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Abstract—Control systems act as the nervous system for an 

industrial plant as they provide sensing, analysis, and 

control of various physical processes. Tuning them is the art 

of selecting values so that the controllers will be able to 

eliminate an error quickly and precisely to ensure the 

process variables stay within a pre-determined stability 

margin. That can be a painstaking process as it depends on 

the architecture of the control system and the controller 

design method. This paper describes a cascade-controller 

design based on soft oscillation index, with details for tuning 

them on the basis of stability margin. Using the same 

stability margin, this work provides analytical comparisons 

of performance indices in comparison with other well-

known tuning methods.
 
 

Index Terms—Cascade controller, controller tuning, 

performance indices, soft oscillation index 

I. INTRODUCTION 

Controller tuning can be accomplished quickly and 

accurately using different techniques. While many 

engineers and technicians do resort to “tuning by feel”, 

most would admit that this approach yields inconsistent 

results. For example, if the tuning that is too slow, and 

the response will be sluggish and the controller will not 

handle upsets, and take too long to reach the setpoint. On 

the other hand, if the tuning that is too aggressive, and the 

loop will overshoot or become unstable. When a control 

system is at properly tuned, the process variability is 

reduced, efficiency is maximized, energy costs are 

minimized, and production rates can be increased. 

An important feature is that the tuning strategy and 

efficiency are highly dependent on the architecture of the 

control system (e.g. one or more loops, centralized or 

distributed) and the controller design method (e.g. 

Ziegler-Nichols, Cohen-coon and Internal Model Control, 

etc.).  

This paper focuses on the problem of tuning cascade 

controllers, which is available as a standard tool in almost 
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all industrial process controller. In the standard cascade-

control approach, one feedback loop is nested inside 

another feedback loop using two controllers. The 

controller of the inner loop is called the secondary (or 

slave) controller, and the controller of the outer loop is 

the primary (or master) controller. The rationale behind 

this configuration is that the fast dynamics of the inner 

loop enable fast attenuation of disturbances and minimize 

the possible effects of disturbances before they affect the 

primary output, which is the controlled variable of 

interest.  

While there are a lot of studies for tuning single loop 

system, very few focus on tuning studies for the cascade 

systems, which are summarized below. 

The usual approach involves first tuning the secondary 

controller by setting the outer loop open. The primary 

controller is then tuned while considering the action of 

the secondary controller on the inner loop. This two-step 

tuning procedure is time-consuming, because two test 

runs of the plant (step or relay test) are typically required 

[1], [2]. The sequential tuning procedure has been 

improved so that only a single experiment is conducted 

for tuning the two controllers simultaneously [3]-[8]. 

However, usually an off-line or ad hoc experiment must 

be performed in these methods. For example, Leva and 

Donida [3] performed a test with a relay cascaded to an 

integrator, and Mehta and Majhi [4] restricted the 

secondary controller to a P controller during the relay test. 

Meanwhile Veronesi and Visioli [8] proposed a 

simultaneous closed-loop automatic tuning method for 

cascade controllers based on a set-point step test. In 

another study [9], Jeng and Liao presented a method for 

tuning cascade control systems in which both primary 

and secondary controllers are tuned simultaneously by 

directly using plant data without resorting to process 

models. The required plant data are collected from a one-

shot step test that can be conducted under either closed-

loop or open-loop conditions. Their proposed design is to 

obtain the parameters of two Proportional-Integral-

Derivative (PID) controllers such that the resulting inner 

and outer loops behave as closely to appropriately 

specified reference models as possible. The optimization 

problems related to the proposed design are derived. On 

the basis of the rationale behind cascade control, the 



 

  

 

  

 

 

 
 

 

 

 

 
 

   

 

  

    

  

  

 

 
 

 
 

 
 

 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 5, September 2020

325©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

secondary controller is designed to attenuate disturbance 

faster. The primary controller is designed to accurately 

account for the inner loop dynamics without requiring an 

additional test. 

The very small number of studies for this compelling 

and highly practical problem proves that this could be a 

highly complicated problem. This paper describes the 

design of a cascade controller based on soft oscillation 

index, and their tuning based on the requirements of a 

stability margin. Analytical comparisons with other well-

known tuning methods are given through a number of 

specific examples. 

