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Abstract—The variable sample size (VSS) X  chart is one of 
the adaptive control charts that gains prestige in the field of 
statistical process control during the last decade. 

Traditionally, the design of the VSS X  chart is based on 
the assumption of normally distributed data or 
measurements. However, in many real-life applications, the 
normality assumption may be violated. This paper 
investigates the effects of skewed distributions on the 

performance of the VSS X  chart. Two VSS schemes are 

considered in this paper, i.e. (i) the small sample size (
S

n ) or 

(ii) the large sample size (
L

n ), is predetermined for the first 

sample (n1). Monte Carlo simulation is adopted to evaluate 

the run-length performances of these two VSS X  schemes 
for different levels of skewness corresponding to Weibull, 
lognormal and gamma distributions. The results show that 

the in-control average run lengths for the VSS X  chart 

with n1 = S
n  are closer to the desired value and have a lower 

false alarm rate compared to that of the VSS X  chart with 

n1 = L
n .  

Index Terms—average run length, skewed distribution, 

standard deviation of the run length, statistical process 

control, variable sample size X  chart 

I. INTRODUCTION 

Statistical Process Control (SPC), which is a tool of 
quality control, adopts statistical methods to control and 
monitor manufacturing and services processes. This will 
ensure efficient process and high quality products with 
less scrap being produced. For example, SPC is 
successfully implemented in short-run job-shop manu-
facturing environment, semiconductor manufacturing and 
improving suppliers’ process [1]. Control chart is one of 
the key tools used in SPC.  

Variable Sample Size (VSS) chart is one of the 
adaptive charts that allows sample size n to vary in each 
sampling interval. Prabhu et al. [2] and Costa [3] are the 

pioneers in proposing the VSS X  chart. Markov chain 
approach is employed to study the run-length properties 
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of the VSS X  chart in both papers. Costa [3] showed 

that the VSS X  chart is superior in detecting certain 

ranges of shifts compared to the Shewhart X  chart, 

variable sampling interval (VSI) X  chart, X  chart with 
supplementary run rules, exponentially weighted moving 
average (EWMA) chart and cumulative sum (CUSUM) 
chart. The VSS weighted loss function CUSUM chart 
proposed by Zhang and Wu [4], is favorable to achieve a 
high capability of detecting process variations. Kooli and 
Limam [5] claimed that greater cost savings achieved for 
the VSS np chart compared to the static charts. Also, the 
VSS EWMA and VSS EWMA median charts suggested 
by Amiri et al. [6] and Zhang and Song [7], respectively, 
outperform the fixed-sample-size EWMA chart. To 
monitor the Coefficient of Variation (CV), the VSS CV 
chart proposed by Castagliola et al. [8] outperforms the 
Shewhart CV, synthetic CV, and VSI CV charts for some 
ranges of shifts in the CV. By means of a linearly 
covariate error model, Hu et al. [9] found that the VSS 

X  chart is significantly affected by measurement errors. 

Recently, Teoh et al. [10] optimally designed the VSS X  
chart based on Median Run Length (MRL) and expected 
MRL. 

To date, the VSS X  chart is designed based on the 
assumption that the distribution is normal. In many real 

applications, this assumption may not be true for the 

processes in reliability engineering, automobiles, 

semiconductor, cutting tool wear and mechanical [11], 

[12]. A control chart constructed with normality 

assumption, produces a higher false alarm rate in such a 

skewed population. This false alarm rate increases as the 

skewness increases [13]. This is due to the difference of 

the variability pattern between the normal and skewed 

distributions. From the economic point of view, Hsieh 

and Chen [14] found that the cost saving of a process 

decreases as the skewness increases. In such a situation, 

practitioners’ confidence in using control charts for 

process monitoring will decrease. Therefore, the aim of 

this paper is to investigate the effects of skewed 

distributions on the performance of the VSS X  chart. 
Many researchers, to name a few, Chang and Bai [15], 

Chen and Cheng [16], Khoo et al. [17], Teh and Khoo 

[18], and Teoh et al. [19] have contributed to the area of 

control charts for skewed populations.  
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This paper is organized as follows. Section II 

demonstrates the operation of the VSS X  chart and its 
run-length properties. Section III describes the statistical 
properties of the Weibull, lognormal and gamma 
distributions. The in-control and out-of-control 

performances of the VSS X  chart under these three 
skewed distributions are evaluated in Section IV. 
Concluding remarks are drawn in Section V. 

