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Abstract—In this paper, the stabilization design problem for 
the parametric perturbed systems with a time delay has 
been addressed. The perturbations are time-varying. 
Selecting a positive matrix Q and utilizing some linear 
algebraic techniques, we develop a simple upper solution 
bound of the Riccati equation and then applying it to the 
Riccati equation approach, a new condition for testing the 
stabilizability is proposed. Although the Riccati equation 
approach is adopted, the obtained stabilizability condition is 
independent of any Riccati equation and hence can be tested 
easily. It is shown that this condition is sharper than a 
previous one. Furthermore, the corresponding stabilization 
controllers are developed. These controllers are very simple 
and hence are easy to be implemented. A numerical 

algorithm is also presented to construct the controllers. 

Index Terms—stabilization, time-delay, parametric 

perturbation, the Riccati equation approach, upper solution 

bound 

I. INTRODUCTION 

Time delay exist naturally in physical systems, 

engineering systems, and so on. When systems possess 

time delay(s), the eigenvalue number of linear systems 

would be increased to infinite. This situation might result 

in unsatisfactory performances or unstable systems. 

Therefore, time delay is considered as a of instability 

source of systems. Besides, perturbation will also lead to 

the eigenvalues of systems cannot be calculated explicitly. 

Therefore, it is also a source of instability and the control 

problem of systems then become complicate when time 

delay(s) and/or perturbations exist. Surveying the 

literature, researches for the mentioned systems has 

become an attractive topic over past several decades. In 

literature, almost of the proposed results involve two 

topics: (1) the robust stability analysis and (2) the robust 

stabilization controller design. A number of works have 

been presented to discuss the above problems during the 

past decades [1]-[18]. Of those appeared works, the 

stability analysis problem has been study in [1]-[8] and 

stabilizability controller design have been developed in 

[1], [6], [7], [9]-[20]. It often is necessary for the 

proposed results of controller design to solve different 

types of LMI. However, in the LMI approach, usually 

many free matrices in LMI are needed to be determined. 

                                                           
Manuscript received March 25, 2018; revised May 10, 2018; 

accepted June 25, 2018. 
Corresponding author: Chien-Hua Lee (email: k0457@gcloud.csu. 

edu.tw) 

This might be a troublesome work. This is the weak point 

of the LMI approach. Therefore, the objective of this 

work is to develop state feedback controllers that do not 

possess any free matrix for perturbed time-delay systems. 

Extending the approach proposed in [11], we adopt the 

Riccati equation approach to solve the mentioned 

problem for the time-delay systems subjected to time-

varying perturbations. However, a simple upper matrix 

bound of the solution of the Riccati equation is first 

derived by choosing properly the positive definite matrix 

Q. Then, applying the obtained upper solution bound to 

the Riccati equation approach, a concise stabilizability 

condition is presented. This condition do not involve any 

Riccati equation and hence are easy to be tested. It is also 

shown that the criterion for system with parametric 

perturbation is sharper than an existing one. Furthermore, 

according to the obtained criteria, simple stabilization 

controllers are developed. These controllers are very 

simple and hence are easy to be implemented. An 

algorithm is also proposed to construct these controllers. 

Furthermore, the obtained results are applied to solve the 

same problem of the interval time-delay systems. A 

stabilizability condition and the corresponding controllers 

are also proposed for the mentioned systems. Finally, we 

demonstrate the applicability of the present schemes via a 

numerical example.  

II. MAIN RESULTS 

Consider the time-delay systems with nonlinear 

perturbations 

( ) ( ( , )) ( )

          ( ( , )) ( ) ( )d d

x t A A h t x t

A A k t x t d u t

  

  
            (1) 

where  nx  is the state,  mu  represents the input, 

0d   means the delay duration, , dA A  and B denote 

constant matrices with appropriate dimensions, and 

( , )A h t  and ( , ) dA k t  are time-varying perturbations. 

Furthermore, it is also assumed that 

h
max ( , ) 


 A h t  and 
k
max (k, ) 


 dA t           (2) 

where   and   are positive constants. It is assumed that 

the pair ( , )A B  is completely controllable. 