II. BACKGROUND THEORY 

Consider a typical single closed-loop system as shown 

in Fig. 1 including process O(s), controller R(s), input z 

and output y. 

The open loop transfer function is: 

 ( ) ( )H s R s O s    (1) 

The closed-loop system in Fig. 1 has the transfer 

function of: 

 

 

( ) ( ) ( )
( )

1 ( ) 1 ( ) ( )

R s O s H s C s
W s

R s O s H s D s
  

 
         (2) 

and 

    s
PTO s O s e                          (3) 

where OPT(s) is polynomial element,  is the dead time 

and D(s) is named as characteristic polynomial.  

The equation 1+H(s)=0 or D(s) = 0 will have p pair of 

conjugate-complex roots type si = βi  ji (i = 1p). In 

[10] and [11] the factor mi=i /|i| is called oscillation 

index of the root si and mc=min{mi} is accepted as 

oscillation index of the system. 

 
Fig. 1. A closed loop control system. 

A. Soft Oscillation Index 

The concept of soft oscillation index is a function of 

frequency [10], defined as below: 

0

1
( ) , 0

e
m m

 

 
 




                  (4) 

where m0 is the initial value of oscillation index function 

m(ω). With the given values of m0, τ, α, the m(ω) is a 

function of only ω variable, it is a strictly decreasing 

from m0 to 0 when ω increases from 0 to . Hereafter, 

m() is written simply as m. 

B. Soft Boundary 

The complex variable s= m|ω|+jω is called soft 

variable. When  varies from  to +, the soft variable 

s=m|ω|+jω will draw in the complex plane a 

symmetrical curve AOB (Fig. 2), named soft boundary. 

The roots located on the soft boundary have oscillation 

index equal to m while the roots on the left or right side 

of it have oscillation index higher or lower m respectively. 

A system (Fig. 1) has a soft stability margin if all roots 

of D(s) are on the left side or on the soft boundary [10], 

[11]. It also means that the system has a pair of solutions 

with the smallest fluctuation index (mc) above or to the 

left of the soft boundary, the remaining roots will be on 

the left side of the soft boundary, then the system has a 

stability margin according to the soft boundary. 

 
Fig. 2. Soft boundary 

 
Fig. 3. Soft characteristic. 

C. Soft Characteristic  

If a soft variable is put into the open-loop transfer 

function H(s), H(mω+jω) is called soft characteristic. 

Considering in the positive frequency domain (ω≥0), the 

soft characteristic graph is shown in Fig. 3. 

The criterion of soft stability margin [10], [11] is stated 

as follows: the necessary and sufficient condition for all 

the roots of the characteristic equation of the closed-loop 

and open-loop systems to be left side of the soft boundary 

is true that the soft characteristic of the open system does 

not surround point (1, j0). 

D. Robust-Based Controller (RB) 

In order to have the highest robustness, best 

performance and simplest structure, the system in Fig. 1 

should be in the first order which has only one negative 

real root (m=+). This means its transfer function will be 

1
( )

1
W s

θs
   


  (5) 

with θ is the inertia constant. So, 

y 
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( ) 11 1
( ) 1

1 11 ( )

W s
H s

s sW s θs 

 
    

   
           (6) 

1 11 1
( ) ( ) ( )  ( )  ( ) s

PTR s H s O s O s O s e
θs θs

 
     (7) 

To perform the controller, 𝑒𝜏𝑠 will be eliminated. So, 

11
( )  ( )PTR s O s

θs

   (8) 

It is called as the robust-based controller. With a 

known process O(s), only θ is unknown and has to be 

chosen to achieve the required oscillation index mc 

(robustness) and best performance of the system [11], 

[12]: 

arctg
2

2arctg 1
2

c cm m

c c

e

m m








 
 

 


 

  
 

                       (9) 

III. CASCADE CONTROL 

Block diagram of a cascade control system is shown in 

Fig. 4, in which z is the set point, u1 and u2 are the outputs 

of the inner and outer controllers, respectively, y is the 

system output, d1 and d2 are the noise signals affecting 

the outputs of the object, and R1,2, O1,2, and B1,2 are the 

transfer functions of the controllers, the objects and noise 

in the system respectively. 

 
Fig. 4. Block diagram of cascade control system. 