II. THE VARIABLE SAMPLE SIZE X  CHART 

Assume that the quality characteristic X follows an 

independent normal 2

0 0( , )N    distribution, where 
0  

and 2

0  are the in-control mean and variance, 

respectively. The ith sample statistic is equal to 

  0

0

( )
~ ,  1

i i

i i

X n
Z N n







  

where 
,1

in

i i j ij
X X n


 , for i   1, 2, ⋯, j  1, 2, ⋯, 

in  and  ,  i S Ln n n . Here, 
Sn  and 

Ln  denote the small 

and large sample sizes, respectively. Also, δ in (1) refers 

to the magnitude of mean shifts in multiples of standard 

deviation units. When the process is in-control (δ = 0), 

iZ  is a standard normal N (0, 1) distribution.  

Fig. 1 shows the schematic representation of the VSS 

X  chart’s operation. In Fig. 1, W (>0) and  K W  are 

the warning and control limits, respectively. There are 

three main regions for the VSS X  chart, i.e. the out-of-

control region ooc( {( ,  ) ( ,  )})I K K     , the 

warning region ( {[ ,  ) ( ,  ]})LI K W W K    , and the 

central region  [ ,  ]SI W W  .  

 

Fig. 1. Schematic representative of the VSS X  chart’s operation. 

By referring to Fig. 1, the VSS X  chart can be 
implemented as follows: 

(i) Take a sample of size 
in . 

(ii) Compute the ith sample statistic as in (1). 

(iii) Declare the process as in-control if i SZ I ; thus 

1i Sn n   is the size for the next sample. 

(iv) Declare the process as in-control if 
i LZ I ; thus 

1i Ln n   is the size for the next sample. 

(v) Declare the process as out-of-control if 
oociZ I , 

then investigate and eliminate potential assignable 
cause(s).  

The Markov chain approach is used to characterize the 

run-length properties of the VSS X  chart when the 

underlying distribution is normal. The matrix of transient 

probabilities Q for the VSS X  chart is [3] 

( ) ( )

( ) ( )

S S L S

S L L L

p n p n

p n p n

 
  
 

Q                           (2) 

where the probabilities ( )S ip n  and ( )L ip n  are equal to 

   ( )S i i ip n W n W n                 (3) 

and 

    ( )L i i ip n W n K n          

   i iK n W n                      (4) 

respectively. Here, ( )   in (3) and (4), is the cumulative 

distribution function of N (0, 1).  

The average run length (ARL) and the standard 

deviation of the run length (SDRL) can be obtained as 

 
1

ARL T 
 q I Q 1                     (5) 

and 

     
2 2SDRL 2 ARL ARLT 

   q I Q Q1       (6) 

respectively, where q is the initial probability vector, I is 

the identity matrix and 1 is the column vector of ones. If 

1 Sn n , then (1,  0)Tq ; while if 
1 Ln n , then 

(0,  1)Tq . Here, 
1n  is the size of the first sample. The 

average sample size (ASS) of the VSS X  chart 

corresponds to a process functioning over an infinite 

horizon. Castagliola et al. [8] showed that the ASS is 

equal to  

 1

1ASS ( ,  ,  )
0

S Ln n n   
  

 

q
R                   (7) 

where  1 ,  S Ln n n , matrix R for 
1 Sn n  or 

1 Ln n  can 

be obtained as  

1 1 1

( ) ( ) 1 0

1 ( ) ( ) 1 ( ) ( ) 1

L S L L

S S L S S L L L

p n p n

p n p n p n p n

 
 

  
      

R    (8) 

or 

( ) 1 ( ) 0

1 1 1

1 ( ) ( ) 1 ( ) ( ) 1

S S S L

S S L S S L L L

p n p n

p n p n p n p n

 
 

  
      

R    (9) 

respectively. 

III. STATISTICAL PROPERTIES OF THE WEIBULL, 

LOGNORMAL AND GAMMA DISTRIBUTIONS 

Since Weibull, lognormal and gamma distributions 

provide a wide variety of shapes from approximately 

symmetric to highly skewed [20], they are considered in 

this study. Let 0   and 0   be the scale and shape 

parameters, respectively, for the Weibull distribution. 

