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Abstract—The paper focuses on a novel PID (proportional 

integral derivative) autotuner based on a single experi-

mental sine test. The Kiss Circle (KC) autotuner design and 

validation are targeted on a vertical take-off and landing 

platform which exhibits a highly oscillatory non-linear 

motion with time delay. An additional autotuner fit for time 

delay processes such as the well-known Ziegler-Nichols 

method is used to determine a PID controller for the 

Vertical Take-Off and Landing (VTOL) process. The 

experimental results obtained with the two different 

experimental tuning methods under several operating 

conditions are compared, illustrating the superiority of the 

KC autotuner. 

Index Terms—KC autotuner, PID control, PID autotuning, 

nonlinear process 

I. INTRODUCTION 

In 1984, an initial version of the autotuner concept was 

introduced by Astrom and Hagglund [1] with the purpose 

of facilitating the process of computing proportional 

integral derivative (PID) parameters through minimum 

effort. The purpose was to create a self-tuned controller 

which can be easily used by persons who lack complex 

control engineering knowledge [2]. 

Among the years, many works such as [3]-[7] 

contributed to the development of the autotuner concept 

transforming it into a reliable tool in controller tuning. 

The usability of autotuners spans from simple processes 

such as the ones presented in [8] to more complex 

industrial processes, like sheet metal forming [9], 

nonlinear processes [10], or second order unstable loops 

[11]. The “self tuned” PID controllers should be mindful 

of closed loop stability and fulfillment of multiple tuning 

requirements. 

The majority of available autotuning techniques are 

based on process response when fed a sinusoidal input. 

The sine wave frequency is determined through a relay 

test. Methods such as the popular Ziegler-Nichols (ZN) 

seek a critical frequency where the phase shift is −180. 

The approach towards determining the PID parameters 
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lays in using data read from the sinusoidal response of the 

process and computing the parameters based on provided 

mathematical formulas [12]-[15]. 

This paper presents a novel PID tuning procedure 

named the KC (Kiss Circle) autotuner [16]. A fractional 

order extension of the KC method has been published in 

[5]. The method is based on a single sine test applied as 

the process input from which the parameters of the 

controller are computed. A forbidden region is defined on 

the Nyquist diagram that includes the 1 point. The 

computed PID controller is validated experimentally on a 

Vertical Take-Off and Landing (VTOL) platform. 

Performances such as settling time, overshoot, and 

robustness are assessed and the method proves useful in 

reference tracking and disturbance rejection. 

Additional validations are realized by comparing the 

KC autotuner to the popular ZN method. The PID 

controllers are compared for several working areas of the 

process and also for disturbance rejection capabilities. 

The experimental tests prove the superiority of the KC 

autotuner procedure over the ZN method. Further 

comparisons regarding the ZN autotuner method were 

presented in [17].  

The structure of the paper is organized as follows. The 

mathematical background of the KC autotuner is 

provided in Section II with all the necessary formulas 

needed for tuning the PID controller. Section III presents 

the description of the VTOL process as well as 

experimental data to show the nonlinear complexity of 

the process. The PID controllers are tuned using the KC 

and ZN methods in Section IV, whereas the experimental 

results gathered from the VTOL process are shown in 

Section V. Finally, Section VI concludes the paper. 

II. MATEHMATICAL BACKGROUND OF THE KC 

AUTOTUNER 

The transfer function of a PID controller can be 

defined by 

 
1

1p d

i

C s k T s
T s

 
   

 
                      (1) 

with kp being the proportional gain, Ti and Td the integral 

and derivative time constants. In the KC autotuning 

approach, the three parameters denoting the PID 
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controller are computed in the absence of a process model, 

using the value of the process frequency response and the 

slope of the frequency response at a given frequency 

denoted by  . The frequency data can be acquired 

experimentally by exciting the plant with a sine wave of 

frequency  and interpreting the output sinusoidal 

movement. 

The first step in the KC autotuner algorithm is to 

define a forbidden region in the Nyquist plane which 

encloses the 1 point. The defined forbidden region is 

depicted in Fig. 1 with red, while the open loop frequency 

response is drawn with blue. The two points A and B on 

the Nyquist plot define the minimum gain and phase 

margins. The chosen constraints for the tuning are 

defined as the gain margin, GM=2, and the phase margin, 

PM=45. 

Let us consider the loop frequency response which can 

be defined as 

     L j P j C j                        (2) 

The derivative of the loop frequency response can be 

written as a sum of its real and imaginary parts. 

