
GNSS-Based System Time Synchronization

Mechanism for Cyber-Physical Systems

Kazuya Harayama, Takanori Yokoyama, and Myungryun Yoo

Department of Computer Science, Tokyo City University, Setagaya-ku, Tokyo 158-8557 Japan

Email: itm85hk@gmail.com; {tyoko; myoo}@tcu.ac.jp

Abstract—The paper presents a system time synchronization

mechanism of a Real-Time Operating System (RTOS) for

loosely coupled distributed Cyber-physical Systems (CPS)

such as distributed control systems connected with wireless

networks or wide-area networks. In CPS, computations

directly interact with the physical world based on the

physical time. Meanwhile, application tasks that perform

computation are managed by a RTOS according to the

system time. Thus, a precisely synchronized system time is

required for high performance control of the physical world.

The system time synchronization mechanism presented in

this paper provides the system time that is precisely

synchronized with UTC (coordinated universal time). The

system time synchronization mechanism compensates tick

rate, tick phase and the value of the system time utilizing the

Pulse Per Second (PPS) signal of a GNSS (global navigation

satellite systems) receiver module. We build the system time

synchronization mechanism into a RTOS, with which

embedded computers synchronously execute application

tasks according to the precisely synchronized system time.

The evaluation results show that the synchronization error

is sufficiently small for practical embedded control systems.

The system time synchronization mechanism can be easily

applied to other RTOS.

Index Terms—System time synchronization, real-time

operating systems, cyber-physical systems, distributed

control systems, GNSS

I. INTRODUCTION

Cyber-physical Systems (CPS) are real-time systems,

in which computations directly interact with the physical

world where time cannot be abstracted away [1].

Application tasks are managed by Real-Time Operating

Systems (RTOS) according to the system time in most

CPS. Distributed embedded control systems such as

automotive control systems, multi-vehicle control

systems and avionics systems are hard real-time CPS, in

which the delay and jitter introduced by the computer

system may lead to significant performance degradation

[2]. A precisely synchronized system time is required for

high performance control of the physical world.

NTP (network time protocol) [3] is widely used to

synchronize the system times of nodes in distributed

Manuscript received August 26, 2019; revised November 5, 2019;

accepted December 30, 2019.
Corresponding author: Takanori Yokoyama (email: tyoko@

tcu.ac.jp).

computing systems. However, NTP is not sufficient for

hard real-time CPS because the accuracy of time

synchronization is not enough for a distributed control

system to correctly control the physical world. The IEEE

1588 PTP (precision time protocol) is more accurate time

synchronization protocol. Cochran et al. presented a

method to synchronize the Linux system time with a PTP

hardware clock [4]. A time-triggered architecture with

clock synchronization is useful for hard real-time

distributed systems [5]. Chiba et al. presented a

distributed operating system with a global time

mechanism [6], which is supported by the clock

synchronization of FlexRay [7]. However, these systems

require wired local-area networks and are not applicable

for loosely-coupled CPS such as distributed control

systems connected with wireless networks or wide-area

networks.
GNSS (global navigation satellite systems) such as

GPS (global positioning system) and GLONASS
(globalnaya navigatsionnaya sputnikovaya sistema) are
useful for time transfer [8]. Bogdanov et al. showed that
GNSS time offsets are maintained within ±20 ns [9]. If
each computer has a GNSS receiver module, the system
time of a distributed CPS can be precisely synchronized
without wired networks. Kim et al. presented a clock
synchronization module using GPS for a middleware
called TMOSM (time-triggered message-triggered object
support middleware) for wide-area distributed systems
[10]. Quesada et al. presented and evaluated GPS-based
clock synchronization methods using a PPS (pulse per
second) signal of the GPS receiver module [11]. Kubczak
et al. presented preprocessing for fast synchronization of
high-stability oscillators disciplined by the GNSS PPS
signal [12]. Hollós et al. presented a GNSS-based
reference clock connection interface for IEEE 1588
master clocks [13]. Hasan et al. demonstrated that the
coverage availability and the timing accuracy of GNSS-
based time synchronization are acceptable for most
vehicular ad-hoc networks [14]. However, these systems
are not for the synchronization of the system time of
RTOS, which is used for task scheduling.