Prabhakar et al. [21] demonstrated that the skewness (γ) 

for the Weibull distribution is equal to  
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        
                 
        


     
         
      

   (10) 

where ( )   is the gamma function. For convenience, we 

choose 1   throughout this paper. This is because the 

skewness in (10) only depends on  . The in-control 

mean (
,0W ) and standard deviation (

,0W ) for Weibull 

distribution are acquired as [17]  

 ,0 1 1W                            (11) 

and 

2

,0

2 1
1 1W

 

    
         

    
              (12) 

respectively. 

Let   and LN  be the location and scale parameters, 

respectively, for the lognormal distribution. Blackwood 

[22] showed that the skewness (γ) for the lognormal 

distribution is obtained as 

 
2 2
LN LN2 1e e

                          (13) 

Since the skewness in (13) does not involve  , 0   

is set throughout this paper. The 
,0W  and 

,0W  for 

lognormal distribution are acquired as [17]  

2
LN

1

2
,0W e



                              (14) 

and 

 
2 2
LN LN

,0 1W e e
                       (15) 

respectively.  

Let α be the shape parameter for the gamma 

distribution. By referring to Bowman and Shenton [23], 

the skewness (γ) for the gamma distribution is 

2



                              (16) 

The ,0W  and ,0W  for gamma distribution are acquired 

as [17] 

,0W                                   (17) 

and 

,0W                                  (18) 

respectively. 

IV. PERFORMANCE STUDIES  

Table I, Table II, and Table III investigate the in-
control ARL (ARL0) and in-control SDRL (SDRL0) 

performances of the VSS X  chart with 
1 Sn n  and 

1 Ln n , when the underlying distributions are Weibull, 

lognormal, and gamma, respectively. The chart’s 

parameters ( Sn , Ln , W, K) of the VSS X  chart which are 

optimized under normal distribution, are applied here to 

simulate the ARLs and SDRLs of the VSS X  chart 
under Weibull, lognormal, and gamma distributions. 
Monte-Carlo simulation programs written in Statistical 
Analysis System (SAS) software are employed to obtain 
these ARLs and SDRLs. 

TABLE I: THE (ARL0, SDRL0) VALUES OF THE VSS X  CHART 

THE UNDERLYING D WEIBULL 

β γ 
n1 = nS n1 = nL 

(ARL0, SDRL0) (ARL0, SDRL0) 

3.6024 0.0 (266.48, 265.30) (320.67, 317.52) 

2.2156 0.5 (247.26, 244.74) (223.86, 221.86) 

1.5639 1.0 (194.89, 193.19) (131.29, 130.61) 

1.2111 1.5 (148.49, 148.62) (91.44, 90.48) 

1.0000 2.0 (116.42, 114.93) (71.35, 70.40) 

0.8632 2.5 (95.93, 95.88) (59.57, 58.75) 

0.7686 3.0 (82.63, 81.72) (53.13, 52.24) 

TABLE II: THE (ARL0, SDRL0) VALUES OF THE VSS X  CHART WHEN 

THE UNDERLYING D LOGNORMAL 

σLN γ 
n1 = nS n1 = nL 

(ARL0, SDRL0) (ARL0, SDRL0) 

0.0003 0.0 (249.40, 247.85) (248.18, 248.77) 

0.1641 0.5 (227.82, 226.90) (188.72, 185.90) 

0.3143 1.0 (181.38, 181.49) (123.74, 122.11) 

0.4435 1.5 (140.42, 140.33) (91.14, 90.43) 

0.5514 2.0 (112.69, 111.79) (75.64, 74.43) 

0.6409 2.5 (95.05, 94.65) (66.67, 65.63) 

0.7156 3.0 (84.38, 84.07) (61.02, 59.91) 

TABLE III: THE (ARL0, SDRL0) VALUES OF THE VSS X  CHART WHEN 

THE UNDERLYING D GAMMA 

α γ 
n1 = nS n1 = nL 

(ARL0, SDRL0) (ARL0, SDRL0) 