     L LdL j dR j dI j
j

d d d
     

  

  
  

        (3) 

The interest falls upon the slope of ( )L j  which can be 

computed using the ratio   L LdI dR
 

. 

A point on the KC circle in Fig. 1 can be defined by 

using trigonometry as 

   Re cos ,  Im sinC R R                  (4) 

Leading to the border of the slope of the forbidden region: 

 

 

ReIm cos

Re Im sin

Cd

d 

 

 


                     (5) 

From the Nyquist plot in Fig. 1 the slope of the 

forbidden region border can be defined as the ratio 

between the derivative of the imaginary and real parts as 

a function of the angle α. Hence, the slope is defined by 

Im Red d


. The open loop frequency response is 

defined in a similar manner by   L LdI dR
 

. The actual 

tuning of the PID controller becomes an optimization 

problem where the difference between the two slopes 

should be minimum. In order to determine the three 

parameters needed for the PID control law, one must 

solve the following equation: 

Im
min ,   0

Re
90L

L

dId

d dR
 

                   (6) 

A solution to solve the minimization problem is to take 

α in small increments of 1 starting from 0 to 90. 

The slope of the loop frequency response can be 

defined as the derivative of the loop frequency response: 

     
( ) ( )

dL j dC j dP j
P j C j

d d d
     

  
 

  
  

    (7) 

 
Fig. 1. Nyquist forbidden region (red) and open loop frequency response 

(blue). 

In order to obtain ( )P j  one must excite the process 

by a sine wave of frequency  . The same test is used to 

compute ( )dP j d
 

 


 as shown in [16] and [18]. 

Knowing the desired loop frequency response as well 

as the process frequency response, the controller’s 

transfer function can be written as 

 
 

  1
( )

L j b
C j j

P j a


 



 
   

 
                 (8) 

Equations (1) and (8) both express transfer functions of 

the PID controller denoted by C(s). Mapping the Laplace 

domain into the frequency domain is realized using 

s j . 

Writing the equality: 

1
1 1p d

i

b
k T j j

T j a
 



   
      

  
 

gives the proportional gain as 

pk a                                                (9) 

Furthermore, the derivative time Td is chosen as  

 

4

i
d

T
T                                            (10) 

Replacing (10) and 1/j=
 
j in 1 ( )i dT j T j jb a    

gives the second order equation: 

2 2 4 4 0i iT a T b a     

The equation is solved by using 
2 2 2(Δ 16 )b a   

and Ti is obtained as 

2 2

2

4 4
i

b b a
T

a

 



 
  

Only the positive value is appropriate for the PID 

controller giving 

 2 22
iT b b a

a
                       (11) 
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III. THE VTOL PROCESS 

A. Description 

The VTOL experimental platform depicted in Fig. 2 is 

designed by National Instruments and is compatible with 

real-life microcontrollers such as the NI Elvis. Graphical 

programming languages such as LabVIEW are used to 

communicate to the NI Elvis for real-time data 

acquisition and motion control. LabVIEW features an 

integrated control design add-on allowing the usage of 

real-time control loops in the Laplace domain. Hence, 

controllers can be directly implemented without the need 

of discretization. 

 
Fig. 2. Vertical VTOL platform from national instruments. 

The platform houses a cantilever beam equipped with a 

fan enclosed by safety guards to the right and a balancing 

weight to the left. The beam is fixed at one point along 

the length of cantilever at 1/3 near the weight. The setup 

has the possibility to rotate around the fixed point in the 

interval [26, 60]. 

The input of the process is the voltage applied to the 

DC motor actuating upon the fan, while the output is 

considered the angular displacement of the beam around 

the fixed point. The angular displacement is measured 

with respect to the fixed point; the 0 degree position is 

obtained when the beam is parallel to the base of the 

platform. 

B. Plant Nonlinearity and SOPDT Model 

The process is highly nonlinear due to the angular 

movement of the fan/weight. The initial position of the 

VTOL platform in the lack of any input signal is at 26. 

In order to bring the platform in the 0 position a voltage 

input of 6.3 V is necessary. 

Experimental tests have been performed with the 

purpose of linearity analysis by exciting the platform with 

different step input voltages. The experiments are 

performed after the platform is brought to the horizontal 

position. The test implies exciting the process with a 6.3 

V input in order to reach the 0 position. Furthermore, step 

variations of 1.5 V and +1.5 V are applied, hence the 

input varies between 4.8 V and 7.8 V. The results are 

presented in Fig. 3. The figure shows the angular 

displacement of the beam with blue and the normalized 

values around 6.3 V of the input signal with black. As can 

be observed, the physical nature of the process response 

is different around the chosen operating conditions. Two 

more identical tests have been performed and the results 

show the same nonlinearity features as the ones presented 

in Fig. 3. 
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Fig. 3. Step experimental test. 

