acknowledge the data retrieval operation. 

However, since the data retrieved are in JSON format, 

data conversion using JSON parser is required to process 

the transferred data. Likewise, exception handler will be 

triggered to re-establish the connection of device and to 

prompt the system for successful data parsing.  

For the analysis part, random forest classification 
attains much higher accuracy in pattern recognition 
compared to other techniques as mentioned in previous 
section. The classification technique allows easier 
interpretation of the possible factors causing unwanted 
production variations. In real world production, reasons 
for the unwanted variations are often difficult to be 
interpreted and mapped to the production status 
accordingly. Especially for large scale production, the 
manufacturing line can be affected by more than one 
variations. Through random forest classification, 1 or 
more production characteristic can be set as training 
factor and freely reorganized in the tree hierarchy. This 
allows step by step verification of the classification rule 
in determining the best optimizing route for the 
production recognition mentioned above. For simplicity, 
possible variations and the classification rules should be 
freely trained to optimize the recognition outcome and 
hence random forest classification was chosen per the 
advantage mentioned earlier. The acquired data on 
production quantity were transferred in specific time 
simulating the actual machine run time from the physical 
devices to an embedded server incorporating the 
classification algorithm for later recognition purpose. The 
production information in this study is obtained from 
online sources (Kaggle), and among the obtained data, 
about 5 sets were applied as training sets and 45 sets were 
applied for experimental or testing of the random forest 
classification. Experimental design of the random forest 
classification is discussed in the following section. 

IV. RESULT AND DISCUSSION 

A. Random Forest Classification 

The main focus of data analysis is to identify process 
variations to maintain and improve the quality of 
production. Development of this system is essential to 
feedback possible causes of variations to manufacturers 
and subsequently allows them to take necessary action 
promptly. In this work, random forest decision tree was 
implemented to classify the pattern of production 
variations. Under this context, the variations of 
production are mapped to specific sets of production 
patterns plotted with the quantity of product. This 
production chart is also called as process control chart or 
in simpler term, control chart. Therein, corresponding 
causes of the particular inconsistency can be identified 
and resolve the matter.  

 
Fig. 2. Control chart patterns (CCPs) 

Production 

quantity 

Machine 

runtime 

Physical 

environment 

Control interface 

Data storage 

Communication 

protocol 
IoT 

analytics 

Mobile 

display 

Embedded hardware Data server 

a) Normal Pattern (NOR) b) Increasing Trend (IT) c) Decreasing Trend (DT) 

d) Cyclic Pattern (CYC) e) Symmetric Pattern (SYS) f) Mixture (MIX) 

g) Upward Shift (US) h) Downward Shift (DS) i) Stratification (STA) 
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Based on Fig. 2, only the normal pattern is of 

preference as it indicates consistent performance of 

production under controlled variations [22]. In this work, 

the determination of production patterns is worked out 

through computations of the 7 shape features as follow. 

1) Gradient of best-fit line (using least square 

regression) 

  2

1 1

( )
N N

i i i

i i

M y t t t t
 

                       (1) 

where M is the gradient of best-fit line, N is the size of 
observation window, yi is the collected value from the 

process at ith time point, t and t  is the sampling time 

interval and the mean value of the sampling time interval 
respectively. A linear relationship is established when a 
line of best fit is free to map the data point collected. If 
M >>0, the chart pattern is identified as increasing trend 
(IT) or upward shift (US) and in contrast M<<0 indicates 
potential decreasing trend (DT) or downward shift (DS). 
For the remaining control chart patterns (CCPs), best-fit 
line with M about 1 are observed. 

2) Area between the overall pattern and the best-fit 

line (ALSPI) per interval of standard deviation 
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where ӯ is the mean of the collected values in the 
observation window. The area under control chart (AUG) 
and area under best-fit line (ALS) are computed using 
trapezoid formula. The summation of AUG and ALS is 
then further divided with standard deviation (SD2) of the 
data collected. The value of standard deviation defines 
how the data points spread out from the centerline (mean), 
thus sliding the value (AUG + ALS) with SD2 helps to 
discriminate the fluctuation level of control chart. 
Theoretically, the stratification (STA) chart pattern 
should result in the highest values of ALSPI as the points 
are usually lying near to the mean rather in uniform 
manner compared to the others. On the other hand, the 
lowest value of ALSPI indicates potential symmetric 
pattern (SYS). 

3) Ratio between variance of control chart and mean 

sum of square error of best-fit line (RVE) 
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Variance of a particular control chart is calculated by 

averaging the squared distance of each point with respect 

to the mean value. Therefore, further distance will 

compute a greater variance value and vice versa. 

