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Abstract—The future energy grid is expected to be a 

decentralized network where household units acting as 

agents can trade energy with others within local 

neighborhoods by means of an action mechanism. When 

agents can establish their own price of energy, it is essential 

to analyze the auction from a market equilibrium standpoint. 

This paper provides a proof that such a mechanism, 

although previously formulated as a gradient ascent 

algorithm to maximize the welfare (i.e. the sum of the 

utilities of all the agents), converges to the generalized Nash 

equilibrium (GNE) under physical grid operating 

constraints, where no agent is incentivized to deviate from 

its bid. The theoretical analysis is accompanied by 

simulations of a modified IEEE 37 node system showing 

convergence towards the equilibrium. 

 

Index Terms—generalized Nash equilibrium, online auction, 

smart grid, projected gradient descent, quasi-variational 

inequality, multi-agent systems.1 

I. INTRODUCTION 

Due to the increasing penetration of renewable energy 
resources, the electrical energy distribution system is 
expected to undergo a transformation from a centralized 
grid to a decentralized system that operates on market 
conditions [1]–[3]. Domestic units, i.e. households that 
utilize energy are equipped with their own renewable 
energy resources and are sometimes willing to sell surplus 
generated energy to the grid. Under these circumstances 
the role of a DSO (distribution system operator) is to 
ensure that the available energy is distributed in an 
efficient manner, while the energy grid’s physical 
constraints, such as voltage deviation, transformer 
capacity and line power limits are within acceptable limits. 

A recently proposed market-based approach models 
the domestic energy consuming units as prosumer agents. 
These agents can either buy or sell energy through a 
lower level auction mechanism [4]–[7]. The auction is 
conducted by an aggregator, which can directly 
communicate within agents within its physical 
neighborhood in the grid. The aggregator implements the 
mechanism as an iterative double auction involving 
prosumer agents that can act either as buyers or sellers. 
The auction incorporates asymmetric bidding where some 
agents receive the unit cost of energy from the aggregator 
and bid the total amount of energy they wish to trade 
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(power bidders), whereas other agents are assigned by the 
aggregator, the amount of energy that they can trade, and 
place as bids unit costs (cost bidders). Other similar 
algorithmic mechanisms have been proposed recently in 
smart grid research [8]–[11].   

At the upper level, the physical grid incorporates a 

trading mechanism between the DSO and the aggregators. 

The overall auction is therefore a bilevel mechanism. The 

DSO operates in a power setting mode, where it allocates 

the amount of energy that each aggregator can receive or 

send to the DSO. The double auction taking place within 

each aggregator establishes a different unit cost within its 

own agents, which is returned to the DSO. The entire 

process is repeated until the upper level algorithm 

converges to an optimum.  

The net energy requirement is submitted by the DSO to 

the upstream ISO, and separately for each hour for day-

ahead energy scheduling. It has been shown in [7] that the 

overall bilevel mechanism is efficient, i.e. that it 

maximizes the sum of the utilities of all prosumer agents 

in the grid. 

II. STRATEGIES 

A. Prosumer Agents 

The prosumer units interact with the grid as selfish 
agents. The objective of each such agent is to maximize 

its payoff 𝝅𝒌
𝒊 (∙) , which is the difference between the 

utility gained from consuming energy and the cost of 
procuring it. The strategy of agent 𝒊  being served by 
aggregator 𝒌  can be cast as the following optimization 
problem: 

Maximize: 𝜋𝑘
𝑖 (𝑝𝑘

𝑖 ) = 𝑢𝑘
𝑖 (𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) − 𝑐𝑘𝑝𝑘

𝑖              (1) 

In the above expression, 𝑢𝑘
𝑖 (∙) is a utility function that 

is assumed to be strictly concave and increasing, 𝑝𝑘
𝑖  is the 

amount of energy obtained from the aggregator, and 𝑔𝑘
𝑖  is 

the agent’s local energy generation (see Fig. 1). The 

quantity 𝑐𝑘  is the unit cost of energy. Where needed it 

will be assumed that the local feasibility constraint, 

𝑝𝑘
𝑖 + 𝑔𝑘

𝑖 = 0 is not violated. Hence, the prosumer bidding 

strategy reduces to unconstrained maximization of its 

payoff as shown above in (1).  

Differentiating the expression with respect to energy 

𝑝𝑘
𝑖 , we have 

𝜕

𝜕𝑝𝑘
𝑖
𝑢𝑘
𝑖 (𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) = 𝑐𝑘                                 (2) 
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The above expression shows that the optimal bidding 

strategy is to place bids so that the agent’s marginal utility 

is equal to the unit cost. This is illustrated for buying and 

selling agents in Fig. 1. 