A second order plus dead time (SOPDT) model is 

identified based on the experimental data. The model is 

not used to tune the PID controller using the previously 

presented KC method. However, this model will be 

further used to validate the test frequencies for the KC 

and ZN methods. 

The four step responses are normalized and their 

values are averaged in Fig. 4. It is clear that the model is 

a high order complex transfer function. However, in order 

to use experimental tuning methods, the process is 

approximated to a second order plus dead time (SOPDT) 

transfer function 

 
0.27

2
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0.20 0.19 1
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
 

                      (12) 

The validation of the SOPDT model is shown in Fig. 5. 
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Fig. 4. Average of the step experimental test. 
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Fig. 5. SOPDT model and experimental averaged data. 
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Fig. 6. Nyquist plot of the SOPDT model. 

IV. CONTROLLER TUNING 

Two PID controllers are tuned for the VTOL platform 

with the purpose of reference tracking, improved settling 

time and reduced overshoot. The main controller is the 

one tuned through the KC method presented throughout 

the paper. An additional controller is tuned using the 

popular ZN for method validation and comparison 

purposes. 

The choice of the ZN method for comparison is 

justified by the similarities between the two methods: 

both tuning procedures are based on experimental 

sinusoidal response and both methodologies require a test 

frequency to perform the sine tests. 

The test frequency required by the KC tuner is located 

around the magnitude peak, where the phase φ = −90. In 

the ZN scenario, the test frequency is the critical 

frequency where φ = −180. The two frequencies can be 

determined from the Nyquist plot (Fig. 6) of the 

previously identified SOPDT model. 

In absence of a SOPDT model, both frequencies can be 

determined experimentally via a relay test. 

A. KC Controller Tuning 

The experimental setup is fed with a sine wave of 

frequency ω=2 rad/s and normalized amplitude of 0.5 V. 
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Fig. 7. Average of VTOL output for three identical sinusoidal inputs 

with frequency ω = 2 rad/s. 

The initial conditions are similar to the ones presented 

in the step experiments: input of 6.3 V and 0 angular 

displacement. Three identical consecutive tests are 

performed and the process output is averaged in Fig. 7. 

The averaged sine wave values are used to compute the 

PID controller using the KC tuning procedure. 

The process value at the test frequency 2    

rad/s is determined as 

  1.383.38 18.4 18.7 jP j j e                   (13) 

while the derivative of the frequency response needed to 

solve (7) is obtained as 

 
90.2 1.25

dP j
j

d
 






                     (14) 

The parameters of the PID controller are obtained from 

(9), (10), (11) as kp = 0.00114, Ti = 0.0206 and Td = 

0.00515 and the controller from (1) can be written as 

 
1

0.00114 1 0.00515
0.0206

C s s
s

 
   

 
        (15) 

B. ZN Controller Tuning 

ZN is one of the most popular experimental tuning 

approaches due to its practicality and systematic tuning of 

the controller. The method is based on experimental 

process response to an input consisting of a sinusoidal 

signal with the frequency equal to the system’s critical 

frequency. The critical frequency can be graphically 

interpreted as a phase shift of −180. These particular 

frequency domain rules have been applied on physical 

processes [19]. 

The first step in the ZN algorithm is to determine the 

process’ critical frequency. The Nichols plot from Fig. 6 

as well as experimental relay tests identify the critical 

frequency as ωcr = 2.56 rad/s. 

For the VTOL process, three identical sine tests have 

been performed with an input of amplitude 1 V and 

frequency ω=2.56 rad/s. The averaged values of the three 

tests are shown in Fig. 8. 
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Fig. 8. Average of VTOL output for three identical sinusoidal inputs 

with frequency ω = 2.56rad/s. 

The average signal is a sine wave having the same 

critical frequency as the input and an amplitude of 19. 

The critical gain can be determined from the ZN tuning 

rules as 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 1, January 2020

46©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.



1
0.0526

19
ck                                (16) 

while the period of oscillation is computed as 

2 2.45T s                               (17) 

Furthermore, the PID parameters are determined from 

0.6 0.03p ck K                             (18) 

0.5 1.225iT T                              (19) 

0.125 0.306dT T                         (20) 

resulting the following ZN controller: 

 
1

0.03 1 0.306
1.225

ZNC s s
s

 
   

 
             (21) 

V. EXPERIMENTAL RESULTS AND COMPARISON 

The two PID controllers from (15) and (21) are 

validated through experimental tests that focus on 

reference tracking performance as well as input 

disturbance rejection. 

