

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 181

A Fabric IP Netlist Generator for a Compiler-

Approach to Fabric Integration

Arcel R. Salem
1
, Erwil V. Pasia

2
, and Allenn C. Lowaton

1

1
MSU-IIT/EECE, Iligan City, Philippines

2
Lattice Semiconductor Corporation, Muntinlupa City, Philippines

Email: arcel.salem@g.msuiit.edu.ph; Erwil.Pasia@latticesemi.com; allenn.lowaton@g.msuiit.edu.ph

Abstract—Integrating fabric intellectual property (IP)

netlists in field programmable gate array (FPGA)

development can be very time-consuming especially if the

design complexity and density increased significantly and

the integration is done manually. Another issue in most

integration techniques available is that it does not have a

dedicated fabric IP netlists generator which makes the

integration more tedious especially if there are changes and

iterations needed in the design development like changing

the design density. This paper introduces a fabric IP netlist

generator that uses a compiler-approach to fabric

integration. The compiler automatically connects the IP

blocks and generates a fabric IP netlist depending on the

user-input parameters. This tool provides the flexibility of

changing the fabric IP array sizes and the IPs to be

connected depending on the specifications required. It

enables designers to design large densities of fabric IPs and

also speeds up the FPGA development. 

Index Terms—compiler, CDL netlist, fabric IP, FPGA,

integration, IP, Verilog netlist

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) is a type of

integrated circuit which is designed to be programmed

after manufacturing. Over the last decade, FPGAs have

become one of the key digital circuit implementation

media. The device's speed performance, area efficiency,

and power consumption are remarkably shaped by

FPGA's architecture. FPGA architecture is most

commonly consist of an array of logic blocks, I/O pads,

and routing channels [1]. These logic blocks are

programmably interconnected to achieve certain desired

functions or operations. These logic blocks are simply

referred to as intellectual property (IP) core or IP blocks

which are used as building blocks within an FPGA design.

These IP blocks or IP cores are predesigned as well as

pre-verified and are obtained from internal sources, or

third parties and are combined on a single chip. FPGA

core largely takes up the FPGA design which consist of

the FPGA fabric [2].

FPGA's design complexity, in reality, is increasing

more rapidly than the transistor count owing to the

Manuscript received February 4, 2018; revised December 25, 2018;

accepted December 25, 2018.
Corresponding author: Arcel R. Salem (email: arcel.salem@

g.msuiit.edu.ph).

performance-enhancing features in FPGAs. With the

increasing design complexity and density, the integration

time also takes longer to complete. The integration

process is not a simple operation. Selecting the optimal IP

size, lower dynamic power, and faster speed is a critical

design decision. Design engineers have to developed new

methodologies and techniques in order to keep pace with

the levels of integration. These techniques have to

manage the increased complexity inherent to these large

chips [3], [4].

Most integration techniques used in companies are

script-based automation which involves manually

modifying these scripts for changes and iterations. Lattice

Semiconductor Company, for example, uses integration

methodology which involves modifying the many script-

based integration manually for the follow-on generation

and port connections. Follow-on generation means new

density for the same project or application [5].

One of the problems identified in the current

integration techniques is that the designer must have a

firm idea of the FPGA design floorplan before the

integration takes place. Since the integration depends

largely on the FPGA design floorplan, this technique is

not desirable especially if the design abruptly changes to

meet the desired specification. Similarly, the approach of

compiler design used by the memory compiler can

addressed the solution to this problem. Memory

compilers can automatically instantiate the appropriate

memory function based on the options the user choses.

Current studies in the area of increasing FPGA

densities discussed only on integrating each physical IP

blocks on the final chip [6], [7]. These studies do not

focus on integrating the basic of IP design which is the

netlists of each IP blocks. Netlist integration is as

important as integrating the physical representation of

each IP block since the integrated netlists will be the

basis of how the final integration of IPs on the chip will

be executed [8]-[10].

Harper J. et al. (2017) [11] in his paper stated that

generating a file of the stitched system-on-chip (SOC)

block specifies the characteristics and specifications of

the final SOC design. The approach involves a user

specified request to automatically stitch the SOC. The

drawback, however, of this approach is that the user

cannot have the freedom to choose which IP blocks will

be connected and also the density of these IP blocks.

doi: 10.18178/ijeetc.8.3.181-187

mailto:Erwil.Pasia@latticesemi.com

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 182

The current available design compilers in the industry

caters mostly to memory design mainly because they

have regular layout structures, are highly repetitive, and

are easily scalable. Since fabric IPs are also highly

repetitive with regular layout structures, the same concept

on design-automation method will be applied [12], [13].