40000 0.0 (249.54, 250.22) (250.82, 249.23) 

16.0000 0.5 (231.83, 230.23) (194.49, 193.14) 

4.0000 1.0 (189.74, 188.42) (125.47, 124.58) 

1.7778 1.5 (147.26, 146.33) (91.23, 90.31) 

1.0000 2.0 (116.42, 114.93) (71.35, 70.40) 

0.6400 2.5 (95.69, 95.04) (58.36, 57.20) 

0.4444 3.0 (82.60, 81.67) (51.33, 50.23) 

 

By means of the formulae shown in Section II, the 

chart’s parameters (
Sn , 

Ln , W, K) are obtained by 

minimizing the out-of-control ARL (ARL1) at the desired 

mean shift opt 1.0  , subject to the desired ARL0=250 

and desired in-control ASS = 10. From the optimization 

programs written in ScicosLab, we obtain (
Sn , 

Ln , W, K) 

=(9, 22, 1.744, 2.878) and (2, 31, 1.096, 2.878) for the 

VSS X  chart with 
1 Sn n and 

1 Ln n , respectively. The 

corresponding (ARL0, SDRL0)=(250.0, 249.50) are 

obtained for both the VSS schemes under normal 

distribution. These chart’s parameters ( Sn , Ln , W, K) are 

used to compute all the values of in-control and out-of-

control ARL and SDRL displayed in Table I to Table 

VIII. For example, by using (
Sn , 

Ln , W, K)=(9, 22, 1.744, 

2.878) for the VSS X  chart with 
1 Sn n , we obtain 

(ARL0, SDRL0) = (247.26, 244.74) and (95.93, 95.88), 

respectively, for γ   {0.5, 2.5} when the underlying 

distribution is Weibull (see Table I). Similarly, when γ = 

0.5 and the underlying distribution is lognormal, (ARL1, 

SDRL1)=(31.58, 30.76) and (1.41, 0.58) (see Table VII) 
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are acquired for the VSS X  chart with 
1 Sn n  for   

{0.25, 1.00}, respectively. These values of ARL1 and 

SDRL1 are also computed by using the chart’s parameters 

(
Sn , 

Ln , W, K) = (9, 22, 1.744, 2.878).  

The skewness γ{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} are 
considered in Table I to Table III. For a given γ, the 

parameters β, LN , and α shown in Table I to Table III, 

respectively, are uniquely determined by means of the 
Mathematica software. The distribution is approximately 
symmetric when γ=0. The skewness γ  {0.5, 1.0} 
represent low levels of skewness; γ {1.5, 2.0} represent 
moderate levels of skewness; while γ  {2.5, 3.0} 
represent high levels of skewness. A shift in the process 
mean for a skewed distribution is obtained as 

,1 ,0 ,0W W W    . For an in-control process, δ=0; while 

for an out-of-control process, δ   0. 

From Table I to Table III, when γ=0, the (ARL0, 

SDRL0) values for the three skewed distribution are 

generally close to the desired (ARL0, SDRL0) = (250.0, 

249.50) under normal distribution. This is expected as the 

Weibull, lognormal, and gamma distributions are 

approximately symmetric when γ=0. As γ increases, the 

(ARL0, SDRL0) values under Weibull, lognormal, and 

gamma distributions, deviate significantly from that of 

those under normal distribution. For example, as 

mentioned in previous paragraph, the desired (ARL0, 

SDRL0) values for the VSS X  chart with n1=nS is (250.0, 

249.50) when the underlying distribution is normal. For 

Weibull distribution, these values decrease to (ARL0, 

SDRL0) = (247.26, 244.74) when γ=0.5 (see Table I) and 

further decrease to (ARL0, SDRL0) = (116.42, 114.93) 

when γ=2.0 (see Table I). For lognormal distribution, 

these values decrease to (ARL0, SDRL0)=(227.82, 226.90) 

when γ=0.5 (see Table II) and reduce significantly to 

(ARL0, SDRL0)=(112.69, 111.79) when γ=2.0 (see Table 

II). While for gamma distribution, these values decrease 

to (ARL0, SDRL0)=(231.83, 230.23) when γ=0.5 (see 

Table III) and further reduce to (ARL0, SDRL0)=(116.42, 

114.93) when γ=2.0 (see Table III). This single example 

shows that the (ARL0, SDRL0) values under skewed 

distributions decrease as γ increases. From this single 

example, we observe that the performance of the VSS X  

chart under lognormal distribution is the worst among all 

the three skewed distributions. Low values of ARL0 

indicate that the false alarm rate for the VSS X  chart 

under a skewed distribution is high. This false alarm rate 

increases as γ increases. This is an unfavorable 

performance. 