The first test gives a step change of the reference 

signal between 0 and 10. The controllers were tuned 

based on this operating point. The experimental VTOL 

results for the closed loop system with the KC and ZN 

controllers are presented in Fig. 9. 

The initial conditions for the VTOL process are 

angular position of 0 and command signal of 6.3 V. At 

t=10 s a step reference from 0 to 10 is given. As can be 

seen in Fig. 9 the closed loop system successfully follows 

the reference signal for both controllers. However, the 

settling time obtained with the KC controller is tsKC = 5 s, 

which is 10 s faster than the settling time obtained with 

the ZN controller tsZN = 15 s. Also, both controllers give a 

0 overshoot. Another step reference from 10
 
to 0 is 

given at t=35 s. For this step choice, the settling time 

exhibited by the closed loop process with the KC 

controller is tsKC=8 s compared to the tsZN=20 s obtained 

with the ZN method. 
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Fig. 9. Experimental closed loop system response with ZN and KC 

controllers. 

The presented experimental test proves that the KC 

controller is a better choice than the ZN for reference 

tracking purposes. For a deeper analysis, the disturbance 

rejection performance is also analyzed. A step 

disturbance of amplitude 1 V that acts upon the command 

signal is introduced into the system. The results regarding 

beam displacement can be seen in Fig. 10. 
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Fig. 10. Experimental disturbance rejection. 

The system’s initial condition is identical to the 

reference tracking experiment. At time t=8 s, a 1 V 

disturbance is injected into the command signal. The 

disturbance is rejected by both controllers with a KC 

settling time tsKC=9 s and a ZN settling time tsZN=20 s. 

The disturbance is removed at t=33 s and the process 

returns to its reference position in tsKC=10 s and tsZN =25 s, 

respectively. 

The experimental disturbance rejection test proves 

once more the efficacy of the KC controller when 

compared to the ZN. 

Both experiments show that the closed loop system 

with the KC controllers obtains an improvement of more 

than 50% for the settling time of every tackled scenario. 

VI. CONCLUSION 

The paper presents the experimental validation of a 

novel autotuning method called the KC autotuner. The 

procedure uses a single sinusoidal test to determine the 

process’ imaginary and real parts at the chosen frequency. 

Two PID controllers are tuned using the KC tuning 

method and the ZN approach with the purpose of 

reference tracking and disturbance rejection of a VTOL 

experimental setup. The controllers are validated through 

multiple experimental tests. The PID controller tuned 

using the KC method proved superior to the controller 

tuned by ZN for every test case. 

ACKNOWLEDGEMENT 

This work was supported by a mobility grant of the 

Romanian Ministery of Research and Innovation, CNCS - 

UEFISCDI, project number PN-III-P1-1.1-MC-2019-

0420, within PNCDI III. 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 1, January 2020

47©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.



REFERENCES 

[1] K. J. Astrom and T. Hagglund, “Automatic tuning of simple 
regulators with specifications on phase and amplitude margins,” 

Automatica, vol. 20, no. 5, pp. 645–651, 1984.   

[2] K. J. Astrom, T. Hagglund, C. Hang, and W. Ho, “Automatic 

tuning and adaptation for PID controllers—A survey,” IFAC 

Proceedings Volumes, vol. 25, no. 14, pp. 371–376, 1992.  

[3] S. H. Shen and C. C. Yu, “Use of relay-feedback test for automatic 

tuning of multivariable systems,” AICHE Journal, vol. 40, no. 4, 

pp. 627-646, 1994.  

[4] Y. G. Wang, Z. G. Shi, and W. J. Cai, “PID auto-tuner and its 

application in HVAC systems,” presented at the American Control 
Conference, 2001.  

[5] I. Birs, D. Copot, C. I. Muresan, R. De Keyser, and C. M. Ionescu, 
“Robust fractional order PI control for cardiac output 

stabilisation,” IFAC-PapersOnLine, vol. 52, no. 1, pp. 994-999, 

2019.  

[6] J. Berner, K. J. Astrom, and T. Hagglund, “Towards a new 

generation of relay autotuners,” IFAC Proceedings Volumes, vol. 

47, no. 3, pp. 11288-11293, 2014.  