II. BACKGROUND

The FPGA core is made up of combinations of FPGA

fabric consisting of repetitive IP blocks which serve as

the key building blocks of FPGA fabric. These key

building blocks shown in Fig. 1 are the Programmable

Logic Cells (PLCs) and Common Interface Blocks (CIBs)

[2].

Internally, fabric IP integration process is common to

most industries which can be script-based automation or

manually done. In Lattice' current process, for example,

fabric IP netlist integration is done manually involving

several script-based automations for integration for each

IP blocks as reflected in Fig. 2.

Fig. 1. FPGA fabric IPs.

Fig. 2. Current netlist integration flow.

In the current process, the integration team will require

the gate-level netlist of each IP block, then integrates it

based on the designed specification and floorplan or the

estimated die size. For example, the designer of the

Programmable Logic Controller (PLC) block will submit

the gate-level netlist of the verified IP to the integration

team and it will then process the netlist to achieve the

designed specification of the IP array such as the

multipliers and size of the array. The integration of the

IPs are done manually and separately per IP which

involves many scripts to be modified for the block

connections [3].

During follow-on generation, defined as creating the

same FPGA design with different density requirements,

the scripts that were used to integrate each IP will be

modified to achieve the density requirement.

With the current fabric IP integration flow, several

problems were identified that leads to this study. One of

the major problem identified is the time-consuming

integration of FPGA fabric IP netlists. The integration of

FPGA fabric IP netlists takes several days to weeks to be

completed simply because the scripts were manually

modified when there are several iterations made for IPs

correct functionality. Another problem identified is that

before the fabric IP netlists can be integrated, the FPGA

design density must be firmly defined in order to have an

idea where the IPs will be placed and connected to other

IPs. This methodology is not desirable especially if the

design density abruptly changes or if new projects with

different density will follow or the so-called follow-on

generation.

To address these problems, memory compiler strategy

will be leveraged which automatically instantiates the

appropriate memory function based on the options chosen

by the user. Since fabric IP blocks are highly repetitive

and have regular layout structures, a new methodology

that leverages the compiler approach strategy is suitable

to overcome the problem of the current process. The

principle of connecting these IP blocks by abutment is

also one of the basis of this study.

III. METHODOLOGY

A. Proposed Fabric IP Netlist Generation Flow

The proposed fabric IP netlist generation leverages the

compiler-approach strategy.

The proposed methodology eliminates the manual

modification of the scripts used for the integration of

fabric IPs. It also eliminates the design density estimation

since the user has the capability of changing the IP array

size automatically. The output deliverables will be used

by the PnR (place & route) as input for automatic

placement of and integration of the fabric IPs. The

proposed methodology is reflected in Fig. 3.

Fig. 3. Proposed fabric IP netlist generation.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 183

The user input parameters consist of the number of

rows and columns which determine the PLC block array

size to be generated. Since the PLC blocks dictate the

height and width of the neighboring blocks in the chip, it

will be used as the ratio reference to other IPs. The user

input parameters also include the location of CIB block to

be connected to the PLC array and other IPs to be

connected. CIB blocks are always placed at the bottom of

the PLC array and at the left and right most of the core.

The whole fabric IP netlist generation proposed in this

study begins through the establishment of the IP database

consisting of the XML files namely, the configuration

and architecture files. The configuration file defines the

IP's port names, directions as well as the locations of each

IP port in the physical representation. The architecture

file, on the other hand, defines the connections of each IP

port describing which port will be connected to which

port. The architecture file contains the key information on

how the IPs will be connected once the integration

process takes place. These files serve as the database for

the IPs' connectivity.

After all the input parameters and base files are

processed, the Verilog gate-level netlist file will be

generated including the wrapper. The Verilog file will be

converted to CDL (circuit description language) netlist

file using v2cdl tool. The CDL file will then be released

for the LVS (layout versus schematic) check. This file

format is the acceptable format for LVS check which is

the reason the generated Verilog file must be converted.

B. Establishment of IP Configuration and Architecture

Files

XML files from the IP database will be read by the tool

to identify the IP ports and its property settings. These

predefined internal files are first established before the

tool operation starts. The IP configuration files are

predefined files which are obtained according to each IP.