In this paper, a simple stabilizability condition and the 

corresponding state feedback controllers will be 

developed as follows. 
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Theorem 1. If there exists a positive constant   such 

that  

2

2

(2 )

2

T T

d
T

d d d

d

A A BB

A I

A A A I I

A


 

 



  

  

 




                 (3) 

then the time-delay system 1 with time-varying 

parametric perturbations can be stabilized by the 

memoryless state feedback controller 

1
( ) ( )

2
  Tu t B Px t                      (4) 

where the positive definite matrix P satisfies the 

following Riccati equation 

   T TA P PA PBB P Q                     (5) 

with the nn real positive definite matrix Q is given as 

22
(2 )

 
 



  
    

  

T
d d d

d
d

A A A I I
Q c A I

A
, (6) 

and c is an arbitrary positive constant. 

Proof. Define a positive semi-definite matrix M as 

( ) ( )   TM P I BB P I ,                   (7) 

where   is a positive constant. Then, the Riccati 

equation 5 can be rewritten by 

2

( ) ( ) ( )( )

( 2 )

T T T

T T T

A BB cI P cI P A BB

M Q BB c A A BB

 

 

    

      
      (8) 

By the definition of Q, we have 

2

22

   ( 2 )

2 (2 )

2

T T T

T T
d

T
d d dT

d

Q BB c A A BB

c A A BB A I

A A A I I
BB

c A

 

  

 



   

      


 
 

 

       (9) 

If the condition 3 is satisfied, then it is obvious that 

there must exist a constant 2 Tc BB  such that the 

right-hand side of Eq. 9 is negative. Furthermore, the 

condition 3 can also infer that 2 0T TA A BB    and 

we hence can conclude that the matrix - TA BB  is stable. 

Therefore, equation (8) is a Lyapunov equation and then 
its solution cI P  is positive definite. This means the 

solution of the Riccati equation 5 has the following upper 
bound: 

P cI                                (10) 

Using the controller 4, the system 1 becomes 

1
( ) ( ( , )) ( )

2

T

d d

x t A BB P A k t x t

A A r t x t d

    

  

            (11) 

For this system, we construct a Lyapunov function as 

2

( ( ), ) ( ) ( )

2
                  ( ) ( )

T

T
t

d d dT

t d
d

V x t t x t Px t

A A A I I
c x x

A I

 
 



 

  
 
  


(12) 

where the positive definite matrix P satisfies Eq. 5. For 

convenience, we use symbols V, x, xd, ,A  and  dA   to 

replace ( ( ), ), ( )V x t t x t , ( )x t d , ( , )A h t , and ( , ) dA k t , 

respectively, in the following and later descriptions. Now, 
taking the derivative along the trajectories of Eq. 1 gives 

 

2

2

T

2
       

2
        

        ( + ) ( + )

        .

T T T T

T
d d d

d

T
d d dT

d d
d

T T T T
d d d d d d

T T

V x A P PA A P P A PBB P

A A A I I
c x

A

A A A I I
x c x

A

x P A A x x A A Px

x APx x P A x

 



 



       


  
  

   

  
 

  

   

  

 (13) 

Since 

 

2

   ( ) ( )

1
( ) ( )

   ( )

1
[ ( 2 )

( ) ]

T T T
d d d d d d

T T
d d d d d d

d

T
d

T T
d d d d d

d

T
d

x P A A x x A A Px

x A A P A A x
A

A x Px

c x A A A I I x
A

A x x





 




    

     




   




 (14) 

 

   

1

T T T

T T T T

x P Ax x A Px

x A P Ax x Px c x x 


  

    
            (15) 

where the bound P cI  is used, then we have 

 

2

[ (2

2
 )]

T
d

T
d d d

d

T

V x Q c I A I I

A A A I I
x

A

x Q Q x

 

 



     

 



   

         (16) 

This shows that the resulting closed-loop system 11 is 

asymptotically stable if the condition 3 is satisfied. Thus, 

the proof is completed. 

Remark 1. An interesting consequence of this theorem 

is that the stabilizability condition 3 is independent of the 

Riccati equation 5. Furthermore, it is also independent of 

the free variable c. 

Remark 2. It is seen that the controller 4 still involves 

the Riccati equation 5. In the follows, we can simplify the 

controller design such that the resulting controller is 

independent of the Riccati equation. This is given as 

follows. 
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Theorem 2. Choosing the controller as 

 ( ) ( )  Tu t B x t                         (17) 

If the selected positive constant   such that the 

stabilizability condition 3 holds, then the perturbed time-

delay system 1 can be stabilized by making use of the 

feedback controller 17. 

