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Abstract—This paper presents a method for detection of 

Power Quality (PQ) disturbances using Stockwell’s 

transform. Modeling equations are used for PQ disturbance 

generation using MATLAB program as per IEEE standards. 

Signals features are extracted from the time-frequency 

analysis based on Stockwell’s transform. A rule-based 

decision tree are used to classify various PQ disturbances. It 

can be seen that high efficiency of classification is achieved 

using S-transform with rule-based decision tree. Several PQ 

disturbances are addressed with single and combined 

disturbances. Results demonstrate the accuracy and 

robustness of the proposed method in detection and 

recognition of single and combined PQ disturbances under 

noiseless and noisy conditions. The proposed algorithm also 

shows good performance in comparison with other reported 

studies. 

Index Terms—feature  extraction, MATLAB program, 

power quality disturbance, rule-based decision tree, 

Stockwell transform, time frequency analysis 

I. INTRODUCTION 

In recent years Power Quality (PQ) has become an 

important issue for both utilities and customers. The 

increasing use of equipment sensitive to power system 

disturbances and their related economic aspects forced 

the distribution utilities to adapt a new methods for 

continuously monitor the power quality of their electrical 

grid. Poor PQ may cause overheating of lines, inaccurate 

metering and reduced efficiency of appliances [1]. 

To monitor electrical power quality disturbances, the 

Short Time Fourier transform (STFT) is most often used. 

This transform was successfully used for analyzing 

stationary signals where properties of signals do not 

change in time. Wavelet Transform (WT) provides a 

good transient signal representation corresponding to a 

time-frequency plane. Wider windows and short windows 

are used at low frequencies and high frequencies, 

respectively. This characteristic is appropriate for real 

signals such as voltage sags and transient over-voltages 

[2].  

A lot of methods for power quality disturbance 

monitoring have been introduced based on signal 

processing and artificial intelligent techniques [3]. A 

method based on SVM classifier and S-Trans-form for 

power quality disturbances classification, with accurate 
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results has been reported in [4]. The S-transform with 

neural network based decision system is used to generate 

contours and feature vectors for pattern classifications. 

The result was excellent characterization of both steady 

state and transient PQ signals [5]. A method was 

presented that uses the S-transform, Time-Time transform 

(TT-transform), and Artificial Neural Network (ANN) for 

the identification and categorization of PQ disturbances 

with very high accuracy [6]. It was shown that the 

disturbance features extracted using the S-transform and 

an ANN, can be identified by visual inspection [7]. A 

comparison study for detection and classification of PQ 

disturbances using S-transform and CWT algorithm has 

been presented in [8]. PQ disturbance classification 

approach based on S-transform with a feature-oriented 

width factor and PNN has better performance in 

comparison with those presented in other research studies 

[9]. A Multi-resolution generalized ST and PSO 

improved DT has been presented to extract six features 

from the original signal with high fitness value [10]. 

Sparse Signal Decomposition (SSD) on over complete 

hybrid dictionary (OHD) matrix method achieved 

significantly better classification results as compared with 

other existing methods [11]. The Kalman filter approach 

was used to extract some PQ signal features to be further 

analyzed through fuzzy system with good classification 

accuracy [12]. Twelve simple and hybrid PQ disturbances 

in wind-grid integrated system was successfully detected 

and classified using fast TT-transform and learning 

machine with reduced computational efficiency even in 

noisy environment [13]. A new method has been 

proposed using Hilbert transform and ANN technique for 

detection and classification of three and nine types of 

disturbances respectively with high classification 

efficiency [14], [15]. A combined histogram based 

method with a Discrete Wavelet Transform (DWT) based 

technique was used to extract the features of the PQ 

disturbance in the first stage which was used as an input 

to an Extreme Learning Machine (ELM) for final PQ 

signal classification, the new method was tested in real 

PQ events database with accurate classification results 

[16]. 