 

 
Fig. 1. Agent utilities. 

 
Fig. 2. Schematic of overall trading mechanism.  

B. Aggregators 

The set of all aggregators in the grid is denoted as 𝒜. 
Each aggregator 𝑘 ∈ 𝒜 contains a set of prosumer agents 

𝒢𝑘 . Moreover, 𝒮𝑘 and 𝒟𝑘 are the sets of agents in 𝒢𝑘 that 

sell and buy energy, so that 𝒮𝑘 ∪ 𝒟𝑘 = 𝒢𝑘 and 𝒮𝑘 ∩ 𝒟𝑘 =
∅. It is assumed for simplicity that agents in 𝒮𝑘 are power 

bidders while those in 𝒟𝑘  are cost bidders. Each 

aggregator receives the total energy 𝑝𝑘  that the DSO 

allocates to it, and after conducting its own lower level 

auction, returns the equilibrium cost 𝑐𝑘  back to the 

aggregator (see Fig. 2). The aggregator’s strategy is 

outlined in Algorithm-1 as shown below. In Algorithm-1, 

[𝑝𝑘
𝑖 ]

𝑖∈𝒮𝑘
is the column vector of dimension |𝒮𝑘| whose 𝑖th 

entry is 𝑝𝑘
𝑖  which is the amount of energy received by the 

corresponding agent 𝑖 ∈ 𝒮𝑘. This convention is followed 

throughout the remainder of this paper. 

The quantity 𝑐𝑘
𝑖  is the unit cost of energy reimbursed to 

each agent 𝑖 ∈ 𝒮𝑘. The aggregator sends the unit cost 𝑐𝑘 

to all agents in 𝒢𝑘 and receives their power bids 𝑝𝑘
𝑖  from 

agents that are willing to sell. The agents are then labeled 
as buyers or sellers and placed in 𝒟𝑘 or 𝒮𝑘 accordingly. 

The total power 𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘 that the aggregator 

is estimated to receive during that iteration, is then 

allocated to each designated buyer 𝑖 ∈ 𝒟𝑘, in proportion 

to the total monetary amount 𝑝𝑘
𝑖 𝑐𝑘

𝑖  that it is willing to 

spend for procurement. This quantity 𝑝𝑘
𝑖  is sent to the 

buying agents in 𝒟𝑘, which respond by communicating to 

the aggregator, their unit cost bids, 𝑐𝑘
𝑖 . The ratio of the 

total monetary amount to be procured from the buyers to 
the energy available from the grid and through the sellers, 
is the new unit cost 𝑐𝑘. 

Algorithm-1 can be viewed as fixed point iteration as 
shown in Fig. 3. The red curve is the aggregate supply 

𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘 as a function of the unit cost 𝑐𝑘. It is shifted 

upwards by an amount 𝑝𝑘 , the amount of energy that 
aggregator 𝑘 receives from the upper level DSO. The blue 

curve is the aggregate demand 𝟏|𝒟𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒟𝑘

. 

 

Algorithm-1: Aggregator Mechanism 

 
Receive from DSO: 𝑝𝑘 
Initialize: 𝑐𝑘 
Repeat: 
 (Obtain supply at cost 𝑐𝑘) 

∀𝑖 ∈ 𝒢𝑘: 

  Send 𝑐𝑘
𝑖 = 𝑐𝑘 

  Receive 𝑝𝑘
𝑖  

 (Identify sellers & buyers) 

 𝒮𝑘 ← {𝑖 ∈ 𝒢𝑘|𝑝𝑘
𝑖 < 0} 

𝒟𝑘 ← {𝑖 ∈ 𝒢𝑘|𝑝𝑘
𝑖  not received} 

(Proportionally allocate supply) 
∀𝑖 ∈ 𝒟𝑘 

𝑝𝑘
𝑖 ←

𝑝𝑘
𝑖 𝑐𝑘

𝑖

[𝑝𝑘
𝑗
]
𝑗∈𝒟𝑘

T
[𝑐𝑘

𝑗
]𝑗∈𝒟𝑘

(𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘) 

(Obtain cost at demand 𝑝𝑘
𝑖 ) 

∀𝑖 ∈ 𝒟𝑘: 

  Send 𝑝𝑘
𝑖  

  Receive 𝑐𝑘
𝑖  

 (Find new cost 𝑐𝑘) 

𝑐𝑘 ←
[𝑐𝑘

𝑖 ]𝑖∈𝒟𝑘

T [𝑝𝑘
𝑖 ]𝑖∈𝒟𝑘

𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑖∈𝒮𝑘

 

Until equilibrium 
Send to DSO: 𝑐𝑘 

 

 
Fig. 3. Aggregator auction as fixed-point iteration. 