The information contained by IP configuration file is

established from IP Verilog file and LEF file. IP Verilog

file contains the IPs port names and directions. The LEF

file, on the other hand, contains the locations as well as

the direction of the IP ports in the physical layout. This

file reflects the exact location of the IP ports thus, the

port's location will be determined, whether on the left,

right, top, or bottom part of the block. Some ports are

located both left and right or top and bottom part of the IP

block, in this case, the configuration file will capture it as

“right/left” or “top/bot”.

The same process/methodology will be used on parsing

the information contained by the IP architecture file. The

information is based on the “Conn File” or connectivity

file obtained from the IP development flow. This file

contains the IP port names and how these ports will be

connected to which other IP ports.

C. Generation of Top Configuration File

The top configuration file is an intuitive way to capture

how the IPs will be connected. This file is generated after

the user input parameters are processed. After

determining the IP array size, the “top.cfg” file will be

generated. This file shows the configuration of the array

which consists of the integrated IPs and the array number.

A script-based automation is responsible for the

generation of this file. If the user includes the CIB block

in the connection or additional IPs in the connection, the

integrated IPs will be reflected in the “top.cfg” file. CIBs

are always placed at the bottom of PLC array and at the

left and right most of the core. The additional IPs to be

connected will be placed after the CIB connection since

CIBs serves as the physical interface between PLC and

other IP blocks. This file also helps the user to easily

check if the generated array is accurate especially if the

array involved is large.

D. Verilog and CDL Netlist Generation

Verilog netlists generation of the top module of the

integrated IP blocks is the main focus of the netlist

generator tool. The operation starts with the tool reading

the internal input files of the IP blocks. The main Verilog

netlist generation includes three stages namely: (1)

building wires between ports, (2) building instances of

each ports, and (3) building the wrapper of the integrated

netlist.

Connectivity of each ports which are reflected in the

architecture file will be the bases of building the wires

between the ports.

The wire direction can be horizontal or vertical which

can drive either east, west, north, or south. Fig. 4 shows

the generation of the Verilog netlist.

Fig. 4. Verilog netlist generation.

Some of the ports in an IP block consists of several bits,

thus instantiating them can be tedious if not grouped. The

netlist generator will group the corresponding port buses

and instantiate them as one. Each port in the IP

configuration file will be instantiated to corresponding

ports based on the connectivity of the ports reflected in

the architecture file. The top module wrapper will then be

built after the wires and instantiations are finished.

Output Verilog netlist will be converted to equivalent

Yes

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 184

CDL netlist format. This netlist will be the main output of

the tool since it will be used for the LVS check. LVS

check determines whether a particular integrated circuit

layout corresponds to the original schematic or circuit

diagram of a design. The CDL format will be generated

through the use of the Cadence tool called “v2cdl” which

converts the Verilog file to CDL file. During the

conversion, the IP netlists of each IP block will be

included on the final CDL file. The IP netlists are

obtained from the development process of each IP block.

These files contain the internal information of each IP

block such as the length, width, and multiples of the

transistors used.

Also, the said file contains the technology used in the

circuit design. All information from the design stage of

the schematic of each IP block is captured in the IP netlist

file. Fig. 5 shows the generation of the equivalent CDL

netlist.

Fig. 5. CDL netlist generation.

IV. RESULTS

IP database starts with the establishment of IP

configuration and architecture files. The configuration

file contains the IP's port name, direction, and location.

The architecture file, on the other hand, contains the

connection of each IP port which is based from the conn

file obtained during the IP development process. The

architecture file contains the key information on how the

IP blocks will be connected. Sample content of these files

are shown in Fig. 6.

User-input parameter includes the size of the IP array

which is determined by the number of rows and columns.

The tool's usage will be reflected once the script runs

which acts as a GUI for the user. Fig. 7 shows the user

guide that will appear once the tool is started. “-r” and “-

c” represents the rows and columns to be inputted, “-d”

represents the name of the module, “--cib” will determine

the location of the CIB block to be connected to the PLC

array, and “--ip” determines the IP block that will be

added to the existing array combination.

(a)

(b)

(c)

Fig. 6. Configuration and architecture files: (a) PLC configuration file

(b) CIB configuration file (c) IP top architecture file.

Fig. 7. Tool user guide.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 185

(a)

(b)

(c)

Fig. 8. Generated Top.cfg file for different test cases: (a) 6x6 PLC array

(b) PLC-CIB array (c) PLC-CIB-PLC array.

(a)

(b)

Fig. 9. Output Verilog netlist file: (a) Verilog wrapper (b) instantiated

IP ports.

Fig. 10. Output CDL netlist file.

