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Abstract—Integrating fabric intellectual property (IP) 

netlists in field programmable gate array (FPGA) 

development can be very time-consuming especially if the 

design complexity and density increased significantly and 

the integration is done manually. Another issue in most 

integration techniques available is that it does not have a 

dedicated fabric IP netlists generator which makes the 

integration more tedious especially if there are changes and 

iterations needed in the design development like changing 

the design density. This paper introduces a fabric IP netlist 

generator that uses a compiler-approach to fabric 

integration. The compiler automatically connects the IP 

blocks and generates a fabric IP netlist depending on the 

user-input parameters. This tool provides the flexibility of 

changing the fabric IP array sizes and the IPs to be 

connected depending on the specifications required. It 

enables designers to design large densities of fabric IPs and 

also speeds up the FPGA development.  

Index Terms—compiler, CDL netlist, fabric IP, FPGA, 

integration, IP, Verilog netlist 

I. INTRODUCTION 

Field-Programmable Gate Array (FPGA) is a type of 

integrated circuit which is designed to be programmed 

after manufacturing. Over the last decade, FPGAs have 

become one of the key digital circuit implementation 

media. The device's speed performance, area efficiency, 

and power consumption are remarkably shaped by 

FPGA's architecture. FPGA architecture is most 

commonly consist of an array of logic blocks, I/O pads, 

and routing channels [1]. These logic blocks are 

programmably interconnected to achieve certain desired 

functions or operations. These logic blocks are simply 

referred to as intellectual property (IP) core or IP blocks 

which are used as building blocks within an FPGA design. 

These IP blocks or IP cores are predesigned as well as 

pre-verified and are obtained from internal sources, or 

third parties and are combined on a single chip. FPGA 

core largely takes up the FPGA design which consist of 

the FPGA fabric [2]. 

FPGA's design complexity, in reality, is increasing 

more rapidly than the transistor count owing to the 
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performance-enhancing features in FPGAs. With the 

increasing design complexity and density, the integration 

time also takes longer to complete. The integration 

process is not a simple operation. Selecting the optimal IP 

size, lower dynamic power, and faster speed is a critical 

design decision. Design engineers have to developed new 

methodologies and techniques in order to keep pace with 

the levels of integration. These techniques have to 

manage the increased complexity inherent to these large 

chips [3], [4]. 

Most integration techniques used in companies are 

script-based automation which involves manually 

modifying these scripts for changes and iterations. Lattice 

Semiconductor Company, for example, uses integration 

methodology which involves modifying the many script-

based integration manually for the follow-on generation 

and port connections. Follow-on generation means new 

density for the same project or application [5]. 

One of the problems identified in the current 

integration techniques is that the designer must have a 

firm idea of the FPGA design floorplan before the 

integration takes place. Since the integration depends 

largely on the FPGA design floorplan, this technique is 

not desirable especially if the design abruptly changes to 

meet the desired specification. Similarly, the approach of 

compiler design used by the memory compiler can 

addressed the solution to this problem. Memory 

compilers can automatically instantiate the appropriate 

memory function based on the options the user choses. 

Current studies in the area of increasing FPGA 

densities discussed only on integrating each physical IP 

blocks on the final chip [6], [7]. These studies do not 

focus on integrating the basic of IP design which is the 

netlists of each IP blocks. Netlist integration is as 

important as integrating the physical representation of 

each IP block since the integrated netlists will be the 

basis of how the final integration of IPs on the chip will 

be executed [8]-[10].  

Harper J. et al. (2017) [11] in his paper stated that 

generating a file of the stitched system-on-chip (SOC) 

block specifies the characteristics and specifications of 

the final SOC design. The approach involves a user 

specified request to automatically stitch the SOC. The 

drawback, however, of this approach is that the user 

cannot have the freedom to choose which IP blocks will 

be connected and also the density of these IP blocks. 
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The current available design compilers in the industry 

caters mostly to memory design mainly because they 

have regular layout structures, are highly repetitive, and 

are easily scalable. Since fabric IPs are also highly 

repetitive with regular layout structures, the same concept 

on design-automation method will be applied [12], [13]. 

II. BACKGROUND 

The FPGA core is made up of combinations of FPGA 

fabric consisting of repetitive IP blocks which serve as 

the key building blocks of FPGA fabric. These key 

building blocks shown in Fig. 1 are the  Programmable 

Logic Cells (PLCs) and Common Interface Blocks (CIBs) 

[2]. 