From Algorithm-1, Clearly the following conditions 

hold when the auction terminates at the optimum, 

𝑔𝑘
𝑖
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𝑖     er
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𝑝𝑘
𝑖 =

𝑝𝑘
𝑖 𝑐𝑘

𝑖

[𝑝𝑘
𝑗
]
𝑗∈𝒟𝑘

T
[𝑐𝑘

𝑗
]
𝑗∈𝒟𝑘

(𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]
𝑗∈𝒮𝑘

)     (3) 

𝑐𝑘
𝑖 =

[𝑝𝑘
𝑗
]
𝑗∈𝒟𝑘

T
[𝑐𝑘

𝑗
]
𝑗∈𝒟𝑘

𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]
𝑖∈𝒮𝑘

.                                    (4) 

Lemma-1: At the auction’s convergence, all agents in 

𝒢𝑘 , including those in 𝒟𝑘 are charged with the same unit 

cost 𝑐𝑘. 

Proof: From (3), 

[𝑝𝑘
𝑗
]
𝑗∈𝒟𝑘

T
[𝑐𝑘

𝑗
]𝑗∈𝒟𝑘

= 𝑐𝑘
𝑖 (𝑝𝑘 − 𝟏|𝒮𝑘|

T [𝑝𝑘
𝑗
]𝑗∈𝒮𝑘) 

⇒ 𝑐𝑘
𝑖 =

[𝑝𝑘
𝑗
]
𝑗∈𝒟𝑘

T
[𝑐𝑘

𝑗
]𝑗∈𝒟𝑘

𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘

. 

Hence all 𝑐𝑘
𝑖  are equal for 𝑖 ∈ 𝒟𝑘. From (4), 𝑐𝑘

𝑖 = 𝑐𝑘. 

Lemma-2: Energy balance is satisfied at auction 

equilibrium. 

Proof: This lemma has been established earlier [7] and 

repeated here for convenience. Replacing all 𝑐𝑘
𝑖  with 𝑐𝑘 in 

(4), 

1 =
1

𝟏|𝒟𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒟𝑘

(𝑝𝑘 − 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘) 

⇒ 𝟏|𝒟𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒟𝑘

+ 𝟏|𝒮𝑘|
T [𝑝𝑘

𝑗
]𝑗∈𝒮𝑘 = 𝑝𝑘 

⇒ 𝟏|𝒢𝑘|
T 𝐩𝑘 = 𝑝𝑘 .                                                         (5) 

Hence, the total power delivered to the agents in 𝒢𝑘 

(which is negative for sellers) is equal to the external 

power received. 

The aggregator welfare of each aggregator 𝑘 is the sum 

of the utilities of all agents in 𝒢𝑘 so that, 

Θ𝑘(𝐩𝑘) = 𝟏|𝒢𝑘|
T 𝐮𝑘 .                             (6) 

In the above, 𝐮𝑘 = [𝑢𝑘
𝑖 ]𝑖∈𝒢𝑘 .  It is established below 

that the aggregator auction mechanism maximizes the 

welfare under the constraint that the total energy provided 

to agents, 𝟏|𝒢𝑘|
T 𝐩𝑘  does not exceed the energy 𝑝𝑘  that it 

receives from the DSO. In other words, Algorithm-1 

solves the following constrained optimization problem 

(COP), 

Maximize: Θ𝑘(𝐩𝑘) = 𝟏|𝒢𝑘|
T 𝐮𝑘.   

Subject to: 𝟏|𝒢𝑘|
T 𝐩𝑘 ≤ 𝑝𝑘 .                                                (7) 

Lemma-3: Given 𝑐𝑘  and 𝑝𝑘 ,  the aggregator auction’s 

equilibrium maximizes the welfare Θ𝑘(𝐩𝑘) [7]. 

Proof: With 𝜈𝑘 being a dual variable, the Lagrangian of 

the COP in (6) is given by, 

ℒ𝑘(𝐩𝑘, 𝜈𝑘) = 𝟏|𝒢𝑘|
T 𝐮𝑘 − 𝜈𝑘(𝟏|𝒢𝑘|

T 𝐩𝑘 − 𝑝𝑘)         (8) 

The stationary condition of (7) for each agent 𝑖 ∈ 𝒢𝑘 is, 

𝜕𝑢𝑘
𝑖

𝜕𝑝𝑘
𝑖
= 𝜈𝑘 .                                             (9) 

Since Θ𝑘(∙) is the sum of strictly concave functions, 

the COP in (6) has a unique maximum, which satisfies (9). 