Proof. From Eq. 17, the closed-loop system now 

becomes 

( ) ( ( , )) ( )T

d d

x t A BB A h t x t

A A k t x t d

   

 
          (18) 

Here, we choose the Lyapunov function as 

2

( ( ), ) ( ) ( )

2

T

T
t

d d dT

t d
d

V x t t x t x t

A A A I I
x x

A

 
 



 

  
 
  


   (19) 

This can lead to 

2

2

T

[ 2

2
      

2
       

       ( ) ( )

       

   2

      2 2

T T T T

T
d d d

d

T
d d dT

d d
d

T T T T
d d d d d d

T T

T T T

T
d d

d
d

V x A A A A BB

A A A I I
x

A

A A A I I
x x

A

x A A x x A A x

x APx x P A x

x A A BB

A A
I A I I

A



 



 





 

       

 


 

  
 

  

     

  

   


 
  



x






           (20) 

Therefore, it is seen that if the condition 3 holds, then 

the perturbed time-delay system 1 can be indeed 

stabilized by the controller 17. Thus, the proof is 

completed. 

Note that the stabilization controller 17 is very simple. 

We also give the following algorithm for designing the 

positive constant  . 

Algorithm 1.  

Step 1. Set an initial value of 0 n  with 0n . 

Step 2. Apply n  into the condition 3 and check it. If it 

holds, then stop the algorithm and the controllers 4 or 17 

is obtained. Otherwise, go to Step 3. 

Step 3. Let 1    n n , where 0   is an adequate 

constant. If 1  n  where 0   is a sufficient large 

number, then stop this algorithm and the stabilization  

Remark 3. In the literature, the choice of the positive 

matrix Q is still an open problem for those controlled 

systems by using the Riccati equation approach. The 

positive matrix Q often is selected as a free matrix or 

chosen as Q cI  for simplification. For example, by 

choosing Q cI , the following condition for the 

perturbed time-delay system 1 is presented by the existed 

paper Reference [10]. 

 1( - 2 ) 2( ) 0       T T
dA A BB A        (21) 

Due to the relation 
2

1( ) T T
d d d d dA A A A I A I  and 

the inequality 1 1 1( ) ( ) ( )    A B A B  for TA A  and 

TB B  Reference [21], one obtain 

2

1

2

1

2 2

1

   2 (2 )

2
  

[ - 2 (2 )

2
]

( - 2 ) (2 )

2

T T
d

T
d d d

d

T T
d

T
d d d

d

T T
d

d d

d

T T
d

A A BB A I

A A A I I

A

A A BB A I

A A A I I
I

A

A A BB A

A A I I

A

A A BB A I

  

 



   

 



   

 



   

     

 



     

 



     

 



    

    (22) 

Therefore, it is obvious that condition 3 is sharper than 

21. Besides, using the similar ways, a different 

stabilizability condition has also been proposed in 

Reference [11]. However, the tightness between the 

obtained result and that presented in Reference [11] 

cannot be compared. 

Now, we consider another kind of perturbed time-

delay system. The system model is an interval time-delay 

system as follows. 

 ( ) ( ) ( ) ( )I dIx t A x t A x t d Bu t                  (23) 

where andI IdA A represent interval matrices with 

appropriate dimensions and have the following properties: 

 I Ipq Ipq Ipq IpqA a u a v                 (24) 

 [ ],dI dIpq dIpq dIpq dIpqA a u a v               (25) 

with , 1,2, ,p q n . Here, we define the following 

matrices: 

 [ ], [ ], [ ], [ ]Ipq Ipq d dIpq d dIpqU u V v U u V v   

Define matrices iA , ijA , and, ijB , respectively, as 

 
2

U V
A


  and

2

d d
d

U V
A


                  (27) 

Then, system (23) can also be represented as follows. 