Especially for the CCPs of IT, DT, US and DS, the 

variance values are observed to be larger. In short, 

trending and shifting pattern should observe RVE value of 

more than 1, otherwise less than 1. 

4) Proportion of sum of crossovers to the mean and 

best-fit line (PSMLSC) 
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Here Oi is 1 if 1( )( ) 0i iy y y y   , indicating the one of 

the point is lying above the average mean and another 

below the line. Similarly, 
iO  is 1 if 

1 1( )( ) 0i i i iy y y y 
     as observed with respect to the 

values on best-fit line, y’, otherwise Oi and 
iO  are zero. 

Therefore, symmetric pattern (SYS) in which data 

points are situated well above and underneath the 

centerline in interval manner and fall far away from the 

mean, should observe the highest PSMLSC value. On the 

other hand, PSMLSC of normal (NOR), STA, IT, DT and 

mixture (MIX) are intermediate, and cyclic pattern (CYC) 

should observe the lowest value of PSMLSC. 

5) Range of slope of line passing through midpoints 

of four equal segments on observation window (SRANGE) 

among six pairwise combinations 

In this extraction, the control chart should be observed 

in four equal sub-windows. This can be achieved by 

assigning starting values and dividing the observation 

windows by 4. Then, the midpoints of segment (MPS) are 

determined for each sub-windows through equation 

below: 

   4 1 4 1

MPS ,  
( / 4) ( / 4)

k N k N
i i

i k i k

t y

N N

   

 

 
  
 

           (6) 

A straight line is assumed to form between every two 

MPSs based on the following six pairs of possible 

combinations {j, k} = {1, 2},{1, 3},{1, 4},{2, 3},{2, 

4},{3, 4}. The gradients of slopes, s are computed 

accordingly, and the maximum and minimum values are 

identified to determine the range of slope (SRANGE).  

   SRANGE max minjk jks s                (7) 

This shape feature can effectively determine trending 

and shifting patterns for low index of SRANGE. In 

contrast, for pattern containing fluctuation at low 

resolution, especially for CYC, highest value of 

SRANGE is observed. 

6) Ratio of mean sum squares of error of best-fit line 

and average mean sum squares of error in window 

segments (REAE) 

 ,

,

MSE
REAE

MSE 6

t

j k

j k




                       (8) 

Similar to the case of finding SRANGE, the control 

chart is divided into four equal sub-windows. The mean 

sum squares of error (MSE) for all the divided sub-

windows are then computed and averaged. Next, a ratio 

between overall mean square error (MSEt) and average 
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MSE is determined. Among the CCPs, trending patterns 

should observe REAE value of more than 1, while the 

MIX should observe the lowest value. The uncertainty in 

the pattern such as asymmetry fluctuations, trending and 

shifting accounts much higher MSE errors found 

particularly in every segment respect to the best-fit line. 
The random forest classification differentiates the 

pattern of control chart in accordance to the computed 
parameters above. The categorization is performed for 
few instances and the instance which the control chart is 
categorized to will be further classified till the production 
is recognized. This recognition scheme was originally 
proposed by D. T. Pham and M. A. Wani [23] and has 
been actively applied for CCPs recognition [22], [24], [25] 
ever since. To establish the classification system, the 
priority of evaluation rules is significant and directly 
affecting the accuracy of the random forest classification. 
Therefore, to determine the evaluation sequences, the 
values of every shape features are extracted and further 
normalized with the local maxima (indexed higher than 
80%) as highlighted (bordered) in Table II below. The 
higher the computed indexing number, the higher the 
possibility the pattern of control chart is matched. This 
local maxima is used as starting reference in the 
following evaluation sequences. In contrast, the local 
minimum is highlighted (shaded) and acts as 
supplementary factors. 

TABLE II: NORMALIZED VALUES OF SHAPES FEATURES AMONG THE 

CCPS 

Index (%) M ALSPI RVE PSMLSC SRANGE REAE 

NOR 18.04 25.93 56.86 58.62 11.87 57.59 

STA 6.82 100.00 56.18 58.62 10.05 20.45 

SYS 34.15 4.76 56.34 100.00 55.71 18.79 

IT 95.49 16.71 100.00 41.38 19.63 98.48 

DT -47.43 20.91 65.73 56.89 9.82 100.00 

US 100.00 10.98 83.10 46.55 100.00 26.79 

DS -86.17 11.74 78.10 53.45 63.47 56.57 

CYC -3.58 9.73 55.38 37.93 12.78 0.90 

MIX 10.54 5.01 55.46 46.55 51.71 2.10 

 
Based on the observation, shape features of ALSPI and 

PSMLSC are stand-out characteristics compared to the 
others, and considered as primary features. ALSPI can 
effectively discriminate STA pattern with confident level 
of about 74.07%, while PSMLSC can identify SYS 
pattern with confident level of 41.38%. The secondary 
feature for the control chart is RVE. RVE index is 
meaningful to differentiate the trending and shifting 
pattern (IT, DT, US and DS) from the rest, with confident 
level of 8.87%. 