Comparing (4) with (9), establishes Lemma-3 with 

𝜈𝑘 = 𝑐𝑘. 

C. DSO 

The DSO receives the vector 𝐜 = [𝑐𝑘]𝑘∈𝒜 of unit costs 

from the aggregators and provides the energy amounts 

specified by the vector 𝐩 = [𝑝𝑘]𝑘∈𝒜. In doing so, it must 

not violate the physical grid constraints. Suppose the grid 

constraints are represented as the vector of inequalities 

𝐡(𝐩) ≤ 𝟎, Algorithm-2 below shows the various steps of 

the DSO mechanism. 

 

Algorithm-2: DSO Mechanism 

 
Repeat: 

Receive from aggregators: 𝐜. 
𝛄 ← 𝐜 

Gradient step: 
𝐩 ← 𝑃ℱ(𝐩 + 𝜂𝛄) 

where, 

ℱ = {𝐩|𝐡(𝐩) ≤ 𝟎, 𝐜T𝐩 ≤ 𝑐0𝟏|𝒜|
T 𝐩} 

Send to aggregators: 𝐩. 
Until converged 
 

The operator 𝑃ℱ(∙) is the projection of its argument to 

the nearest point in the feasible region ℱ.  

Consider the following COP, 

Maximize: 𝟏|𝒜|
T 𝚯(𝐩).                         

Subject to: 𝐡(𝐩) ≤ 𝟎,   

  𝐜T𝐩 ≥ 𝑐0𝟏|𝒜|
T .                                 (10)

 
The following lemma illustrates how Algorithm-2 

implements gradient descent towards the optimal value of 

𝐩.

 Lemma-4: The total welfare is maximized at the bilevel 

mechanism’s optimum.

 Proof: From (6) it is seen that,

 

∇𝐩𝚯(𝐩) = [
𝜕Θ𝑘

𝜕𝑝𝑘
]
𝑘∈𝒜

= [𝜈𝑘]𝑘∈𝒜 .  

But using (3) and (9), 

𝐜 = [𝜈𝑘]𝑘∈𝒜 . 

HENCE, 

∇𝐩𝚯(𝐩) = 𝐜.                               (11)  

The vector of unit costs that Algorithm-1 converges to 

provides the gradient direction for Algorithm-2. The DSO 

MECHANISM in Algorithm-2 is a straightforward 

implementation of projected gradient ascent where 𝐜  is 

the gradient direction [12], [13].  

III. GAME THEORETIC FORMULATION 

A. Generalized Nash Equilibrium 

Consider a game (𝒜,𝒳𝑖 , 𝑢𝑖) , where 𝒜  is a set of 

selfish agents, and for every 𝑖 ∈ 𝒜, its action  𝑖 is in the 
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set 𝒳𝑖  and 𝑢𝑖: 𝒳𝑖 → ℜ is its payoff function. Generalized 

Nash equilibrium (GNE) extends this concept by 

constraining the set of actions available to each agent 𝑖 to 

be dependent on the actions  −𝒊 of all other agents [14]. 

Hence, we may write,  𝑖 ∈ 𝒳𝑖( −𝒊). 
With 𝐱 ≜ [ 𝑖]𝑖∈𝒜 and ∇𝐮 ≜ [∇𝑢𝑖]𝑖∈𝒜 , the GNE 

conditions can be expressed in the following manner. 

∀𝑖 ∈ 𝒜, ∀ 𝑖 ∈ 𝒳𝑖( −𝒊), ∇𝑢𝑖( 𝑖
∗)( 𝑖 −  𝑖

∗) ≥ 0.   

The above GNE condition can be shown to reduce to 

the following quasi-variational inequality 𝑄𝑉𝐼(𝒳𝑖 , ∇𝐮) 
[16] (also see Fig. 4), 

∀𝐱 ∈ ∏𝒳𝑖( −𝑖)

𝑖

, ∇𝐮T(𝐱∗)(𝐱∗ − 𝐱) ≥ 0.        (12) 

 
Fig. 4. Quasi-variational inequality problem. 