We already presented a RTOS that provides a system

time, which is precisely synchronized based on GNSS

[15]. However, the system time synchronization

mechanism of the RTOS requires a GNSS module that

provides not only a PPS signal but also a low jitter high

rate clock signal. There are a few modules that provide

low jitter high rate clock signal and they are expensive.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

94©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.
doi: 10.18178/ijeetc.9.2.94-99

Most GNSS receiver modules provide just a PPS signal,

which provides sufficient accuracy for hard real-time

embedded systems as Niu et al. reported in [16].

This paper presents a GNSS-based system time

synchronization mechanism that requires just the PPS

signal of a GNSS receiver module. The system time of a

RTOS is represented by a counter, the unit of which is

called a tick. The system time counter is updated by an

interrupt, which is periodically issued by a hardware

timer. The GNSS-based system time synchronization

mechanism is implemented as an interrupt routine and

synchronizes the system time counter with UTC

(coordinated universal time) by compensating the rate of

the tick, the phase of the tick and the value of the system

time referring to the PPS signal. We build the system

time synchronization mechanism into a RTOS, which

manages application tasks according to the precisely

synchronized system time. By using the RTOS, we can

develop a hard real-time CPS, in which coherent task

scheduling is performed.

The rest of the paper is organized as follows. Section II

presents system time synchronization utilizing the PPS

signal of a GNSS receiver module. Section III describes

the implementation of the system time synchronization

mechanism. Section IV evaluates the performance of the

system time synchronization mechanism and Section V

concludes the paper.

II. GNSS-BASED SYSTEM TIME SYNCHRONIZATION

A. Design Policy

Fig. 1 illustrates an example CPS, in which embedded

computers cooperatively control physical objects based

on a GNSS-based synchronized system time. The system

time on each embedded computer is synchronized with

UTC referring to a GNSS receiver module signal on each

embedded computer. Thus, embedded computers can

synchronously execute application tasks according to the

synchronized system time.

The design policies of the GNSS-based system time

synchronization mechanism are shown below.

 Special hardware should not be used.

 The major modification of the RTOS is not

required.

Embedded
Computer 1

Physical
Object

Physical Time Physical World

Physical
Object

Embedded
Computer 2

Embedded
Computer n

controlcontrol control

GNSS-Based
Synchronized
System Time

GNSS
Satellite

Physical
Object

Embedded
Computer 3

control

RTOS

Application

RTOS

Application

RTOS

Application

RTOS

Application

Fig. 1. Cyber-physical system with GNSS-based synchronized system

time.

Physical Time

System Time
Tmax

Tick Tick Tick 0

Fig. 2. Tick and system time.

Hardware
Timer

Tick
Interrupt

Clock Signal

Microprocessor

Real-Time
Operating System

CPU

Tick Interrupt
Routine

System Time
Counter

Scheduler

Task1

Application

Task2

TaskN

. . . .

Fig. 3. System time updating mechanism.

System Time

0

Time

Tick

Clock Signal for
Hardware Timer

Hardware Timer Tick Interrupt Tick Interrupt
Compare Match

Value

Tick

Fig. 4. Tick Interrupt

The first policy is to prevent increasing the cost. We

implement the system time synchronization mechanism

by software on a general-purpose microprocessor with a

GNSS receiver module. The second policy is to easily

build the system time synchronization mechanism into

various RTOS.
Fig. 2 illustrates the tick and the system time. A tick is

a unit of the system time. Tmax means the maximum value
of the system time. If the value of the system time
becomes to be equal to Tmax, the value is reset to zero at
the next tick.

Fig. 3 illustrates the system time updating mechanism.
The hardware timer counts the clock signal. The system
time is represented by the system time counter of the
RTOS. The system time counter is periodically updated
by the tick interrupt routine, which is issued by the
hardware timer interrupt. The scheduler of the RTOS
manages the application tasks according to the system
time.