Teoh et al. [10] revealed that the VSS X  chart with 

1 Ln n  outperforms the VSS X  chart with 1 Sn n when 

the underlying distribution is normal. However, when the 
distribution is skewed, it is obvious that the (ARL0, 

SDRL0) values for the VSS X  chart with 1 Ln n  are 

lower than those of the VSS X  chart with 1 Sn n  (see 

Table I to Table III). This suggests that the in-control 

performance for the VSS X  chart with 
1 Ln n  is worse 

than that of the VSS X  chart with 1 Sn n . For example, 

(ARL0, SDRL0) = (231.83, 230.23) (see Table III) for the 

VSS X  chart with 
1 Sn n  under gamma distribution, are 

closer to the desired (ARL0, SDRL0) = (250.0, 249.50) 
under normal distribution, as opposed to (ARL0, SDRL0) 

= (194.49, 193.14) (see Table III) for the VSS X  chart 

with 
1 Ln n . 

Table IV and Table VIII present the out-of-control 

ARL (ARL1) and out-of-control SDRL (SDRL1) values 

for the VSS X  chart with 
1 Sn n  and 

1 Ln n , when the 

underlying distributions are normal, Weibull, and 

lognormal. Due to space constraints, the results for 

gamma distribution are excluded from this paper. 

However, these results can be obtained from the 

corresponding author. The trend and conclusion for the 

results obtained when the underlying distribution is 

gamma, are quite similar with that of the Weibull 

distribution. In Table V to Table VIII, we consider γ   

{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and     {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00}.  

From Table V and Table VII, when γ=0, the (ARL1, 

SDRL1) values for the Weibull and lognormal 

distribution are generally close to the (ARL1, SDRL1) 

under normal distribution (see Table IV). When γ 

increases, the difference between the (ARL1, SDRL1) 

values under Weibull distribution (see Tables V and VI) 

or lognormal distribution (see Tables VII and VIII) and 

that of the normal distribution (see Table IV) increases, 

especially for small and moderate  (  0.75).  

TABLE IV: THE (ARL1, SDRL1) VALUES OF THE VSS X  CHART WHEN 

THE UNDERLYING D NORMAL 

δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

0.25 (46.95, 46.21) (29.34, 30.31) 

0.50 (6.23, 5.09) (2.41, 2.16) 

0.75 (2.31, 1.24) (1.11, 0.36) 

1.00 (1.52, 0.63) (1.00, 0.06) 

1.50 (1.05, 0.22) (1.00, 0.00) 

2.00 (1.00, 0.03) (1.00, 0.00) 

TABLE V: THE (ARL1, SDRL1) VALUES OF THE VSS X  CHART FOR 

   {0.0, 0.5, 1.0} WHEN THE UNDERLYING D WEIBULL 

β γ δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

3.6024 0.0 

0.25 (47.63, 46.53) (29.67, 30.70) 

0.50 (6.21, 5.04) (2.40, 2.15) 

0.75 (2.30, 1.23) (1.11, 0.36) 

1.00 (1.51, 0.63) (1.00, 0.06) 

1.50 (1.05, 0.22) (1.00, 0.00) 

2.00 (1.00, 0.03) (1.00, 0.00) 

2.2156 0.5 

0.25 (40.52, 39.62) (27.26, 28.13) 

0.50 (6.25, 5.10) (2.43, 2.20) 

0.75 (2.32, 1.25) (1.11, 0.35) 

1.00 (1.52, 0.63) (1.00, 0.05) 

1.50 (1.05, 0.21) (1.00, 0.00) 

2.00 (1.00, 0.01) (1.00, 0.00) 

1.5639 1.0 

0.25 (35.55, 34.69) (25.52, 26.28) 

0.50 (6.32, 5.22) (2.46, 2.27) 