The tertiary-level features are SRANGE and M. 
SRANGE is helpful in further discrimination between 
trending and shifting pattern, with confident level of 
43.84% at the decision boundary. However, it can be 
observed that the shape feature of REAE has the similar 
ability to perform differentiation between shifts and 
trends, but with slightly lower confident level of 42.21%. 
Meanwhile, M index can determine the growth direction 
of the chart dependent to the sign of the computed value 
(positive value indicates IT and US; negative value 
indicates DT and DS). 

Apart from that, it is noticeable that CYC pattern 
yields the lowest value among the four particular shape 
features, which are M, RVE, PSMLSC and REAE. There-
fore, when the four mentioned shape features are applied 
as evaluation rules, the computation of CYC should be 
sequenced at bottom-most of the categorization tree. 

Lastly, the NOR and MIX pattern can be differentiated 
by three shape features, which are ALSPI, SRANGE and 
REAE. As a comparison, NOR has relatively higher 
ALSPI and REAE index, in which the confident levels is 
of 20.92% and 55.49% respectively. Nevertheless, MIX 
has higher SRANGE value and the confident level is 
39.84%. 

It is found that the identification of types of control 
chart pattern can be achieved with decision tree which 
consists of at least 6 levels of evaluation rules, and 
throughout the sequences, some of the parameters (shape 
features) are involved in multiple evaluation processes, in 
order to classify all the nine control chart patterns. 
Nevertheless, the initial decision tree was implemented 
with 8 nodes albeit having accuracy at about 74%. From 
experimental try-out, the number of decision nodes in the 
random forest should be increased for improved accuracy 
and in optimum to avoid sacrificing the computation time.  

Throughout the evaluation process, the accuracy of the 
decision tree shown in Fig. 3 has observed about 16% 
higher accuracy compared to the initial design. All of the 
control chart patterns have been successfully classified by 
the random forest besides NOR, IT and DT due to the 
lack of dataset on the particular patterns. Based on the 
outcome, the derived random forest is chosen to 
implement pattern recognition of control charts. In 
reference to the control chart patterns, possible causes of 
the production variations can be induced accordingly [26]. 
This could help manufacturers to effectively track the 
causes of variations and subsequently maintain the 
production status of the manufacturing stations promptly. 
Table III tabulates the possible causes of production 
variations with respect to the CCPs.  

 
Fig. 3. Decision tree for recognizing the pattern of control chart 
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TABLE III: POSSIBLE CAUSES MAPPED TO THE PATTERNS OF CONTROL 

CHART 

Control chart 

patterns 
Possible causes of variations 

Shifts 

 Change of shift workers 

 Incorrect assembly or setup 

 Measurement error 

 Procedure not completed 

 Electricity failure 

 Station breakdown 

 Low or defective material quality 

 Maintenance not completed 

Trends 

 Wearing of tools or moving parts 

 Fracture caused by continuous 

heating and cooling effects 

 Broken hardware or lack of 

maintenance 

Mixtures  Mixture of errors or possible causes. 

Stratifications 
 Combination of certain groups or all 

possible causes or errors. 

Cyclic and 

Symmetry 

 Interchanging raw materials 

 Configuration errors 

 Incorrect or hampered hardware 

settings 

 

With the extracted production quantity, a subsidiary 

artificial neural network (ANN) can be implemented to 

predict the passing rate of the products fabricated. The 

input data are activated through sigmoid function with 

randomized weightage matrices upon training. Then the 

data are fed into a hidden layer of 100 nodes and back 

propagated till a satisfactory value of accuracy is 

achieved. In accordance to the experimental finding, the 

optimum training cycle to reach the highest accuracy is 

found at around the 2000th iteration. After executing the 

ANN, it was found that deep learning may not be suitable 

to be implemented on mobile monitoring due to the 

additional latency incurred from the long iterations being 

executed. Furthermore, since the output node only 

designed to predict one outcome, the use of multiple 

hidden layer with large number of neural nodes for 

prediction may not necessarily be required. It may be 

needed to shrink the size of the ANN in the future to 

avoid excessive network charges and overloading the data 

transfer rate of the remote visualization system. Whereas 

random forest classification predicts the patterns of 

control chart by feeding the data to series of classification 

rules, optimum training cycle does not apply to random 

forest compared to ANN. 