Internally, fabric IP integration process is common to 

most industries which can be script-based automation or 

manually done. In Lattice' current process, for example, 

fabric IP netlist integration is done manually involving 

several script-based automations for integration for each 

IP blocks as reflected in Fig. 2. 

 
Fig. 1. FPGA fabric IPs. 

 
Fig. 2. Current netlist integration flow. 

In the current process, the integration team will require 

the gate-level netlist of each IP block, then integrates it 

based on the designed specification and floorplan or the 

estimated die size. For example, the designer of the 

Programmable Logic Controller (PLC) block will submit 

the gate-level netlist of the verified IP to the integration 

team and it will then process the netlist to achieve the 

designed specification of the IP array such as the 

multipliers and size of the array. The integration of the 

IPs are done manually and separately per IP which 

involves many scripts to be modified for the block 

connections [3]. 

During follow-on generation, defined as creating the 

same FPGA design with different density requirements, 

the scripts that were used to integrate each IP will be 

modified to achieve the density requirement. 

With the current fabric IP integration flow, several 

problems were identified that leads to this study. One of 

the major problem identified is the time-consuming 

integration of FPGA fabric IP netlists. The integration of 

FPGA fabric IP netlists takes several days to weeks to be 

completed simply because the scripts were manually 

modified when there are several iterations made for IPs 

correct functionality. Another problem identified is that 

before the fabric IP netlists can be integrated, the FPGA 

design density must be firmly defined in order to have an 

idea where the IPs will be placed and connected to other 

IPs. This methodology is not desirable especially if the 

design density abruptly changes or if new projects with 

different density will follow or the so-called follow-on 

generation. 

To address these problems, memory compiler strategy 

will be leveraged which automatically instantiates the 

appropriate memory function based on the options chosen 

by the user. Since fabric IP blocks are highly repetitive 

and have regular layout structures, a new methodology 

that leverages the compiler approach strategy is suitable 

to overcome the problem of the current process. The 

principle of connecting these IP blocks by abutment is 

also one of the basis of this study. 

III. METHODOLOGY 

A. Proposed Fabric IP Netlist Generation Flow 

The proposed fabric IP netlist generation leverages the 

compiler-approach strategy.  

The proposed methodology eliminates the manual 

modification of the scripts used for the integration of 

fabric IPs. It also eliminates the design density estimation 

since the user has the capability of changing the IP array 

size automatically. The output deliverables will be used 

by the PnR (place & route) as input for automatic 

placement of and integration of the fabric IPs. The 

proposed methodology is reflected in Fig. 3. 

 
Fig. 3. Proposed fabric IP netlist generation. 
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The user input parameters consist of the number of 

rows and columns which determine the PLC block array 

size to be generated. Since the PLC blocks dictate the 

height and width of the neighboring blocks in the chip, it 

will be used as the ratio reference to other IPs. The user 

input parameters also include the location of CIB block to 

be connected to the PLC array and other IPs to be 

connected. CIB blocks are always placed at the bottom of 

the PLC array and at the left and right most of the core. 

The whole fabric IP netlist generation proposed in this 

study begins through the establishment of the IP database 

consisting of the XML files namely, the configuration 

and architecture files. The configuration file defines the 

IP's port names, directions as well as the locations of each 

IP port in the physical representation. The architecture 

file, on the other hand, defines the connections of each IP 

port describing which port will be connected to which 

port. The architecture file contains the key information on 

how the IPs will be connected once the integration 

process takes place. These files serve as the database for 

the IPs' connectivity.  

After all the input parameters and base files are 

processed, the Verilog gate-level netlist file will be 

generated including the wrapper. The Verilog file will be 

converted to CDL (circuit description language) netlist 

file using v2cdl tool. The CDL file will then be released 

for the LVS (layout versus schematic) check. This file 

format is the acceptable format for LVS check which is 

the reason the generated Verilog file must be converted. 

B. Establishment of IP Configuration and Architecture 

Files 

XML files from the IP database will be read by the tool 

to identify the IP ports and its property settings. These 

predefined internal files are first established before the 

tool operation starts. The IP configuration files are 

predefined files which are obtained according to each IP. 

The information contained by IP configuration file is 

established from IP Verilog file and LEF file. IP Verilog 

file contains the IPs port names and directions. The LEF 

file, on the other hand, contains the locations as well as 

the direction of the IP ports in the physical layout. This 

file reflects the exact location of the IP ports thus, the 

port's location will be determined, whether on the left, 

right, top, or bottom part of the block. Some ports are 

located both left and right or top and bottom part of the IP 

block, in this case, the configuration file will capture it as 

“right/left” or “top/bot”.  