In this paper a method using S-transform and feature 

extraction for detection and classification of PQ 

disturbances has been presented. Features of signals have 

been extracted from time frequency representation 

obtained from ST. The rule-based DT classifier which 

makes use of these features to classify various PQ 

disturbances have been proposed. The performances of 
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the proposed algorithm has also been studied in the noisy 

environment with 20 dB SNR and efficiency comparison 

between the new method and other methods used in the 

literature has been carried out. 

II. STOCKWELL TRANSFORM 

Stockwell proposed the S-transform in 1996. As an 

extension to short-time Fourier transform and continuous 

wavelet transform. It performs multi-resolution analysis 

of a time varying signal while retaining the absolute 

phase of each frequency. It uses window whose width 

varies inversely with frequency, which results in high 

time resolution at high frequency and high frequency 

resolution at low frequency. The input signal is h(t), 

which after the S-transform will become. 
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where ( , )w t f  is the Gaussian window function, and 

( ) 1f f   is the window width. 

From (1), we can see that the S-transform is different 

from STFT, as the height and the width of gauss window 

vary with changing frequency. 

The output of S-transform is a complex matrix of the 

size n×m called S-matrix. S-matrix (rows): represents the 

time-domain distribution of the signal in the particular 

frequency. S-Matrix (columns): represents the amplitude 

frequency characteristics. From the S-matrix important 

information in terms of magnitude, frequency and phase 

can be extracted of the signal in some certain time. 

The main plots that can be extracted from the ST- 

matrix: Time-frequency contour, amplitude curve, phase 

curve, amplitude-frequency curve, the sum absolute 

values curve.  

III. P OF PQ EVENT 

DETECTION 

Rule-based decision tree algorithm will be used for 

detection, classification and localization of the PQ 

disturbances as shown in Fig. 1. 

Signals of various PQ disturbances have been 

generated using MATLAB as per IEEE-1159 standard. 

(Voltage sag, swell, interruption, harmonics, harmonic 

with sag and harmonic with swell). 

The PQ signals have been Analyzed using S-transform 

to obtain S-matrix. After that the features F1 to F6 have 

been extracted from time frequency representation using 

S-matrix. 

Various disturbance signals are designated by the class 

symbols from S2 to S7 and the pure sine wave is 

designated by S1. The rules for the DT is governed by the 

features F1 to F5, while F6 is used to localize the 

disturbance in time. 

 
Fig. 1. PQ disturbance detection scheme using rule-based DT. 

TABLE I. MATHEMATICAL MODEL OF PQ DISTURBANCES 

S Type  Equation Parameters 

S1 Pure sine wave sin(ωt) f=50Hz, =2f 

S2 Voltage sag h(t)=(1−α(u(t−t1)−u(t−t2)))sin(ωt) 0.1≤α≤0.9, T≤t2−t1≤9T, t1≤t2, u(t)=1 (t≥0), u(t)=0 (t < 0) 

S3 Voltage swell h(t)=(1−α(u(t−t1)−u(t−t2)))sin(ωt) 0.1≤α≤0.8, T≤t2−t1≤9T 

S4 Interruption h(t)=(1−α(u(t−t1)−u(t−t2)))sin(ωt) 0.9≤α≤1, T≤t2−t1≤9T 

S5 Harmonics 
h(t)=α1sin(ωt)+α3sin(3ωt)+α5sin(5ωt)+ 

α7sin(7ωt) 
0.05≤α3≤0.15, 0.05≤α5 ≤0.15, 0.05≤α7≤0.15, ∑αi2 = 1 

S6 Harmonic with sag 
h(t)=(1−α(u(t−t1)−u(t−t2)))(α1sin(ωt)+α3

sin(3ωt)+α5sin(5ωt)+ α7sin(7ωt)) 

0.1≤α≤0.9, T≤t2−t1≤9T, 0.05≤α3 ≤0.15,  

0.05≤α5 ≤0.15, 0.05≤α7≤0.15, ∑αi2 =1 

S7 Harmonic with swell 
h(t)=(1−α(u(t−t1)−u(t−t2)))(α1sin(ωt)+α3

sin(3ωt)+α5sin(5ωt)+ α7sin(7ωt)) 

0.1≤α≤0.8, T≤t2−t1≤9T, 0.05≤α3 ≤0.15,  

0.05≤α5 ≤0.15, 0.05≤α7 ≤0.15, ∑αi2 =1  
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IV. PQ DISTURBANCE ANALYSIS USING S-TRANSFORM 

In this part the analysis of various PQ disturbances 
based on the features extracted from ST will be 

presented. The disturbance signals have been generated 

based on IEEE-1159 standard using MATLAB program. 