Fig. 4 illustrates the relation of the system time and the
hardware timer. A compare match timer is usually used to
issue the tick interrupt. When the value of the hardware
timer becomes to be equal to the compare match value,
the tick interrupt is issued and then the value is reset to
zero. The compare match value is set so that the tick
interrupt occurs in each tick.

We present a system time synchronization mechanism
that adjusts the compare match value of the hardware
timer to compensate the tick and the system time.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

95©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

GNSS
Receiver
Module PPS

Signal

Hardware
Timer

1ms
Interrupt

1sec Interrupt

Microprocessor

System Time
Synchronization

Adjust

Real-Time
Operating System

Tick Phase
Compensation

Tick Rate
Compensation

System Time
Compensation

CPU

Tick Interrupt
Routine

Scheduler

System Time
Counter

. . . .

Ap.
Clock Signal

Fig. 5. System time synchronization mechanism

Hardware Timer Tick Interrupt

PPS Signal

0

1

Time

1sec

Tick

0 1 2 999 0 1

Error

4999
Compare

Match
Value

Fig. 6. Tick rate error.

Hardware Timer

5000

PPS Signal

0

1

Time

1sec

Tick Interrupt

0 1 500 501 0 1

4999

Compare
Match
Value

9992

Compare Match Value
= 5000

Compare Match Value
= 4999

No Error

Fig. 7. Tick rate compensation.

B. Synchronization Mechanism

To precisely synchronize the system time, the value of

the system time must be kept identical at any instant.

Thus, not only the value of the system time at an instant

but also the tick rate and the tick phase must be identical.

The system time synchronization mechanism compen-

sates the tick rate, the tick phase and the value of the

system time. The compensations are performed by

adjusting the compare match value of the hardware timer

referring to the PPS signal of a GNSS receiver module.

Fig. 5 illustrates the time synchronization mechanism,

which compensates the tick rate, the tick phase and the

value of the system time just by using the PPS signal. The

details of the compensation are described in Section II-C

and Section II-D

The GNSS receiver module outputs the signals under

the condition that sufficient GPS satellites are captured. If

sufficient GPS satellites are not captured, the GNSS

receiver module stops outputting the PPS signal. So the

tick synchronization is performed so long as the GNSS

receiver module outputs the PPS signal. If the GNSS

receiver module resumes outputting the PPS signal, the

tick synchronization also resumes. The error of the

system time is small and can be compensated in a short

time if the PPS signal suspended duration is not so long.

C. Tick Rate Compensation

The clock signal is generally generated by a crystal

oscillator, which usually has frequency deviation. The

clock rate also varies depending on the temperature. The

deviation and the variation cause tick rate error. Fig. 6

illustrates the hardware timer for the tick interrupt and the

PPS signal in the case that the tick is 1ms and the

frequency of the clock signal is 5MHz. In this case, the

compare match value is set to 4999 and the tick interrupt

is issued 1000 times per second. The figure also shows

the tick rate error in one second, which is a difference

between the values of the hardware timer at the timing of

the rising edge of the PPS signal.

We present a method to compensate the tick rate by

precisely adjusting the compare match value of the

hardware timer in each one second interval. Fig. 7

illustrates the hardware timer and the PPS signal. The tick

rate is compensated by precisely adjusting the compare

match value. In this example, the compare match value is

set to 5000 in the first half duration and set to 4999 in the

latter half duration in one second. The durations are

calculated by the system time synchronization

mechanism to minimize the tick rate error. This makes it

possible to keep the tick rate error under the period of the

clock signal without using a low jitter high rate clock

signal.

D. Tick Phase and System Time Compensation

The tick phase and the value of the system time are

compensated as same as the previous system time

synchronization mechanism presented in [15].