 ( ) ( ) ( ) ( ) ( ) ( )d dx t A A x t A A x t d Bu t     

where A  and dA  now denote the parametric 

uncertainties with the following properties: 
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      ( ) ( )

   0

[ ( - 2 ) 2( )]

[ ],

(26) 

  (28) 



 A R   and  dA S                    (29) 

where R and S are defined as 

 
2

V U
R


  and 

2

d dV U
S


               (30) 

Once again, the application of the fact A A  

results in 

 A A R                         (31) 

 
d dA A S                      (32) 

Then, one can apply the results presented in Theorems 

1 and 2 to the above time-delay interval systems. 

Following the similar ways as those of Theorems 1 and 2, 

we develop the stabilizability condition and the 

corresponding controllers as follows without proof. 

Theorem 3. If there exists a positive constant   such 

that  

  2

2 (2 )

2

T T
d

T
d d d

d

A A BB A I

A A A I I

A

  

 



     

 




           (33) 

then the time-delay interval system 23 can be stabilized 

by the following memoryless state feedback controllers 

 
1

( ) ( )
2

  Tu t B Px t                         (34) 

or 

 ( ) ( )  Tu t B x t                            (35) 

where the positive definite matrix P  satisfies the 

following Riccati equation 

 T TA P PA PBB P Q                        (36) 

with the n×n real positive definite matrix Q is given as 

22
(2 )

T
d d d

d

d

A A A I I
Q c A I

A

 
 



  
    

 
 

   (37) 

and c is an arbitrary positive constant. 

Remark 3. It is seen that, by transferring the interval 

time-delay system 23 into the perturbed system 28. Then, 

we can apply directly the results obtained in Theorems 1 

and 2 to this interval time-delay system and obtained the 

result Theorem 3. 

III. AN EXAMPLE 

To show the merits of the obtained results, we give the 

following numerical example. 

Example 1. This example is given in [10]. Consider 

the perturbed time-delay system 1 with 

1 0 1 0.4 0 0 2 3

1 3 0 , 0.2 1 0 , 1 1 ,

0 0 0 0 0 0.3 1 0

dA A B

     
     

     
     
          

 

0d   

0.5sin 0 0

0 0 0.3sin 2 ,

0 0.2sin 0.1cos 2

t

A t

t t

 
 

 
 
  

 

0.15cos3 0 0

0.1sin 2 0 0

0 0.2cos 2 0

d

t

A t

t

 
 

 
 
  

. 

In [10], it was found that the gain matrix F must satisfy  

3.65 TF B  such that the closed-loop system can be 

stabilized. However, using Algorithm 1 and choosing 

0.1  , we find the algorithm stop at 3.3  . This 

means the gain matrix F can be chosen as 3.3F . 

Obviously, the obtained result is better than that of [10]. 

Therefore, the memoryless feedback controller now can 

be designed as 

6.6 3.3 0
( ) 3.3 ( ) ( )

9.9 3.3 3.3

 
   

 

Tu t B x t x t  

Let the states be 1( ) 3, 2( ) 4,  x t x t   and 3( ) 5 x t   

for [ 0.5, 0] t . For this case, all simulation results of 

 ( ) 1( ) 2( )
T

x t x t x t  and  ( ) 1( ) 2( )
T

u t u t u t  are 

shown in Fig. 1 and Fig. 2, respectively. It is seen that all 

states are regulated to zeros by the proposed controller 

irrespective of the time-delay and perturbations. 

 
Time 

Fig. 1. Trajectory of state x(t) of Example 1 

 
Time 

Fig. 2. Trajectory of state u(t) of Example 1 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 8, No. 3, May 2019

©2019 Int. J. Elec. & Elecn. Eng. & Telcomm. 161

0



IV. SUMMARY 

The stabilization controller design of the perturbed 

time-delay systems has been solved. The perturbations 

are time-varying. The author have developed a new 

stabilizability condition to guarantee the existence of 

stabilization controllers. This condition does not involve 

any Riccati equation and hence is easy to be tested. 

Comparing to an existed result [10], it is shown that the 

obtained condition is better. Furthermore, another simple 

stabilization controller that is independent of the Riccati 

equation has also been developed. An algorithm has also 

been obtained to show the presented controllers are easy 

to be implemented. Besides, it is shown that the above 

results can be applied directly to solve the same problem 

for the interval time-delay systems. Some similar results 

have been obtained to construct the stabizability 

controllers for the mentioned systems. Finally, a 

numerical example and the corresponding computer 

simulations have been presented to show the applicability 

of the proposed schemes. 
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