Table I represents the mathematical modeling for the 

generated PQ signals. 

All the generated signals with frequency of 50Hz, 10 

cycles and sampling frequency of 3.2kHz. The 

disturbance signals was denoted by symbols S2 to S7, 

while the pure sine wave was denoted by S1, these signals 

was analyzed by S-matrix. 

The plots obtained from S-matrix include magnitude-

time curve, frequency contour, phase curve, amplitude -

frequency curve, sum of absolute values curve (the sum 

of each column of the S-matrix, and the second derivative 

of the sum of absolute values curve which is used to 

localize some types of disturbances in time such as 

(voltage swell, sag and interruption). 

A. Pure Sine Wave 

The plots obtained for the pure sine wave is considered 

as a reference for PQ disturbance detection. All curves 

were of constant amplitude except for amplitude-

frequency curve which showed one amplitude appeared at 

50Hz. 

B. Voltage Sag 

Voltage sag of (30%) and related ST plots are shown 

in Fig. 2. The voltage sag can be recognized from the 

change in the amplitude of various curves such as, 

frequency contour, amplitude–time curve, and sum of 

absolute values curve Fig. 2 (b), (c), and (d), respectively. 

From Fig. 2 (e) which is the second derivative of the sum 

of absolute values curve we can easily localize the time 

of the disturbance between (0.06s – 0.14s). 

C. Voltage Swell 

Voltage swell of (30%) and related ST plots are shown 

in Fig. 3. The voltage swell can be recognized from the 

change in the amplitude of various curves such as, 

frequency contour, amplitude –time curve, and sum of 

absolute values curve Fig. 3 (b), (c), and (d), respectively. 

From Fig. 3 (e) which is the second derivative of the sum 

of absolute values curve we can easily localize the time 

of the disturbance between (0.06s – 0.14s). 

 
Fig. 2. Voltage sag of (30%) and related ST: (a) Voltage sag, (b) 

frequency contour, (c) amplitude-time curve, (d) sum absolute values 

curve, (e) second derivative of sum absolute values curve, (f) phase 

curve, and (g) amplitude-frequency curve. 

 

Fig. 3. Voltage swell of (30%) and related ST: (a) Voltage swell, (b) 
frequency contour, (c) amplitude-time curve, (d) sum absolute values 

curve, (e) second derivative of sum absolute values curve, (f) phase 

curve, and (g) amplitude-frequency curve. 

 
Fig. 4. Voltage interruption of (8%) and related ST: (a) Voltage 

interruption, (b) frequency contour, (c) amplitude-time curve, (d) sum 

absolute values curve, (e) second derivative of sum absolute values 
curve, (f) phase curve, and (g) amplitude-frequency curve. 

 

Fig. 5. Harmonic and related ST: (a) Harmonic, (b) frequency contour, 
(c) amplitude-time curve, (d) sum absolute values curve, (e) phase curve, 

and (f) amplitude-frequency curve. 

D. Voltage Interruption 

Voltage Interruption of (8%) and related ST plots are 

shown in Fig. 4. The voltage interruption can be 

recognized from the change in the amplitude of various 

curves such as, frequency contour, amplitude –time 

curve, and sum of absolute values curve Fig. 4 (b), (c), 

and (d), respectively. Also some discontinuities in the 

frequency contour curve can be noticed. From Fig. 4 (e) 

which is the second derivative of the sum of absolute 

values curve we can easily localize the time of the 

disturbance between (0.06s – 0.14s). 