Fig. 8 illustrates the PPS signal, the hardware timer

and the system time. The timing to update the system

time must be matched to the timing of the rising edge of

System Time

Time

Tick
Hardware Timer

Tick

PPS Signal

0

Compare Match
Value

Error

Phase Error

0

1

Fig. 8. Tick phase compensation.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

96©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

the PPS signal. The solid line of the value of the

hardware timer and the solid line of the value of the

system time show a case in which no phase error exists

and the broken lines show a case in which a phase error

exists.

The tick phase is compensated by adjusting the tick

interval, i.e., by adjusting the compare match value of the

hardware timer until the timing of updating the system

time becomes matched to the timing of the rising edge of

the PPS signal.

The system time is correctly maintained just by the tick

rate compensation and tick phase compensation so long

as the GNSS receiver module outputs the PPS signal.

However, if the GNSS receiver module stops outputting

the PPS signal, the system time may not be correctly

maintained. If the value of the system time is not correct

when the GNSS receiver module resumes outputting the

PPS signal, the system time must be compensated.

Fig. 9 illustrates the PPS signal and the system time in

the case that the maximum value of the system time

(Tmax) is one second. The value of the system time must

be just zero at the timing of the rising edge of the PPS

signal in this case.

The solid line of the value of the system time shows a

case in which no system time error exists and the broken

line shows a case in which a system time error exists. The

system time is compensated by adjusting the tick interval,

i.e., by adjusting the compare match value of the

hardware timer until the system time becomes just zero,

one or multiple seconds at the timing of the rising edge of

the PPS signal.

System Time
Tmax

0

PPS Signal

0
1

Time

1sec

1sec

Error

Fig. 9. System time compensation.

III. IMPLEMENTATION

A. Hardware and Operating System

We use an evaluation board in which a microprocessor

called H8S/2638F is installed. The clock rate of the

microprocessor is 20MHz. We also use a GNSS receiver

module called GT-87 [17], which supports GPS,

GLONASS, SBAS and QZSS. The accuracy of the PPS

signal is less than 15ns(1σ)(@-130 dBm) and less than

50ns(1σ) (@-150 dBm). Fig. 10 illustrates the

microprocessor and the GNSS receiver module. The

hardware timer Timer 0 connected with the f/4 signal

generated by dividing the clock by 4 is used to issue an

interrupt in each 1ms interval. We also use another

hardware timer Timer 2 connected to the PPS signal to

issue an interrupt in each one second interval.

We build the system time synchronization mechanism

into an OSEK OS [18] called TOPPERS/ATK1, which is

developed by TOPPERS project [19]. OSEK OS provides

system services for task management, alarms, events,

resources and interrupt management. The counter and

alarm mechanism is used to implement periodic tasks in

OSEK OS. The system time counter is a counter to

represent the system time. An alarm is used to activate a

task, set an event or call an alarm call back routine.

Periodic tasks are activated by alarms connected with the

system time counter.

GNSS
Receiver
Module

PPS Signal

H8s2638F

PPS

Timer 0

TPU

1Hz

5MHz

f/4

TPU: Timer Pulse Unit

Timer 2

1ms
Interrupt
Request

1sec
Interrupt
Request

FURUNO
GT-87

CPU Clock Signal

20MHz

Interrupt

Controller CPU

Microprocessor

Fig. 10. Microprocessor and GNSS receiver module.

Fig. 11 illustrates the hardware timer and the tick

interrupt routine of the original TOPPERS/ATK1 for

H8S/2638F. The default tick is 1ms, so the compare

match value of Timer 0 is 4999. The default maximum

value of the system time is 1000 (999 to be exact), i.e.,

one second. Tick interrupt routine is issued by Timer 0

and executes the processing for the system time counter

and the alarms. Tick interrupt routine of

TOPPERS/ATK1 is implemented as an ISR (interrupt

service routine) of Category 2, which can use OSEK OS

system services.

B. System Time Synchronization Mechanism

Fig. 12 illustrates hardware timers and interrupts for

the system time synchronization mechanism. 1ms

interrupt routine issued by Timer 0 in each 1ms interval

and PPS interrupt routine issued by Timer 2 in each one

second interval are added. As shown by the figure, the

system time synchronization mechanism, which consists

of 1ms interrupt routine and PPS interrupt routine, can

be added without modifying the program of the RTOS

including tick interrupt routine, except for the hardware

timer setup code. Thus, the mechanism can be easily

applied to other RTOS.