0.75 (2.34, 1.26) (1.10, 0.34) 

1.00 (1.54, 0.62) (1.00, 0.04) 

1.50 (1.04, 0.20) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 
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TABLE VI: THE (ARL1, SDRL1) VALUES OF THE VSS X  CHART FOR 

   {1.5, 2.0, 2.5, 3.0} WHEN THE UNDERLYING D

WEIBULL 

β γ δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

1.2111 1.5 

0.25 (32.07, 31.52) (24.66, 25.40) 

0.50 (6.39, 5.30) (2.49, 2.33) 

0.75 (2.37, 1.26) (1.10, 0.34) 

1.00 (1.54, 0.61) (1.00, 0.03) 

1.50 (1.03, 0.18) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

1.0000 2.0 

0.25 (29.47, 28.72) (24.02, 25.00) 

0.50 (6.49, 5.43) (2.52, 2.35) 

0.75 (2.39, 1.28) (1.10, 0.32) 

1.00 (1.55, 0.60) (1.00, 0.02) 

1.50 (1.03, 0.16) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

0.8632 2.5 

0.25 (27.63, 26.96) (23.28, 24.12) 

0.50 (6.58, 5.56) (2.54, 2.38) 

0.75 (2.42, 1.29) (1.09, 0.32) 

1.00 (1.55, 0.59) (1.00, 0.01) 

1.50 (1.02, 0.13) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

0.7686 3.0 

0.25 (26.26, 25.76) (22.94, 23.57) 

0.50 (6.72, 5.64) (2.55, 2.40) 

0.75 (2.44, 1.29) (1.09, 0.31) 

1.00 (1.56, 0.58) (1.00, 0.01) 

1.50 (1.01, 0.10) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

TABLE VII: THE (ARL1, SDRL1) VALUES OF THE VSS X  CHART FOR 

   {0.0, 0.5, 1.0} WHEN THE UNDERLYING D

LOGNORMAL 

σLN γ δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

0.0003 0.0 

0.25 (46.48, 45.78) (29.13, 30.09) 

0.50 (6.22, 5.08) (2.40, 2.15) 

0.75 (2.30, 1.24) (1.11, 0.37) 

1.00 (1.52, 0.63) (1.00, 0.06) 

1.50 (1.05, 0.22) (1.00, 0.00) 

2.00 (1.00, 0.03) (1.00, 0.00) 

0.1641 0.5 

0.25 (31.58, 30.76) (21.40, 22.27) 

0.50 (5.03, 3.99) (2.13, 1.85) 

0.75 (2.07, 1.09) (1.08, 0.31) 

1.00 (1.41, 0.58) (1.00, 0.05) 

1.50 (1.03, 0.17) (1.00, 0.00) 

2.00 (1.00, 0.02) (1.00, 0.00) 

0.3143 1.0 

0.25 (22.49, 21.74) (15.99, 16.65) 

0.50 (4.08, 3.10) (1.82, 1.48) 

0.75 (1.84, 0.94) (1.05, 0.24) 

1.00 (1.30, 0.51) (1.00, 0.03) 

1.50 (1.01, 0.12) (1.00, 0.00) 

2.00 (1.00, 0.01) (1.00, 0.00) 

TABLE VIII: THE (ARL1, SDRL1) VALUES OF THE VSS X  CHART FOR 

   {1.5, 2.0, 2.5, 3.0} WHEN THE UNDERLYING D

LOGNORMAL 

σLN γ δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

0.4435 1.5 

0.25 (16.77, 16.12) (12.16, 12.79) 

0.50 (3.33, 2.40) (1.57, 1.15) 

0.75 (1.65, 0.79) (1.02, 0.16) 

1.00 (1.21, 0.43) (1.00, 0.01) 

1.50 (1.00, 0.07) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

0.5514 2.0 

0.25 (13.19, 12.40) (9.67, 10.28) 

0.50 (2.81, 1.91) (1.38, 0.87) 

0.75 (1.49, 0.68) (1.01, 0.10) 

1.00 (1.13, 0.34) (1.00, 0.00) 

1.50 (1.00, 0.04) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

σLN γ δ 
n1 = nS n1 = nL 

(ARL1, SDRL1) (ARL1, SDRL1) 