The same process/methodology will be used on parsing 

the information contained by the IP architecture file. The 

information is based on the “Conn File” or connectivity 

file obtained from the IP development flow. This file 

contains the IP port names and how these ports will be 

connected to which other IP ports. 

C. Generation of Top Configuration File 

The top configuration file is an intuitive way to capture 

how the IPs will be connected. This file is generated after 

the user input parameters are processed. After 

determining the IP array size, the “top.cfg” file will be 

generated. This file shows the configuration of the array 

which consists of the integrated IPs and the array number. 

A script-based automation is responsible for the 

generation of this file. If the user includes the CIB block 

in the connection or additional IPs in the connection, the 

integrated IPs will be reflected in the “top.cfg” file. CIBs 

are always placed at the bottom of PLC array and at the 

left and right most of the core. The additional IPs to be 

connected will be placed after the CIB connection since 

CIBs serves as the physical interface between PLC and 

other IP blocks. This file also helps the user to easily 

check if the generated array is accurate especially if the 

array involved is large. 

D. Verilog and CDL Netlist Generation 

Verilog netlists generation of the top module of the 

integrated IP blocks is the main focus of the netlist 

generator tool. The operation starts with the tool reading 

the internal input files of the IP blocks. The main Verilog 

netlist generation includes three stages namely: (1) 

building wires between ports, (2) building instances of 

each ports, and (3) building the wrapper of the integrated 

netlist.  

Connectivity of each ports which are reflected in the 

architecture file will be the bases of building the wires 

between the ports.  

The wire direction can be horizontal or vertical which 

can drive either east, west, north, or south. Fig. 4 shows 

the generation of the Verilog netlist. 

 
Fig. 4. Verilog netlist generation. 

Some of the ports in an IP block consists of several bits, 

thus instantiating them can be tedious if not grouped. The 

netlist generator will group the corresponding port buses 

and instantiate them as one. Each port in the IP 

configuration file will be instantiated to corresponding 

ports based on the connectivity of the ports reflected in 

the architecture file. The top module wrapper will then be 

built after the wires and instantiations are finished. 

Output Verilog netlist will be converted to equivalent 

Yes   
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CDL netlist format. This netlist will be the main output of 

the tool since it will be used for the LVS check. LVS 

check determines whether a particular integrated circuit 

layout corresponds to the original schematic or circuit 

diagram of a design. The CDL format will be generated 

through the use of the Cadence tool called “v2cdl” which 

converts the Verilog file to CDL file. During the 

conversion, the IP netlists of each IP block will be 

included on the final CDL file. The IP netlists are 

obtained from the development process of each IP block. 

These files contain the internal information of each IP 

block such as the length, width, and multiples of the 

transistors used.  

Also, the said file contains the technology used in the 

circuit design. All information from the design stage of 

the schematic of each IP block is captured in the IP netlist 

file. Fig. 5 shows the generation of the equivalent CDL 

netlist. 

 
Fig. 5. CDL netlist generation. 

IV. RESULTS 

IP database starts with the establishment of IP 

configuration and architecture files. The configuration 

file contains the IP's port name, direction, and location. 

The architecture file, on the other hand, contains the 

connection of each IP port which is based from the conn 

file obtained during the IP development process. The 

architecture file contains the key information on how the 

IP blocks will be connected. Sample content of these files 

are shown in Fig. 6. 

User-input parameter includes the size of the IP array 

which is determined by the number of rows and columns. 

The tool's usage will be reflected once the script runs 

which acts as a GUI for the user. Fig. 7 shows the user 

guide that will appear once the tool is started. “-r” and “-

c” represents the rows and columns to be inputted, “-d” 

represents the name of the module, “--cib” will determine 

the location of the CIB block to be connected to the PLC 

array, and “--ip” determines the IP block that will be 

added to the existing array combination.  

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Configuration and architecture files: (a) PLC configuration file 

(b) CIB configuration file (c) IP top architecture file. 

 
Fig. 7. Tool user guide. 
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(a) 

 
(b) 

 
(c) 

Fig. 8. Generated Top.cfg file for different test cases: (a) 6x6 PLC array 

(b) PLC-CIB array (c) PLC-CIB-PLC array. 

 
(a) 

 
(b) 

Fig. 9. Output Verilog netlist file: (a) Verilog wrapper (b) instantiated 

IP ports. 