The inner loop is to eliminate noises that appear at the 

input side of the object. The faster the impact of the inner 

loop compared to the outer loop, the higher the noise 

reduction effect. Therefore, the point to get the feedback 

signal of the inner loop should be closer to the input of 

the object so that the object O2 has less inertia and latency 

than object O1 of the outer loop. The process in the inner 

loop is much faster than the outer loop so when the inner 

loop reacts, the outer loop is almost unresponsive and is 

considered an open-loop system. In this case, the inner 

loop can be viewed as an independent system. 

Thus, controllers can be designed based on a robust 

viewpoint of a single loop system [11], [12], with the 

results as follows: 

1

1 1

1

1
( )  ( )PTR s O s

θ s

   (10) 

1
2 2

2

1
( )  ( )PTR s O s

θ s

   (11) 

where OiPT(s) is a rational function of objects Oi (i=1, 2) 

and 1, and 2 are the inertia constants of the equivalent 

single-loop systems corresponding to the inner and outer 

loops: 

1 1
( arctg )

2
1

1
2

1 1( arctg ) 1
2
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m m
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e

m m





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


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                    (12) 
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2
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c c

e

m m












 

                     (13) 

where mc1 and mc2 are the oscillation indices of the 

dominant pairs of each loop (outer and inner loops), 1 

and 2 is the delay time of O1 and O2 objects. 

Each controller of (10) and (11) only needs to be tuned 

by a single parameter that is 1 and 2:  

- If the objects O1 and O2 contain the transfer 

functions of the first/second order process with time 

delay, the amplifier with time delay or integrator 

process, then the received controllers R1,2(s) has the 

industry standard format such as I, PI, PID and PD 

controllers. 

- In case of a rational function of the object, if the 

order of the denominator is greater than the order of 

the numerator by 3 or more, implement an improper 

transfer function using an order-compensate filter as 

follows: 

min

1
( )

(1 0,1 )
k q

s
T s

 


  (14) 

where q is the order of the filter so that the transfer 

function after compensation has order of the numerator is 

greater than the order of the denominator. Tmin is the 

smallest time constant of the object. 

IV. TUNING CONTROLLERS 

A. Evaluation of the Oscillation Index of the Loops    

From (9), where  is a constant, we have: 

arctg
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However, 
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       (16)  

So, 
1lim

cm
e 


                            (17) 

The graph of   mc is shown in Fig. 5. 

 
Fig. 5.   e when mc   and =1. 

According to (11), 2 is inversely proportional to the 

gain coefficient of the R2 controller so the larger the 2, 

the smaller the gain factor leads to the smaller R2 output 

signal. This output signal impacts the O2 object, which is 

usually the actuators (e.g. regulating valves), so the signal 

must not exceed the threshold to avoid saturation. 

However, it was found that the bigger the mc, the more 

robust the system is. Therefore, we must select the value 

mc2 so that it reaches the equilibrium with the threshold 

signal of actuator and mc2> 0. 

For cascade systems, the stability margin requirements 

are determined for the output signal at the outer loop, i.e. 

the mc1 oscillation index. However, for cascade control 

systems, in order to increase the robustness of the system, 

the inner loop must have a robustness greater or equal to 

the outer loop, and the oscillation index of the inner loop 

is greater or equal to the oscillation index of the outer 

loop (mc2 ≥ mc1> 0). 

B. Tuning Cascade Controllers to Ensure Stability 

Margin of the System 

As estimated above, the two control loops are 

considered independent. When the controllers are 

implemented in the system, they affect each other, so the 

system needs to be tuned to ensure the stability margin 

requirement. 

Assuming that the system has the stability margin 

according to the soft oscillation index as (4), H1(m + 

j) is the soft characteristic of the cascade control system, 

( ≥ 0). Then H(mω + jω) = P(ω) + jQ(ω), where P(ω) 

is the real part, Q(ω) is the imaginary part (Fig. 6). 

Let ω* be the frequency at which the soft characteristic 

curve intersects the real axis (Fig. 6): 

* * * *( ) ( ),   ( ) 0H m j P Q         (18) 

 

ω =0 

ω =0 

ω
* 

P(ω
*
) 

P 

jQ 

 
Fig. 6. Soft characteristic of open-loop cascade system. 