After the user inputs the required parameters, the tool

will then generate, as reflected in Fig. 8, the “top.cfg” file

which intuitively captures the connection of the IP blocks.

Verilog netlist file and the CDL file as reflected in Fig. 9

will also be generated.

Fig. 10 reflects the generated equivalent netlist. The

CDL file will be delivered for the LVS checking.

Fig. 11. LVS Result.

TABLE I: COMPARISON OF CURRENT AND PROPOSED METHODOLOGIES

Comparison
Current

integration
Compiler-approach

Fabric Density Fixed Floorplan Flexible

Development process
Manually

integrate IPs

Automatically

integrate IPs

Macro development
Time

 24 hours 0.5 hours

Dedicated fabric

generator
No Yes

Limitations on IP size Yes No

Follow-on generation
Code

modifications

Base files

modifications

The generated output Verilog netlist file will be used

as input for the next process of FPGA development which

will automatically place and integrate the physical

representation of the IP blocks. A script will be used to

automatically place the IP blocks. If the script will result

to an error, the input file delivered, which is the generated

Verilog file, contains an error. This process also serves as

verification to the integrity of the generated output netlist.

If the script returns no error, the generated Verilog file is

tested accurate. Another test performed to validate the

accuracy of the generated output Verilog and CDL

netlists is the LVS check. The output netlist of the

integrated PLC array will be compared to the output file

of the physical layout of the integrated PLC array. The

result of the LVS check is shown in Fig. 11.

Table I shows the comparison of the current to the

proposed methodology. The development time reflected

in Table I refers to PLC array. One of the advantages of

the proposed methodology is its compiler capability

which enables the user to flexibly change the size of the

IP array based on the design specification density. The

current process, on the other hand, based its density on

the fixed design floorplan which, in case of design

iterations, cannot automatically change the IP array size.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 186

The proposed methodology is a decently dedicated fabric

Generator while the current methodology does not have a

dedicated fabric Generator since the integration is done

manually per IP.

During design changes and iterations, the current

process’ integration code will be manually modified

which consists of hundreds of lines and the characteristics

to be changed will be manually looked for. The proposed

process, on the other hand, will only change the base files

base on the design specifications required.

With the introduction of the compiler-approach fabric

IP netlist generator developed in this study, the time

needed for the development and integration of fabric IP

netlist as summarized in Table II and shown in Fig. 12

was greatly reduced. The overall time it takes for the

integration of PLC array to finish takes only minutes

compared to a day of integration using the current process.

The integration time was greatly reduced by almost

97.92%. For the PLC-CIB array, the integration time was

reduced by 97.20%. For the PLC-CIB-PLC array, the

integration time was reduced by 96.53%.

TABLE II: SUMMARY OF FABRIC MACRO DEVELOPMENT

Fabric macro development (time: day)

Array
Current

integration

Compiler-

approach

Percent (%)

reduced

PLC 1 0.0208333 97.92%

PLC-CIB 1.5 0.042 97.20%

PLC-CIB-PLC 1.8 0.0625 96.53%

V. CONCLUSIONS

The methodology presented in this paper have been

used and tested on a 40nm technology project of Lattice

Semiconductor. In which the current integration process

was also used.

The researcher has concluded that the proposed

dedicated fabric IP netlist generation flow with the

generation of configuration and top architecture file can

deliver the accurate Verilog and CDL files of the

integrated IP blocks. It also has greatly improved the

speed of fabric IP netlist integration and the flexibility of

the FPGA design. The improvement on speed of

integration will enable the designers to complete the

project sooner than the scheduled time of completion.

Using a lesser number of base files to be processed

makes the integration faster since the tool will process

fewer files. Also, using these base files will eliminate the

need to manually modify the scripts every time new

changes and iterations will follow. Moreover, the tool

will automatically generate the connections of each IPs

simultaneously which reduced its runtime to a

significantly. The user also has the ability to change the

size of the IP array depending on the desired design

density and to follow-ons. In addition to this, the user can

change the IPs to be connected to the existing array and

the location of the IPs.

Moreover, the improvement on the speed of integration

will enable the other section of the FPGA development to

adjust the timeline on the verification and audit checks.

ACKNOWLEDGMENT

The authors would like to thank the DOST-ERDT

program for the fund support in conducting this study;

USAID-STRIDE and DOST-PCIEERD for the IC design

tools. Also, the Lattice Semiconductor Inc. Philippines

for the opportunity to work on this paper. Also to the IP

Productization, Methodology and Quality team and

Integration team for the guidance while conducting this

study.