B. Mobile Visualization 

In this section, experimental results in mobile 

visualization of production activity are presented. The 

mobile application was developed using Android Studio 

to present the production data in real-time. The Wi-Fi for 

networking was implemented with the mobile network 

service provided by local internet service provider (ISP). 

The developed system has been tested and the 

visualization of the monitoring system is shown in Fig. 4 

and Fig. 5. The respective overall equipment 

effectiveness (OEE) can then be calculated using the 

expression below: 

 OEE % Availability Utilization Efficiency      (9) 

 
Fig. 4. Mobile production monitoring system; environment and 

production monitoring (Left) and OEE performance page (Right). 

 
Fig. 5. Mobile production monitoring system; process control chart page 

(Left) and physical environment display page (Right).  

Availability is the actual time that the machine is 

occupied for production, or in another word, the run time 

of machine in fabricating products exclusive of downtime: 

Run time
Availability

Planned production time

Planned production time Stop time
                   

Planned production time






 (10) 

Utilization measures the usage of the machine in the 

production: 

Net run time
Utilisation

Run time

Ideal cycle time Total production
                 

Run time






   (11) 

Efficiency indicates the yield rate achieved by the 

machine in fabricating defect-free products: 

Pass proudction
Efficiency

Total production

Total production Fail production
                 

Total production






  (12) 
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By merging (9) to (12), the OEE expression can be 

simplified to the expression below: 

 
Ideal cycle time Pass proudction

OEE %
Planned production time


      (13) 

Time latency for uploading data to the server and 

downloading the data to mobile device is studied to 

evaluate the performance of the developed system. In this 

work, the latency is measured as a round-trip time (RTT) 

in which the time taken for a data packet transferred to a 

target destination till the acknowledgement of the data 

received and the transfer is successfully performed. The 

latency measurement for the data processing should be 

recorded at the instance a return code from the destination 

has been received. The work flow of the upload (data 

acquisition) and download (application interface) 

operation has been mentioned in the system 

implementation section. 

Based on Fig. 6, the network delay for WeMos 

increases as the data size transferred increases. It takes 

approximately 1.4s for the sensor to transfer 1000 bytes 

of data to the server. However, for the case of PC1 and 

PC2, the latency only increases slightly with the 

increased of data size transferred. The difference of 

latency is due to the larger number of sensors WeMos is 

interfaced to, as the sensors were interfaced in serial to 

WeMos, it takes considerable more time to communicate 

all the sensors to WeMos and then to the server. On the 

other hand, based on Fig. 7, the retrieval of data to mobile 

device recorded slightly higher latency at about 1.7s for 

the 1000 bytes transferred. Similarly, the latency for 

transferring content to mobile device increases with the 

data size.  

 
Fig. 6. Latency graph on data acquisition from physical devices to the 

server. 

 
Fig. 7. Latency graph on data retrieval from server to mobile device. 

The above work presents the development of an 

interactive mobile based production visualization system. 

There are two important contributions; 1) IoT enabled 

real-time production visualization, 2) the development of 

random forest classification for smart production 

feedback. This work serves as an importation reference in 

merging the proposed IoT system with random forest 

classification for production analytics. The functionality 

of the implemented system are tested and discussed. 

Despite that, the work at this stage are experimented on 

simple networking interface covering only few devices, 

in order to standardize the use of IoT and machine 

learning in the manufacturing industry, a larger scale of 

sensor networking is anticipated for its future 

development. The proposed system will help to improve 

production efficiency and provide instant feedback to 

cope the production variations. In addition, the proposed 

strategy could help to promote work safety and quality of 

life of the employee meanwhile offering an autonomous 

remote feedback system to guarantee production quality 

to the employer. Overall, the proposed system is fully 

automated and applicable for practical use.  

V. CONCLUSION 

The work presented in this paper proposes a 

production monitoring system based on IoT and a 

developed classification system. The proposed system 

will help improve the productivity and efficiency of 

manufacturing stations. An implementation of the mobile 

monitoring platform has been made and experimental 

testing of the system developed has been conducted. 

Overall, accuracy of 86% have been achieved in data 

analysis using random forest classification. It is expected 

that the accuracy can be improved with the approach of 

feeding more datasets for training. In the future, the work 

can be expanded to include various features such as 

failure diagnostic and data mining. Development of 

digital twin for advanced monitoring and data analytics is 

also part of the research interest. 
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