E. Harmonic 

Harmonic and related ST plots are shown in Fig 5. It 

can be depicted from continuous ripples in frequency 

contour plot and sum of absolute values curve Fig. 5 (b) 

and (d), respectively. A finite value of frequency between 
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the normalized frequencies 0.05 to 0.15 is another 

indication of the presence of harmonics. 

F. Harmonic with Sag 

Harmonic with sag and related ST plots are shown in 

Fig. 6. It can be depicted from continuous and 

discontinuous ripples in frequency contour plot Fig. 6 (b) 

and continuous ripples in the sum of absolute values 

curve Fig. 6 (d). A decrease in the amplitude-time curve 

and sum of absolute values curve when combined with a 

finite value of frequency between the normalized 

frequencies 0.05 to 0.15 gives an indication of the 

presence of harmonics with sag. 

G. Harmonic with Swell 

Harmonic with swell and related ST plots are shown in 

Fig. 7. It can be depicted from ripples in frequency 

contour plot Fig. 7, (b) and continuous ripples in the sum 

of absolute values curve Fig. 7, (d). An increase in the 

amplitude-time curve and sum of absolute values curve 

when combined with a finite value of frequency between 

the normalized frequencies 0.05 to 0.15 gives an 

indication of the presence of harmonics with swell. 

 
Fig. 6. Harmonic with sag and related ST: (a) Harmonic with sag, (b) 

frequency contour, (c) amplitude-time curve, (d) sum absolute values 
curve, (e) phase curve, and (f) amplitude-frequency curve. 

 

Fig. 7. Harmonic with swell and related ST: (a) Harmonic with swell, (b) 

frequency contour, (c) amplitude-time curve, (d) sum absolute values 
curve, (e) phase curve, and (f) amplitude-frequency curve. 

V. S-TRANSFORM FEATURE EXTRACTION 

The statistical features extracted from the ST plots of 

power quality disturbances are labelled as F1, F2, ⋯ F6. 

The definitions of these features are as follows. 

F1: Sum factor (Sf): 

Sf =max(S)+min(S) −max(R)−min(R) 

where S and R are the arrays of data of the sum of 

absolute values of the signal with PQ disturbance and 

pure sine wave (reference) respectively. 

F2: Number of peaks in the frequency amplitude curve. 

F3: Skewness of phase curve. Skewness of a signal is 

given by the relation: 

3

3

( )E x
S






                            (3) 

where x is the array of data of signal,   is the mean of x, 

  is the standard deviation of x, and E is the expected 

value of the quantity. 

F4: Amplitude factor: 

))()(1( BDACAf   

where C and D are respectively the maximum and 

minimum value of amplitude curve of arbitrary signal. A 

and B are respectively the maximum and minimum 

values of amplitude curve of reference signal. 

F5: Kurtosis of amplitude-frequency curve. The 

Kurtosis of a signal is defined as: 

4

4
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
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where x is the array of data of signal,   is the mean of x, 

  is the standard deviation of x, and E is the expected 

value of the quantity. 

F6: Second order derivative of sum absolute values 

curve: 

2
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where f(n) is the sum of absolute values of the signal and 

n is the sample number. The sharp peaks detected in the 

feature F6 helps to localize the PQ events such as voltage 

sag, swell, interruption and oscillatory transient. 