[7] I. Nascu, R. D. Keyser, S. Folea, and T. Buzdugan, “Development 

and evaluation of a PID auto-tuning controller,” in Proc. IEEE 
International Conference on Automation, Quality and Testing, 

Robotics, 2006.  

[8] M. Gregroire, A. Desbiens, and E. Richard, “Development of an 
auto-tuning PID and applications to the pulp and paper industry,” 

presented at Third International Conference on Industrial 

Automation, 1999.   

[9] Y. Lim, R. Venugopal, and A. G. Ulsoy, “Auto-tuning and 

adaptive control of sheet metal forming,” Control Engineering 
Practice, vol. 20, no. 2, pp. 156–164, 2012. 

[10] M. Cetin and S. Iplikci, “A novel auto-tuning PID control 

mechanism for nonlinear systems,” ISA Transactions, vol. 58, pp. 
292-308, Sep. 2015.  

[11] H. P. Huang and C. C. Chen, “Autotuning of PID controllers for 
second order unstable process having dead time,” Journal of 

Chemical Engineering of Japan, vol. 32, no. 4, pp. 486–497, 1999.  

[12] H. Rasmussen, Automatic Tuning of PID Regulators, Aalborg 
University, Dept. of Control Engineering, 2002. 

[13] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic 
controllers,” Journal of Dynamic Systems, Measurement, and 

Control, vol. 115, pp. 220-222, Jun. 1993. 

[14] C. C. Hang, K. J. Astrom, and Q. G. Wang, “Relay feedback auto-

tuning of process controllers—A tutorial review,” Journal of 

Process Control, vol. 12, no. 1, pp. 143-162, 2002.  

[15] Y. Zhang, L. Zhang, and Z, Dong, “An MEA-tuning method for 
design of the PID controller,” Mathematical Problems in 

Engineering, vol. 2019, 2019.  

[16] R. De Keyser, C. I. Muresan, and C. M. Ionescu, “Universal direct 
tuner for loop control in industry,” IEEE Access, vol. 7, pp. 

81308-81320, 2019. 

[17] J. Berner, K. Soltesz, T. Hägglund, and K. Åström, “An 

experimental comparison of PID autotuners,” Control Engineering 

Practice, vol. 73, pp. 124-133, April 2018. 

[18] R. De Keyser, C. Muresan, and C. Ionescu, “A novel auto-tuning 

method for fractional order PI/PD controllers,” ISA Transactions, 

vol. 62, pp. 268–275, May 2016.  

[19] F. Hassan, A. C. Zolotas, and T. Smith, “Optimized Ziegler-

Nichols based PID control design for tilt suspensions,” Journal of 
Engineering Science and Technology Review, vol. 10, no. 5, pp. 

17-24, 2017. 

 

Robin De Keyser received the M.Sc. degree in electromechanical 

engineering and the Ph.D. degree in control engineering from Ghent 
University, Ghent, Belgium, in 1974 and 1980, respectively. He is 

currently emeritus professor of control engineering with the Faculty of 

Engineering, Ghent University. He is author/co-author of approximately 
500 publications in journals, books, and conference proceedings. He 

acted as an External Review Expert for several European Commission 

research programs and is one of the pioneers who produced the original 
concepts of predictive control during the 1980s. His teaching and 

research activities include model predictive control, autotuning and 

adaptive control, modeling and simulation, and system identification. 
His research interests are application-driven with many pilot 

implementations in technical and nontechnical systems, including 

chemical, steel, marine, mechatronic, semiconductor, power electronics, 
and biomedical systems.  

 

Isabela Birs is a Ph.D. student at the Technical University of Cluj-

Napoca, Romania and at Ghent University, Belgium. Her interests are 

related to the application of fractional- order calculus, vibration 

suppression and the nanomedical field.  

 

Cristina Muresan received the degree in control systems in 2007, and 

the Ph.D. in 2011 from Technical University of Cluj-Napoca, Romania. 
She is currently associate professor at the Technical University of Cluj-

Napoca, Automation Department, Romania. Since 2007, she has 

published over 100 papers and book chapters, amongst which 2 have 
been awarded by the Romanian government. She has been and currently 

is involved in more than 10 research grants, all dealing with 

multivariable and fractional order control. Her research interests include 
modern control strategies, such as predictive algorithms, robust 

nonlinear control, fractional order control, time delay compensation 

methods and multivariable systems.  
 

 

 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 9, No. 1, January 2020

48©2020 Int. J. Elec. & Elecn. Eng. & Telcomm.