B. Aggregator Equilibrium 

A game 𝔾𝑘(𝒢𝑘 , 𝒫𝑘
𝑖 , 𝑢𝑘

𝑖 )  can be defined at each 

aggregator, where using (7) the set of feasible actions is 

given be the following expression. 

𝒫𝑘
𝑖 = {𝑝𝑘

𝑖 |𝟏|𝒢𝑘|
T 𝐩𝑘 ≤ 𝑝𝑘}.                  (13) 

The GNE of 𝔾𝑘  at each aggregator is shown in the 

following theorem. 

Theorem-1: The aggregator mechanism in Algorithm-1 

establishes GNE. 

Proof: Let 𝐩𝑘
∗  be the equilibrium energy consumptions 

of the agents and  𝐪𝑘 ∈ ∏ 𝒫𝑘
𝑖

𝑖  another feasible vector of 

consumptions. From (2), 

∇𝐩𝑘
𝐮𝑘 = 𝑐𝑘𝟏|𝒢𝑘|

 

⇒ ∇𝐩𝑘
𝐮𝑘
T(𝐩𝑘

∗ − 𝐪𝑘) = 𝑐𝑘𝟏|𝒢𝑘|
T (𝐩𝑘

∗ − 𝐪𝑘). 

Using (5), the above is equivalent to the expression 

below. 

∇𝐩𝑘
𝐮𝑘
T(𝐩𝑘

∗ − 𝐪𝑘) = 𝑐𝑘𝑝𝑘 − 𝑐𝑘𝟏|𝒢𝑘|
T 𝐪𝑘 . 

Since 𝐪𝑘  is feasible, 𝟏|𝒢𝑘|
T 𝐪𝑘 ≤ 𝑝𝑘 , whence from the 

above, 

∇𝐩𝑘
𝐮𝑘
T(𝐩𝑘

∗ − 𝐪𝑘) ≥ 0.                               (14) 

Upon comparing the above expression with (12), 

clearly Algorithm-1 is a solution to 𝑄𝑉𝐼(𝒫𝑘
𝑖 , ∇𝐮𝑘). This 

proves that Algorithm-1 establishes GNE. 

C. DSO Equilibrium 

Consider the game 𝔾DSO(𝒜,ℱ, Θ𝑘) . It will now be 

established that 𝐩∗ is the GNE solution by means of the 

following theorem. 

Theorem-2: The DSO mechanism in Algorithm-2 

establishes GNE. 

Proof: Since it has been shown that Algorithm-1 

maximizes Θ𝑘 using its allocated power 𝑝𝑘, we consider it 

to be a function of the latter and indicate this as Θ𝑘(𝑝𝑘). 
Let the following expression be the solution of the 

constrained optimization problem in (10) that is arrived at 

by Algorithm-2.  

𝐩∗ =  rg  x
𝐩∈ℱ

𝟏|𝒜|
T 𝚯(𝐩),          (15) 

Next, let 𝐪 ∈ ℱ be another feasible allocation of power 

to the aggregators. Since 𝐩∗  solves the constrained 

optimization problem in (10), according to the minimum 

principle, 

∇𝐩𝚯(𝐩
∗)T(𝐩∗ − 𝐪) ≥ 0                              (16) 

Hence 𝐩∗ is a solution to 𝑄𝑉𝐼(ℱ, ∇𝚯). In other words, 

it is at GNE. 

Other approaches to obtain GNE are provided in [15], 

which may be considered as an alternative approach 

where the feasibility constraints are included as an 

augmented penalty term in the Lagrangian.  

IV. RESULTS & CONCLUSION 

A modified IEEE 37 node system has been used to 

simulate the proposed bilevel mechanism [7] (see Fig. 5). 

The system contains 17 aggregators.  

A set of agents were randomly generated for each 

aggregator. A total of 483 agents with 303 buyers and 180 

sellers, each with its own utility curve and generation was 

generated. Four scenarios, labeled I, II, III, and IV were 

created with increasing price levels [7]. The result of the 

application of Algorithm-2 with each aggregator 

executing a local copy of Algorithm-1 is provided in Fig. 

6. The convergence towards GNE is clearly observed. 

 
Fig. 5. Modified IEEE 37 node system. 
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Fig. 6. Convergence towards GNE for four cases. 

Prior research work in [7] has already shown the 

effectiveness of the auction mechanism discussed here. 

However, it was not specifically shown that the approach 

converges towards the GNE. In proving this result, this 

research shows that the algorithm converges towards the 

efficient optimum that is also stable from a market 

standpoint, where no agent would arbitrarily change its 

declared bid. 
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