0.6409 2.5 

0.25 (10.79, 10.09) (7.86, 8.58) 

0.50 (2.44, 1.56) (1.24, 0.64) 

0.75 (1.37, 0.58) (1.00, 0.06) 

1.00 (1.08, 0.27) (1.00, 0.00) 

1.50 (1.00, 0.02) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

0.7156 3.0 

0.25 (9.12, 8.38) (6.52, 7.20) 

0.50 (2.17, 0.30) (1.15, 0.47) 

0.75 (1.28, 0.50) (1.00, 0.03) 

1.00 (1.04, 0.21) (1.00, 0.00) 

1.50 (1.00, 0.01) (1.00, 0.00) 

2.00 (1.00, 0.00) (1.00, 0.00) 

For example, when  =0.25 and n1=nL, we obtain 

(ARL1, SDRL1)=(29.34, 30.31) for normal distribution 

(see Table IV). For Weibull distribution, these values 

decrease to (ARL1, SDRL1)=(25.52, 26.28) when γ=1.0 

(see Table V), as opposed to (ARL1, SDRL1)=(22.94, 

23.57) when γ=3.0 (see Table VI). While for lognormal 

distribution, these values decrease significantly to (ARL1, 

SDRL1) = (15.99, 16.65) when γ=1.0 (see Table VII) and 

further reduce to (ARL1, SDRL1)=(6.52, 7.20) when 

γ=3.0 (see Table VII). This indicates that the performance 

of the VSS X  chart under lognormal distribution is 

worse than that under the Weibull distribution. This is 

because the (ARL1, SDRL1) values for lognormal 

distribution deviate greatly from that of the normal 

distribution. Also, from this example, it is clear that for 

small and moderate shifts, the performance of the VSS 

X  chart under skewed distributions is remarkably 

different from that of the normal distribution when γ 

increases. 

For large   (   1.00), the (ARL1, SDRL1) values for 

normal, Weibull, and lognormal distributions are quite 

similar. This indicates that the run-length performances 

of the VSS X  chart are less impacted by skewed 

distributions when the shifts are large. For instant, when 

 =1.50 and n1=nS, we obtain (ARL1, SDRL1)=(1.05, 

0.22) for normal distribution (see Table IV). For Weibull 

distribution, these values are (ARL1, SDRL1)=(1.05, 0.21) 

when γ=0.5 (see Table V) and (ARL1, SDRL1)=(1.02, 

0.13) when γ=2.5 (see Table VI). While for lognormal 

distribution, these values are (ARL1, SDRL1)=(1.03, 0.17) 

when γ=0.5 (see Table VII) and (ARL1, SDRL1)=(1.00, 

0.02) when γ=2.5 (see Table VII). From this example, 

regardless the changes of γ, we obtain similar ARL1 

values for normal and skewed distributions. For variation, 

the SDRL1 values for lognormal distribution and large γ, 

tend to be low. 

V. CONCLUSIONS  

The results in this paper reveal that the in-control and 

out-of-control performances of the VSS X  chart with 

1 Sn n  and 1 Ln n , are remarkably influenced by 

skewed distributions, especially when the process is in-
control or slightly out-of-control. Though the out-of-

control performance for the VSS X  chart with 
1 L

n n  is 

better than that of the chart with 
1 S

n n , the poorer in-

control performance of the chart with 
1 L

n n  put it into 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 175

ISTRIBUTION IS 

ISTRIBUTION IS 

ISTRIBUTION IS 



the dilemma of favoring this chart. High false alarm rate 
of a control chart will cause practitioners to conclude that 
the SPC is a failure if they keep on encountering false 
alarms with non-existence assignable cause(s). In such a 

case, the VSS X  chart with 
1 Sn n is favorable 

compared to the chart with 
1 Ln n  as the (ARL0, SDRL0) 

are closer to the desired values. 

Also, as γ increases, the VSS X  chart’s performance 
is tremendously undesirable. Therefore, the chart’s 

parameters (
Sn , 

Ln , W, K) specially designed for the 

normal distribution are not suitable to be used for skewed 
distributions. Future research need to be conducted to 
propose new formulae and chart’s parameters for the VSS 

X  chart under skewed distributions. 
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