From the formula above, letting the soft characteristic 

curve cut the horizontal axis at the point (1, j0) at the 

frequency ω*, the scale coefficient can be calculated from 

the following equation: 

* * *

*

1
( ) ( ) 1

( )
kH m j KP K

P
  




          (19) 

So in order for the system to reach the stability margin 

(based on the soft stability margin criterion), the soft 

characteristic curve must be adjusted to cut the horizontal 

axis at positions between 0 and (1+j0), meaning that 

coefficient K' has to be bigger than coefficient K above. 

On the other hand, consider a cascade control system 

as an equivalent single-loop structure (see the following 

Fig. 7). 

 
Fig. 7. Two-loops control system and equivalent single-loop structure to 

R1 controller. 

The transfer function of the open outer-loop system is: 

1 1( ) ( ) ( )H s R s V s                             (20) 

where V1 is the equivalent object of the outer-loop 

(including the inner-loop and O1 object). 

At frequency ω*, if the soft characteristic changes by a 

quantity K', then the gain coefficient of R1(s) changes by 

an amount equal to K'. 

So, the gain coefficient of the controller can be 

adjusted by a number of K' to ensure the system’s the soft 

stability margin. 

V. SIMULATION EXAMPLES AND PERFORMANCE 

INDICES EVALUATION 

Consider the process given by object transfer functions 

[8], [9] and the requirement to ensure a stability margin 

corresponding to the soft oscillation index having α = 3 

and m0 = 1.35 as follows: 

0.5 3
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Fig. 8. Soft boundary MON corresponding to the soft oscillation index 

having α = 3; m0 = 1.35 and the dominant pair position. 

Then s m j     runs on the soft boundary MON 

on Fig. 8. 

The requirement of stability margin is set in this case 

to compare with 2 methods [8], [9]. Both of these 

methods give the dominant pair located on the soft 

boundary. 

According to the method of Jyh Cheng Jeng [9], the 

designed controllers will be: 

2

1
( ) 1.336 1

0.833
R s

s

 
  

 
 

1( ) 0.0768(1 10.64 )R s s   

The dominant pair s1
(1), s2

(1) of the system when using 

this method are: 

(1)
1,2 0.142 0.118s j    

This dominant pair is on the soft boundary MON (Fig. 

8) at frequency ω = 0.1118. 

According to the method of Veronesi and Visioli [8], 

the designed controllers will be 

  

 2

1

1 0.252 1 1.1
( ) 1.377

1 0.076

1 9.79
(s) 0.079

1 0.098

s s
R s

s s

s
R

s

 









 

The dominant pair s1
(2), s2

(2) of the system when using 

this method are 

(2)

1,2 0.127 0.1s j    

This dominant pair is on the soft boundary MON (Fig. 

8) at frequency ω = 0.1. 

According to the design method of Robust-based 

controller (RB), the design should ensure that the 

dominant pair is on the left or at least on the soft 

boundary.  

• Calculate the inner-loop controller 

With the oscillation index of the dominant pair for this 

round of mc2 = 0.6, the delay time of the inner object is τ2 

= 0.5.  

Replace these values into (13) and we get: 2 = 0.7721. 

R2 controller according to (11) is 

2

1
( ) 1.295

s
R s

s


  

• Calculate the outer-loop controller 

With the oscillation index of the dominant pair for this 

round of mc1 = 0.5, the delay time of the outer object is 

τ1= 3. 

Replace these values into (12) and we get: = 4.2157. 

R1 controller according to formula (10) is 

1 2

(1 10 )(1 2 )
( ) 0.2372

(1 0.2 )

s s
R s

s

 



 

The transfer function of order-compensate filter 

according to (14) is 

1 2

1
( )

(1 0.2 )
s

s
 


 

The dominant pair s1
(3), s2

(3) (Fig. 8) of the system 

when using this method are: 

(3)

1,2 0.429 1.759s j    

This dominant pair is located on the right side of the 

soft boundary at the frequency ω = 1.759 (Fig. 8). The 

system does not guarantee stability margin according to a 

given soft oscillation index. 

Continue to tune the amplification factor of R1 

controller according to (19) so that the system ensures 

stable reserve. We get the new controller is:  

1 2

(1 10 )(1 2 )
( ) 0.12

(1 0.2 )

s s
R s

s

 



 

The dominant pair s1
(4), s2

(4) of the system is now: 

(4)

1,2 0.191 0.186s j    

This dominant pair on the soft boundary (Fig. 8) 

ensures the system has the stability margin according to 

requirements. 