Timer 0
5MHz

f/4

1ms
Interrupt

Category 2

Tick Interrupt Routine

System Time
Counter

Alarm

Fig. 11. ISR structure of original RTOS.

Timer 05MHz
f/4

1ms
Interrupt 1ms Interrupt Routine Trap

Category 1 Category 2

Tick Rate
Check

Compare Match
Adjust

Tick Interrupt Routine

System Time
Counter

Alarm

PPS
Signal 1Hz

Timer 2

1sec
Interrupt

PPS Interrupt Routine

Category 1

Tick Phase
Check

System Time
Check

System Time Synchronization Mechanism

Fig. 12. ISR structure of system time synchronization mechanism.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

97©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

Tick interrupt routine is activated by a trap (software

interrupt) issued by 1ms interrupt routine. PPS interrupt

routine and 1ms interrupt routine are ISRs of Category 1,

which cannot use OSEK OS system services, because the

overhead of an ISR of Category 1 is less than the

overhead of an ISR of Category 2. The priority of an ISR

of Category 1 is higher than the priority of an ISR of

Category 2. The priority of PPS interrupt routine is

higher than the priority of 1ms interrupt routine.

PPS interrupt routine checks the tick rate as described

in Section II-C. PPS interrupt routine also checks the tick

phase and the value of the system time as described in

Section II-D. If the tick rate error or the tick phase error is

detected to be greater than their thresholds or the system

time error is detected, 1ms Interrupt Routine adjusts the

compare match value of Timer 0 for compensation. The

threshold of the tick rate error is 1µs (0.1% of the tick

interval) and the threshold of the tick phase error is 5 µs

(0.5% of the tick interval). The parameters for the

compensation are decided so that the variation of the

compare match value is less than 1%.

IV. EXPERIMENTAL EVALUATION

A. Overhead of System Time Synchronization

We have measured the CPU execution times of PPS

interrupt routine, 1ms interrupt routine and tick interrupt

routine. Table I shows the average value and the

maximum value (written in parentheses) of each interrupt

of the RTOS with the system time synchronization

mechanism presented in this paper. The execution time of

tick interrupt routine is shown separately in the case that

no alarm is defined (without alarm), in the case that an

alarm is defined and no task is activated (with alarm), and

in the case that an alarm is defined and a task is activated

by the alarm (task activation). The table also shows the

CPU execution times of the RTOS developed in the

previous work [15] that utilizes not only the PPS signal

but also a low jitter high rate clock signal for comparison.

The column presented shows the CPU execution time of

the system time synchronization mechanism presented in

this paper and the column previous shows the CPU

execution time of the previous work.

The CPU execution time of 1ms interrupt routine of

the presented mechanism is much less than the previous

work. This is because the tick rate check, which is

executed by 1ms interrupt routine in the previous work,

is executed by PPS interrupt routine in the presented

mechanism. The execution time of PPS interrupt routine

of the presented mechanism is more than the previous

work. However, 1ms interrupt routine is executed a

thousand times in a second and PPS interrupt routine is

executed once in a second. Thus, the overhead of the

presented mechanism is much less than the previous work.
The CPU execution time of 1ms interrupt routine of

the presented mechanism is also much less than the
execution time of tick interrupt routine, which is the
original program of TOPPERS/ATK1 and not modified.
Thus, we think that the overhead of the presented
mechanism is acceptable for practically embedded
control systems.

TABLE I. CPU EXECUTION TIME OF INTERRUPTS

Interrupt Routine

CPU Execution Time [µs]

Presented
ave.(max.)

Previous
ave.(max.)