REFERENCES

[1] R. Saleh, S. Wilton, S. Mirabbasi, et al., “System-on-chip: Reuse

and integration,” Proc. of the IEEE, vol. 94, no. 6, pp. 1050-1069,

2006.

[2] FPGA Design Guide, (Version 7.2), Lattice Semiconductor
Corporation, 2008.

[3] R. Rajsuman, System-on-Chip Design and Test, Norwood, USA:

Artech House, Inc., 2000.

[4] L. Yang, S. Gurumani, D. Chen, and K. Rupnow, “Behavioral-

level IP integration in high-level synthesis,” in Proc. Int. Conf. on
Field Programmable Technology (ICFPT2015), 2015.

[5] “Ecp5 product family qualification summary,” Lattice
Semiconductor Corporation, August 2016.

[6] I. Kuon, A. Egier, and J. Rose, “Design, layout and verification of

an FPGA using automated tools,” in Proc. ACM/SIGDA 13th Int.
Symposium on the Field-Programmable Gate Arrays, February

2005, pp. 215-226.

[7] S. Wu, X. Zheng, Z. Gao, and X. He, “A 65nm embedded low

power SRAM compiler,” in Proc. 13th Int. Symposium on Circuits

and Systems (ISCAS2007), April 2010, pp. 3756-3759.

[8] R. Goldman, et al., “Synopsys' educational generic memory

compiler,” in Proc. 10th European Workshop on Microelectronics
Education, 2014, pp. 89-92.

[9] P. Coussy, A. Baganne, and E. Martin, “A design methodology for

integrating IP into SoC systems,” in Proc. IEEE 2002 Custom
Integrated Circuits Conf. 2002, pp. 307-310.

[10] M. S. Kim, C. G. Kim, S. D. Kim, and J. L. Gaudiot, “Design of
configurable I/O Pin control block for improving reusability in

multimedia SoC platforms,” Multimedia Tools and Applications,

vol. 74, no. 20, pp. 9055-9066, 2013.

[11] J. Harper, et al., “Automating system on chip customized design

integration, specification, and verification through a single

integrated service,” U.S. Patent Application Publication US
20170116355A1, April 27, 2017.

[12] M. Cheng and N. Bai, “An efficient and flexible embedded
memory IP compiler,” in Proc. Int. Conf. on Cyber-Enabled

Distributed Computing and Knowledge Discovery, 2012, pp. 268-

273.

[13] M. R. Guthaus, J. E. Stine, S. Ataei, et al., “OpenRAM: An open-

source memory compiler,” in Proc. IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD), 2016, pp. 1-6.

Arcel R. Salem

received her bachelor's
degree in Electronics Engineering (BSECE) at

Mindanao State University-Main Campus,

Marawi City, Philippines, in 2011. She is
currently in her 2nd

year of Master's degree in

Electrical Engineering major in

Microelectronics in Mindanao State
University-Iligan Institute of Technology,

Iligan City, Philippines. She had her

internship for her master's thesis at Lattice
Semiconductor Philippines. Her research interests includes, RTL design,

FPGA design, IC design and layout.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 187

Erwil V. Pasia received his bachelor’s
degrees in Physics and in Computer Science

(BSComSci) at Ateneo de Manila University

(AdMU), Manila City, Philippines, in 2004.
He is currently managing IP Productization,

Methods, and Quality in Lattice

Semiconductor Inc., a team he pioneered in
2012. He previously work at Canon

Information Technologies Philippines as

design verification and design engineer. His
work interests includes ASIC and FPGA Designs, generation of

secondary views of IP designs, develop efficient processes for faster

integration and promote IP reuse.

Prof. Allenn C. Lowaton received his
bachelor's degree in Electronics Engineering

(BSECE) at Mindanao State University-Iligan

Institute of Technology, Iligan City (MSU-
IIT), Philippines, in 2008 and graduated Cum

Laude. He finished his Master's degree in

Electrical Engineering major in Integrated
Circuits Design at National Taipei University,

New Taipei City, Taiwan ROC in 2012 with a

GPA of 4/4.
He had worked as a product engineer in Taiyo Yuden Philippines,

Mactan Eco-Processing Zone at Lapu-Lapu City, Cebu from December

2008 to August 2009. Presently, he is a full-time assistant professor IV
at the Electrical, Electronics and Computer Engineering (EECE)

Department and is currently the program head of Electronics

Engineering at MSU-IIT.