For ease of comparison, the robust-based controller is 

converted to PID controllers (noted by PID-RB). The 

conversion steps are as follows: 

• The R2 controller remains the same because it is a PI 

with Kc2 = 0.9429; i2 = 1. 

• Modeling O1 object into a first-order integral inertia 

system with delay by Cleft-overstep optimization 

algorithm [10], we get a new transfer function: 

4.683
1

1
( )

(1 10.344 )

sO s e
s s

 


 

With the oscillation index of the dominant pair for this 

round of mc1 = 0.5, the delay time of the inner object is 

τ1= 4.683. 

Replace these values into (12) and we get: = 6.5808. 

R1 controller according to formula (10) is 

1( ) 0.08(1 10.344 )R s s   



     

 
  

 

 

 

  

 

   

 

 

           

          

          

          

 

 

 

 

 

 

   

 

 

    

    

  

 

   

 

  

  

 

 

 

 
 

 
 

 
 

 
 

 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 5, September 2020

329©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

TABLE I: PERFORMANCE INDICES OF THE SYSTEM OUTPUT WITH INPUTS: SETPOINT, DISTURBANCE 
2d , DISTURBANCE 

1d  

Method 
Overshoot 

(Setpoint) 

SettlingTime 

(Setpoint) 

ISE 

(Setpoint) 

Peak 

(d2) 

SettlingTime 

(d2) 

ISE 

(d2) 

Peak 

(d1) 

SettlingTime 

(d1) 

ISE 

(d1) 

Jyh- Cheng Jeng 0% 23.39 9.652 0.76 40.97 0.713 0.5 20.67 2.414 

Veronesi and Visioli 2.7% 22.76 9.949 0.801 38.31 0.647 0.5 20.4 2.488 

RB 4.1% 13.9 6.885 0.827 29.94 0.371 0.5 12.8 1.722 

PID RB 1.7% 21.55 9.652 0.79 37.27 0.664 0.5 19.85 2.414 

 

   
Time 

Fig. 9. Losed-loop response of the system. 

   
Time 

Fig. 10. Control signal u2. 

   
Time 

Fig. 11. Control signal u1. 

The dominant pair s1
(5), s2

(5) of the system when using 

this method are 

(5)

1,2 0.153 0.069s j    

This dominant pair on the soft boundary at the 

frequency ω = 0.106 (Fig. 8). The system guarantees 

stability margin according to a given soft oscillation 

index. 

Fig. 9 shows the closed-loop response to a unit-step 

set-point change at t = 0 followed by step disturbance 

inputs d2= 0.5 at t = 55 and d1= 0.5 at t = 115.  

As shown in Fig. 9, the closed-loop response of the 

system will give the best performance when using the 

original robust-based controller with the indexes as 

SettlingTime (to fall to within 5% of y), Overshoot, Peak, 

Integral Square Error (ISE). PID-RB controllers give also 

performance indices better than those of Jyh-Cheng Jeng 

and Veronesi et al. Specific values are shown in Table I. 

Fig. 10 and Fig. 11 show the outputs of the controllers 

R2 and R1. The graphs show that the original robust-based 

controllers give the best closed-loop performance but the 

control signal is very and is large stretched out, which is 

not good for the actuator in the system. The PID-RB 

controllers produce very small control signals and 

especially this method gives very little deviation from the 

Jyh-Cheng Jeng controller. 

VI. CONCLUSIONS AND PERSPECTIVES 

Designing and tuning cascade controllers are a 

common problem in controlling many industrial 

processes. This paper presents analysis comparisons of 

tuning methods to cascade controllers based on ensuring 

the stability margin for the system. 

This paper describes the design and tuning of cascade 

controllers based on soft oscillation index. Based on a 

requirement of the system’s stability margin, the 

controller coefficients are selected and adjusted.  

Afterwards, analytical comparisons of performance 

indices with the recent tuning methods are given. 

The design and calibration method based on the soft 

oscillation index will be used to study for cascade control 

system with the number of loops greater than 2. The 

algorithm should also be packaged as a toobox that can 

be integrated into Matlab software. 

This work is also a good reference for research 

directions such as smart embedded systems [13], [14], 

control theory [15], [16], etc. 
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