 II.  S-TRANSFORM BASED FEATURES OF PQ  DISTURBANCES  

PQ Disturbance 
PQ 

Symbol 
Features of PQ Disturbances  

F1 F2 F3 F4 F5 

Pure sine wave  S1 0 1 -1.3514 1 74.03 

Voltage sag S2 -0.0133 1 3.66E-13 0.6763 57.5538 

Voltage swell S3 0.3675 1 -6.63E-14 1.2234 71.2947 

Interruption S4 0.8248 1 8.42E-14 0.1162 59.9162 

Harmonics  S5 2.1387 2 -1.5137 0.9641 57.2682 

Harmonic with sag S6 1.982 2 3.66E-13 0.6763 57.5538 

Harmonic with 
swell 

S7 4.8407 2 -4.30E-13 1.1681 39.505 

VI. DETECTION AND CLASSIFICATION USING RULE-

BASED DECISION TREE 

The rule based decision tree is used to classify the PQ 

disturbances. This algorithm is based on the features F1 to 

F5 to build the rules for classification. Zero value of F1 

indicates no disturbance whereas finite value indicates a 

disturbance in the signal. Numerical values of the features 

(F1 to F5) used for the decision rules are presented in 

Table II. First signals are classified into two main groups 

using the number of peaks in the amplitude frequency 
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curve (F2). One group with one peak (F2=1) whereas the 

data of the other group belongs to more than one peak. 

The signals classified under the one peak group are 

further classified into subgroups based on F1. The process 

continues till final disturbance type classification. 

The proposed algorithm is illustrated in Fig. 8 using a 

flowchart. Threshold values have been obtained based on 

multi-resolution analysis of S-transform on hundreds of 

the signals generated in each category by varying the 

parameters mentioned in Table I. Efficiency of proposed 

algorithm with and without noise has been done based on 

the testing of all types of PQ disturbances (S1, S2, ⋯ S7) 

using hundred data sets of each disturbance and provided 

in Table III. 

TABLE III. RULE-BASED DECISION TREE CLASSIFICATION RESULT 

PQ event 
PQ 

symbol 

 Correctly 

Classified  
 Efficiency (%)  

Without 

noise 

20 dB 

SNR 

Without 

noise 

20 dB 

SNR 

Pure sine wave  S1 100 100 100% 100% 

Voltage sag S2 100 98 100% 98% 

Voltage swell S3 100 100 100% 100% 

Interruption S4 99 97 99% 97% 

Harmonics  S5 98 97 98% 97% 

Harmonic with sag S6 99 98 99% 98% 

Harmonic with swell S7 100 97 100% 97% 

Overall Efficiency 99.4% 98.1% 

 

 
Fig. 8. Block diagram for classification of power quality disturbance. 

VII. PERFORMANCE COMPARISON 

Power quality disturbances classification accuracy of 

the proposed algorithm was compared with the methods 

proposed in the references [1], [3], [5], [6], [11], [13] and 

[14]. These articles have been selected due to the fact that 

each article represents a method which is different than 

the other methods. Table IV compares the performance of 

various algorithms with and without noise, the efficiency 

comparison has been done on the basis of identical 

disturbances types between the proposed and other 

algorithms. From Table IV it is evident that higher 

efficiency is achieved using the proposed algorithm in 

comparison with the algorithms proposed in the 

references [1], [3], [5], [6] ], [11] and [14], except for the 

method proposed in reference [13] where it has better 

classification accuracy in noiseless environment however 

in noisy environment the proposed algorithm has better 

classification efficiency. 

TABLE IV. PERFORMANCE COMPARISON 

Reference 
Type of 

algorithm 

No. of 

compared PQ 
disturbances 

Overall efficiency 
(%) 

without 

noise 

20 dB 

SNR 

[1] (DWT+WN) 6 98.5 98.2 

[3] (ST+SVM) 5 91.1 - 

[5] (ST+NN) 5 97.7 - 

[6] (ST+TT+ANN) 4 92.1 - 

[11] (SSD+HD) 7 96.7 95.4 

[13] (FTT+ELM) 7   99.56   95.38 

[14] (HT+ANN) 3 98.6 - 

Proposed (ST+DT)   99.14 98.20 

VIII. CONCLUSION 

The detection and classification of the PQ disturbances 

have been effectively done with the aid of features F1 to 

F5 extracted from the S-transform. The feature F6 is 

proposed to localize the various PQ disturbances in time. 

The performance of the proposed algorithm has been 

tested using 100 data sets of each type of disturbance to 

establish the effectiveness. The proposed algorithm 

proved to have an efficiency greater than 98% even in 

noisy environment. Thus, ruled based decision tree 

technique using features based on S-transform can be 

effectively utilized to detect and classify various PQ 

disturbances. 
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