PPS 13.3 (16.8) 10.6 (10.6)

1ms 2.9 (2.9) 9.7 (10.5)

Tick

without alarm 10.1 (10.1) 10.1 (10.1)

with alarm 13.1 (13.1) 13.1 (13.1)

task activation 45.8 (45.8) 45.8 (45.8)

B. Accuracy of System Time Synchronization

To evaluate the accuracy of the system time

synchronization, we have measured the synchronization

error by comparing the compare match timing of the

hardware timers of different microprocessors. We have

set the hardware timer parameters so that the output of

the hardware timer is toggled by compare match and have

measured the time difference between the toggle outputs

of the hardware timers of different microprocessors using

an oscilloscope. The time difference means the

synchronization error of the system time.

The maximum time difference is 10µs in the case of

the system time synchronization mechanism presented in

this paper and is 18µs in the case of the system time

synchronization mechanism of the previous work. We

think that the tick rate compensation by the presented

mechanism is more stable than the tick rate compensation

of the previous work, which is executed in each tick

referring to the low jitter high rate clock signal.

The synchronization error of the presented mechanism

is less than 10µs. The error is much less than the CPU

execution time of the tick interrupt with task activation

(45.8µs as shown in Table I), which means the task

activation time. It is also less than 1% of 1ms, which is

the typical tick time of RTOS used in embedded control

systems. Thus, we think that the synchronization error is

sufficiently small for practical embedded control systems.

V. CONCLUSION

We have presented a GNSS-based system time

synchronization mechanism that utilizes just the PPS

signal of a GNSS receiver module. The system time is

synchronized with UTC by compensating the tick rate,

the tick phase and the value of the system time referring

to the PPS signal.

We have built the system time synchronization

mechanism into an OSEK OS called TOPPERS/ATK1

and evaluated the overhead of the mechanism and the

accuracy of the system time synchronization. The

evaluation results show that the overhead is acceptable

and the synchronization error is sufficiently small for

practical embedded control systems.

The system time synchronization mechanism issues the

tick interrupt that updates the system time of the RTOS.

The mechanism is added without modifying the source

code of the RTOS except for the hardware timer setup

code, so it can be easily applied to other RTOS.

A time-triggered operating system such as OSEKtime

[20] may be needed for strict hard real-time applications

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

98©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

that require less jitter. The future work is to develop a

time-triggered operating system with GNSS-based system

time synchronization.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Kazuya Harayama carried out the implementation and

the experimental evaluation. Takanori Yokoyama

conducted the research and wrote the paper with the

cooperation of Myungryun Yoo. All authors had

approved the final version.

ACKNOWLEDGMENT

The authors would like to thank the developers of

TOPPERS/ATK1. This work was supported by JSPS

KAKENHI Grant Number 18K11225.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc.
11th IEEE International Symposium on Object Oriented Real-

Time Distributed Computing (ISORC), Orlando, 2008, pp. 363-

369.

[2] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen,

“How does control timing affect performance? Analysis and
simulation of timing using Jitterbug and TrueTime,” IEEE Control

Systems, vol. 23, no. 3, pp. 16-30, May 2003.

[3] D. L. Mills, “Internet time synchronization: the network time

protocol,” IEEE Trans. on Communications, vol. 39, no. 10, pp.
1482-1493, Oct. 1991.

[4] R. Cochran, C. Marinescu, and C. Riesch, “Synchronizing the
Linux system time to a PTP hardware clock,” in Proc. IEEE

International Symposium on Precision Clock Synchronization for

Measurement, Control and Communication, Munich, 2011, pp.
87-92.

[5] H. Kopetz, “Should responsive systems be event-triggered or
time-triggered?” IEICE Transaction on Information & Systems,

vol. E76-D, no. 11, pp. 1325-1332, Nov. 1993.

[6] T. Chiba, Y. Itami, M. Yoo, and T. Yokoyama, “A distributed

real-time operating system with location-transparent system calls

for task management and inter-task synchronization,” in Proc.
IEEE 10th International Conference on Trust, Security and

Privacy in Computing and Communications (TrustCom),
Changsha, 2011, pp. 1133-1138.