 
Fig. 10. Output CDL netlist file. 

After the user inputs the required parameters, the tool 

will then generate, as reflected in Fig. 8, the “top.cfg” file 

which intuitively captures the connection of the IP blocks. 

Verilog netlist file and the CDL file as reflected in Fig. 9 

will also be generated. 

Fig. 10 reflects the generated equivalent netlist. The 

CDL file will be delivered for the LVS checking. 

 
Fig. 11. LVS Result. 

TABLE I: COMPARISON OF CURRENT AND PROPOSED METHODOLOGIES 

Comparison 
Current 

integration 
Compiler-approach 

Fabric Density Fixed Floorplan Flexible 

Development process 
Manually 

integrate IPs 

Automatically 

integrate IPs  

Macro development 
Time 

 24 hours 0.5 hours 

Dedicated fabric 

generator 
No Yes 

Limitations on IP size Yes No 

Follow-on generation 
Code 

modifications 

Base files 

modifications 

The generated output Verilog netlist file will be used 

as input for the next process of FPGA development which 

will automatically place and integrate the physical 

representation of the IP blocks. A script will be used to 

automatically place the IP blocks. If the script will result 

to an error, the input file delivered, which is the generated 

Verilog file, contains an error. This process also serves as 

verification to the integrity of the generated output netlist. 

If the script returns no error, the generated Verilog file is 

tested accurate. Another test performed to validate the 

accuracy of the generated output Verilog and CDL 

netlists is the LVS check. The output netlist of the 

integrated PLC array will be compared to the output file 

of the physical layout of the integrated PLC array. The 

result of the LVS check is shown in Fig. 11. 

Table I shows the comparison of the current to the 

proposed methodology. The development time reflected 

in Table I refers to PLC array. One of the advantages of 

the proposed methodology is its compiler capability 

which enables the user to flexibly change the size of the 

IP array based on the design specification density. The 

current process, on the other hand, based its density on 

the fixed design floorplan which, in case of design 

iterations, cannot automatically change the IP array size. 
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The proposed methodology is a decently dedicated fabric 

Generator while the current methodology does not have a 

dedicated fabric Generator since the integration is done 

manually per IP.  

During design changes and iterations, the current 

process’ integration code will be manually modified 

which consists of hundreds of lines and the characteristics 

to be changed will be manually looked for. The proposed 

process, on the other hand, will only change the base files 

base on the design specifications required.  

With the introduction of the compiler-approach fabric 

IP netlist generator developed in this study, the time 

needed for the development and integration of fabric IP 

netlist as summarized in Table II and shown in Fig. 12 

was greatly reduced. The overall time it takes for the 

integration of PLC array to finish takes only minutes 

compared to a day of integration using the current process. 

The integration time was greatly reduced by almost 

97.92%. For the PLC-CIB array, the integration time was 

reduced by 97.20%. For the PLC-CIB-PLC array, the 

integration time was reduced by 96.53%. 

TABLE II: SUMMARY OF FABRIC MACRO DEVELOPMENT 

Fabric macro development (time: day) 

Array 
Current 

integration 

Compiler-

approach 

Percent (%) 

reduced 

PLC 1 0.0208333 97.92% 

PLC-CIB 1.5 0.042 97.20% 

PLC-CIB-PLC 1.8 0.0625 96.53% 

V. CONCLUSIONS 

The methodology presented in this paper have been 

used and tested on a 40nm technology project of Lattice 

Semiconductor. In which the current integration process 

was also used. 

The researcher has concluded that the proposed 

dedicated fabric IP netlist generation flow with the 

generation of configuration and top architecture file can 

deliver the accurate Verilog and CDL files of the 

integrated IP blocks. It also has greatly improved the 

speed of fabric IP netlist integration and the flexibility of 

the FPGA design. The improvement on speed of 

integration will enable the designers to complete the 

project sooner than the scheduled time of completion. 

Using a lesser number of base files to be processed 

makes the integration faster since the tool will process 

fewer files. Also, using these base files will eliminate the 

need to manually modify the scripts every time new 

changes and iterations will follow. Moreover, the tool 

will automatically generate the connections of each IPs 

simultaneously which reduced its runtime to a 

significantly. The user also has the ability to change the 

size of the IP array depending on the desired design 

density and to follow-ons. In addition to this, the user can 

change the IPs to be connected to the existing array and 

the location of the IPs. 

Moreover, the improvement on the speed of integration 

will enable the other section of the FPGA development to 

adjust the timeline on the verification and audit checks. 
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