[7] R. Makowitz and C. Temple, “FlexRay - a communication
network for automotive control systems,” in Proc. IEEE

International Workshop on Factory Communication Systems,

Torino, 2006, pp. 207-212.

[8] W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS:

Primary tool for time transfer,” Proceedings of the IEEE, vol. 87,
no. 1, pp. 163-172, Jan. 1999.

[9] R. P. Bogdanov, A. Druzhin, T. Primakina, and A. Tiuliakov,
“Analysis of GNSS time scales,” in Proc. European Frequency

and Time Forum, Turin, 2018, pp. 181-184.

[10] K. H. Kim and S. F. Jenks, “The TMO scheme for wide-area

distributed real-time computing and distributed time-triggered
simulation,” in Proc. IEEE International Parallel and Distributed

Processing Symposium, Rome, 2007, pp. 1-6.

[11] J. Quesada, J. U. Llano, R. Sebastian, M. Castro, and E. Jacob,
“Evaluation of clock synchronization methods for measurement

and control using embedded Linux SBCs,” in Proc. 9th
International Conference on Remote Engineering and Virtual

Instrumentation (REV), Bilbao, 2012, pp. 1-7.

[12] P. Kubczak, M. Kasznia, and M. Jessa, “Preprocessing for fast
synchronization of high-stability oscillators disciplined by GNSS

1 PPS signal,” in Proc. European Frequency and Time Forum,
Turin, 2018, pp. 234-239.

[13] Á. E. Hollós and T. Kovácsházy, “Improved reference clock

connection interface for prototype IEEE 1588 master clocks,” in
Proc. 19th International Carpathian Control Conferences,

Szilvasvarad, 2018, pp. 371-376.

[14] K. F. Hasan, Y. Feng, and Y. C. Tian, “GNSS time

synchronization in vehicular ad-hoc networks: Benefits and
feasibility,” IEEE Transactions on Intelligent Transportation

Systems, vol. 19, no. 12, pp. 3915-3924, Dec. 2018.

[15] T. Yokoyama, A. Matsubara, and M. Yoo, “A real-time operating

system with GNSS-based tick synchronization,” in Proc. 3rd IEEE

International Conference on Cyber-Physical Systems, Networks,

and Applications, Hong Kong, 2015, pp. 19-24.

[16] X. Niu, K. Yan, T. Zhang, Q. Zhang, H. Zhang, and J. Liu,
“Quality evaluation of the Pulse Per Second (PPS) signals from

commercial GNSS receivers,” GPS Solutions, vol. 19, no. 1, pp.

141-150, Jan. 2015.

[17] Furuno Electric Co., Ltd. Timing Multi-GNSS Receiver Module

Model GT-87. [Online]. Available:
https://www.furuno.com/en/products/gnss-module/GT-87

[18] TOPPERS Project. TOPPERS/ATK1. [Online]. Available:
http://www.toppers.jp/atk1.html

[19] OSEK/VDX, Operating System, Version 2.2.3, 2005.

[20] OSEK/VDX, Time-Triggered Operating System, Version 1.0,

2001.

Copyright © 2020 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Kazuya Harayama received his B.E. degree

from Tokyo City University in 2019. His
interest includes embedded systems and

software engineering.

Takanori Yokoyama received his B.E. degree,

M.E. Ph.D. degrees in information science

from Tohoku University in 1981, 1983, and
2002 respectively. He joined Hitachi, Ltd. in

1983. He joined Musashi Institute of

Technology in 2004. He is now a professor of
Tokyo City University. His research interest

includes embedded systems, distributed
systems and software engineering. He is a

member of IEEE, ACM, IPSJ and IEICE.

Myungryun Yoo received B.E. degree from

Andong National University, Korea in 1994,
M.S. degree from Pohang University of

Science & Technology, Korea in 1996 and

Ph.D. degree from Graduate School of
Information, Production & Systems, Waseda

University, Japan in 2006. She joined Musashi

Institute of Technology in 2006. She is now a

professor of Tokyo City University. Her

research field is Real-Time System,
Scheduling, Multimedia System, etc.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 2, March 2020

99©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.

